Iron Hydrogenase

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 2805 Experts worldwide ranked by ideXlab platform

Fraser A Armstrong - One of the best experts on this subject based on the ideXlab platform.

Björn Åkermark - One of the best experts on this subject based on the ideXlab platform.

Marcetta Y. Darensbourg - One of the best experts on this subject based on the ideXlab platform.

  • cyanide bridged Iron complexes as biomimetics of tri Iron arrangements in maturases of the h cluster of the di Iron Hydrogenase
    Chemical Science, 2016
    Co-Authors: Allen M Lunsford, Michael B. Hall, Christopher C Beto, Shengda Ding, Ozlen F Erdem, Ning Wang, Nattamai Bhuvanesh, Marcetta Y. Darensbourg
    Abstract:

    Developing from certain catalytic processes required for ancient life forms, the H2 processing enzymes [NiFe]- and [FeFe]-Hydrogenase (H2ase) have active sites that are organometallic in composition, possessing carbon monoxide and cyanide as ligands. Simple synthetic analogues of the 2Fe portion of the active site of [FeFe]-H2ase have been shown to dock into the empty carrier (maturation) protein, apo-Hyd-F, via the bridging ability of a terminal cyanide ligand from a low valent FeIFeI unit to the Iron of a 4Fe4S cluster of Hyd-F, with spectral evidence indicating CN isomerization during the coupling process (Berggren, et al., Nature, 2013, 499, 66–70). To probe the requirements for such cyanide couplings, we have prepared and characterized four cyanide-bridged analogues of 3-Fe systems with features related to the organoIron moiety within the loaded HydF protein. As in classical organometallic chemistry, the orientation of the CN bridge in the biomimetics is determined by the precursor reagents; no cyanide flipping or linkage isomerization was observed. Density functional theory computations evaluated the energetics of cyanide isomerization in such [FeFe]–CN–Fe ⇌ [FeFe]–NC–Fe units, and found excessively high barriers account for the failure to observe the alternative isomers. These results highlight roles for cyanide as an unusual ligand in biology that may stabilize low spin Iron in [FeFe]-Hydrogenase, and can act as a bridge connecting multi-Iron units during bioassembly of the active site.

  • mechanism of electrocatalytic hydrogen production by a di Iron model of Iron Iron Hydrogenase a density functional theory study of proton dissociation constants and electrode reduction potentials
    Dalton Transactions, 2010
    Co-Authors: Panida Surawatanawong, Marcetta Y. Darensbourg, Michael B. Hall
    Abstract:

    Simple dinuclear Iron dithiolates such as (μ-SCH2CH2CH2S)[Fe(CO)3]2, (1) and (μ-SCH2CH2S)[Fe(CO)3]2 (2) are functional models for diIron-Hydrogenases, [FeFe]-H2ases, that catalyze the reduction of protons to H2. The mechanism of H2 production with 2 as the catalyst and with both toluenesulfonic (HOTs) and acetic (HOAc) acids as the H+ source in CH3CN solvent has been examined by density functional theory (DFT). Proton dissociation constants (pKa) and electrode reduction potentials (E°) are directly computed and compared to the measured pKa of HOTs and HOAc acids and the experimental reduction potentials. Computations show that when the strong acid, HOTs, is used as a proton source the one-electron reduced species 2− can be protonated to form a bridging hydride complex as the most stable structure. Then, this species can be reduced and protonated to form dihydrogen and regenerate 2. This cycle produces H2via an ECEC process at an applied potential of −1.8 V vs. Fc/Fc+. A second faster process opens for this system when the species produced at the ECEC step above is further reduced and H2 release returns the system to 2− rather than 2, an E[CECE] process. On the other hand, when the weak acid, HOAc, is the proton source a more negative applied reduction potential (−2.2 V vs. Fc/Fc+) is necessary. At this potential two one-electron reductions yield the dianion 22− before the first protonation, which in this case occurs on the thiolate. Subsequent reduction and protonation form dihydrogen and regenerate 2− through an E[ECEC] process.

  • de novo design of synthetic di Iron i complexes as structural models of the reduced form of Iron Iron Hydrogenase
    Inorganic Chemistry, 2006
    Co-Authors: Marcetta Y. Darensbourg, Michael B. Hall
    Abstract:

    Simple synthetic di-Iron dithiolate complexes provide good models of the composition of the active site of the IronIron Hydrogenase enzymes. However, the formally FeIFeI complexes synthesized to date fail to reproduce the precise orientation of the diatomic ligands about the Iron centers that is observed in the molecular structure of the reduced form of the enzyme active site. This structural difference is often used to explain the fact that the synthetic di-Iron complexes are generally poor catalysts when compared to the enzyme. Herein, density functional theory computations are used for the rational design of synthetic complexes as structural models of the reduced form of the enzyme active site. These computations suggest several possible synthetic targets. The synthesis of complexes containing five-atom S-to-S linkers of the form S(CH2)2X(CH2)2S (X = CH2, NH, or O) or pendant functionalities attached to the three-carbon framework is one method. Another approach is the synthesis of asymmetrically subst...

  • the hydrophilic phosphatriazaadamantane ligand in the development of h2 production electrocatalysts Iron Hydrogenase model complexes
    Journal of the American Chemical Society, 2004
    Co-Authors: Rosario Mejiarodriguez, Daesung Chong, Manuel P Soriaga, Joseph H Reibenspies, Marcetta Y. Darensbourg
    Abstract:

    As functional biomimics of the hydrogen-producing capability of the dinuclear active site in [Fe]H2ase, the FeIFeI organometallic complexes, (μ-pdt)[Fe(CO)2PTA]2, 1-PTA2, (pdt = SCH2CH2CH2S; PTA = 1,3,5-triaza-7-phosphaadamantane), and (μ-pdt)[Fe(CO)3][Fe(CO)2PTA], 1-PTA, were synthesized and fully characterized. For comparison to the hydrophobic (μ-pdt)[Fe(CO)2(PMe3)]2 and {(μ-H)(μ-pdt)[Fe(CO)2(PMe3)]2}+ analogues, electrochemical responses of 1-PTA2 and 1-(PTA·H+)2 were recorded in acetonitrile and in acetonitrile/water mixtures in the absence and presence of acetic acid. The production of H2 and the dependence of current on acid concentration indicated that the complexes were solution electrocatalysts that decreased over-voltage for H+ reduction from HOAc in CH3CN by up to 600 mV. The most effective electrocatalyst is the asymmetric 1-PTA species, which promotes H2 formation from HOAc (pKa in CH3CN = 22.6) at −1.4 V in CH3CN/H2O mixtures at the Fe0FeI redox level. Functionalization of the PTA ligand vi...

  • electrocatalysis of hydrogen production by active site analogues of the Iron Hydrogenase enzyme structure function relationships
    Dalton Transactions, 2003
    Co-Authors: Daesung Chong, Irene P Georgakaki, Rosario Mejiarodriguez, Jean Sanabriachinchilla, Manuel P Soriaga, Marcetta Y. Darensbourg
    Abstract:

    A series of binuclear FeIFeI complexes, (μ-SEt)2[Fe(CO)2L]2 (L = CO (1), PMe3 (1-P)), (μ-SRS)[Fe(CO)2L]2 (R = CH2CH2 (μ-edt): L = CO (2), PMe3 (2-P); R = CH2CH2CH2(μ-pdt): L = CO (3), PMe3 (3-P); and R = o-CH2C6H4CH2 (μ-o-xyldt): L = CO (4), PMe3 (4-P)), that serve as structural models for the active site of Fe-Hydrogenase are shown to be electrocatalysts for H2 production in the presence of acetic acid in acetonitrile. The redox levels for H2 production were established by spectroelectrochemistry to be Fe0Fe0 for the all-CO complexes and FeIFe0 for the PMe3-substituted derivatives. As electrocatalysts, the PMe3 derivatives are more stable and more sensitive to acid concentration than the all-CO complexes. The electrocatalysis is initiated by electrochemical reduction of these diIron complexes, which subsequently, under weak acid conditions, undergo protonation of the reduced Iron center to produce H2. An (η2-H2)FeII–Fe0/I intermediate is suggested and probable electrochemical mechanisms are discussed.

Roussel Michaël - One of the best experts on this subject based on the ideXlab platform.

  • Séquençage du génome du parasite intestinal Blastocystis sp. (ST7) : vers une meilleure compréhension des capacités métaboliques d'organites apparentés aux mitochondries chez ce microorganisme anaérobie
    HAL CCSD, 2011
    Co-Authors: Roussel Michaël
    Abstract:

    Blastocystis sp. is a highly prevalent anaerobic eukaryotic stramenopile parasite found in the intestinal tract of humans and various animals. This microorganism, sometimes associated with acute intestinal disorders, could be responsible for functional intestinal disorders such as the irritable bowel syndrom (IBS). As part of a collaborative sequencing project with the Genoscope (CEA Evry, France), we were able to caracterize the smallest stramenopile genome sequenced to date (18.8 Mbp) with a 6020 genes coding capacity. The gain of many genes through horizontal gene transfer is amajor characteristic of this genome, which shows extensive genomic rearrangements. Despite the anaerobic nature of Blastocytists sp., this eukaryote harbours nevertheless mitochondrion-like organelles (MLOs). We have shown that these organelles have a 29.27 kbp mitochondrial-type circular genome that lacks cytochrome coding genes. In silico analysis allowed us to predict the MLOs proteome (365 proteins), with the subsequent predictive model of the metabolic pathways associated with these organelles, including an electron transport chain (ETC) restricted to complex I and II. We have shown that MLOs shared common characteristics with anaerobic mitochondrion and hydrogenosomes (presence of a PFOR and an Iron-Hydrogenase), which could mean that Blastocystis sp. harbours modified anaerobic mitochondrion that resulted from the parasite adaptation to its anaerobic envIronment. In addition, Blastocytis sp. secretome prediction reveals the presence of potential virulence factors, which could be involved in the degradation of the intestinal epithelium as well as the host immune system bypass.Blastocystis sp., est un straménopile parasite anaérobie fréquemment rencontré dans le tractus gastro-intestinal de l’homme et de divers animaux. Ce microorganisme, parfois responsable de désordres digestifs aigus, pourrait conduire à des troubles fonctionnels intestinaux tels que le syndrome de l’intestin irritable (IBS). Le génome de Blastocystis sp., qui a fait l'objet d'un projet de séquençage en collaboration avec le Génoscope d’Evry, nous a permis de caractériser le plus petit génome de straménopile séquencé à ce jour (18,8 Mpb), avec une capacité codante de 6020 gènes. L’acquisition de nombreux gènes par transferts horizontaux est une caractéristique majeure de ce génome, qui montre d’abondants réarrangements génomiques. Bien qu’évoluant en anaérobiose, Blastocystis sp. possède des organites morphologiquement proches des mitochondries, appelés mitochondrion-like organelles (MLOs). Nous avons montré que ces organites comportaient un génome circulaire de type mitochondrial de 29,27 kpb, mais dépourvu des gènes codant pour les cytochromes. Des analyses in silico nous ont permis de caractériser le protéome des MLOs (365 protéines), conduisant à l’établissement d’un modèle prédictif des voies métaboliques associées à ces organites, avec notamment une chaine respiratoire limitée aux complexes I et II. Nous avons ainsi montré que les MLOs présentent des caractères communs aux mitochondries anaérobies et aux hydrogénosomes (présence d’une PFOR et d’une hydrogénase à fer), suggérant que Blastocystis sp. comporte des mitochondries anaérobies modifiées, qui résulteraient d’une adaptation du parasite à son envIronnement. Par ailleurs, la prédiction du sécrétome de Blastocystis sp. révèle la présence de facteurs de virulence potentiels, pouvant être impliqués dans l’altération de l’épithélium intestinal et le contournement du système immunitaire de l’hôte

  • Genome sequencing of the intestinal parasite Blastocystis sp. (ST7) : towards a better understanding of the metabolic capacities of mitochondria-related organelles in this anaerobic microorganism
    2011
    Co-Authors: Roussel Michaël
    Abstract:

    Blastocystis sp., est un straménopile parasite anaérobie fréquemment rencontré dans le tractus gastro-intestinal de l’homme et de divers animaux. Ce microorganisme, parfois responsable de désordres digestifs aigus, pourrait conduire à des troubles fonctionnels intestinaux tels que le syndrome de l’intestin irritable (IBS). Le génome de Blastocystis sp., qui a fait l'objet d'un projet de séquençage en collaboration avec le Génoscope d’Evry, nous a permis de caractériser le plus petit génome de straménopile séquencé à ce jour (18,8 Mpb), avec une capacité codante de 6020 gènes. L’acquisition de nombreux gènes par transferts horizontaux est une caractéristique majeure de ce génome, qui montre d’abondants réarrangements génomiques. Bien qu’évoluant en anaérobiose, Blastocystis sp. possède des organites morphologiquement proches des mitochondries, appelés mitochondrion-like organelles (MLOs). Nous avons montré que ces organites comportaient un génome circulaire de type mitochondrial de 29,27 kpb, mais dépourvu des gènes codant pour les cytochromes. Des analyses in silico nous ont permis de caractériser le protéome des MLOs (365 protéines), conduisant à l’établissement d’un modèle prédictif des voies métaboliques associées à ces organites, avec notamment une chaine respiratoire limitée aux complexes I et II. Nous avons ainsi montré que les MLOs présentent des caractères communs aux mitochondries anaérobies et aux hydrogénosomes (présence d’une PFOR et d’une hydrogénase à fer), suggérant que Blastocystis sp. comporte des mitochondries anaérobies modifiées, qui résulteraient d’une adaptation du parasite à son envIronnement. Par ailleurs, la prédiction du sécrétome de Blastocystis sp. révèle la présence de facteurs de virulence potentiels, pouvant être impliqués dans l’altération de l’épithélium intestinal et le contournement du système immunitaire de l’hôte.Blastocystis sp. is a highly prevalent anaerobic eukaryotic stramenopile parasite found in the intestinal tract of humans and various animals. This microorganism, sometimes associated with acute intestinal disorders, could be responsible for functional intestinal disorders such as the irritable bowel syndrom (IBS). As part of a collaborative sequencing project with the Genoscope (CEA Evry, France), we were able to caracterize the smallest stramenopile genome sequenced to date (18.8 Mbp) with a 6020 genes coding capacity. The gain of many genes through horizontal gene transfer is amajor characteristic of this genome, which shows extensive genomic rearrangements. Despite the anaerobic nature of Blastocytists sp., this eukaryote harbours nevertheless mitochondrion-like organelles (MLOs). We have shown that these organelles have a 29.27 kbp mitochondrial-type circular genome that lacks cytochrome coding genes. In silico analysis allowed us to predict the MLOs proteome (365 proteins), with the subsequent predictive model of the metabolic pathways associated with these organelles, including an electron transport chain (ETC) restricted to complex I and II. We have shown that MLOs shared common characteristics with anaerobic mitochondrion and hydrogenosomes (presence of a PFOR and an Iron-Hydrogenase), which could mean that Blastocystis sp. harbours modified anaerobic mitochondrion that resulted from the parasite adaptation to its anaerobic envIronment. In addition, Blastocytis sp. secretome prediction reveals the presence of potential virulence factors, which could be involved in the degradation of the intestinal epithelium as well as the host immune system bypass

Harsh R Pershad - One of the best experts on this subject based on the ideXlab platform.