Lactated Ringers Solution

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 96 Experts worldwide ranked by ideXlab platform

Allan Kunselman - One of the best experts on this subject based on the ideXlab platform.

  • Ündar A. Extracorporeal life support systems: alternative vs. conventional circuits. Perfusion
    2016
    Co-Authors: Sameer Khan, Feng Qiu, Rahul Vasavada, Allan Kunselman
    Abstract:

    Emerging technologies and practices for pediatric and neonatal extracorporeal life support (ECLS) are promising. This experiment sought to compare the Medtronic 0800 silicon rubber membrane oxygenator to the Quadrox-iD Pediatric oxygenator in the conventional roller pump circuit, as well as comparing the conventional circuit to an alternative circuit. Three circuits were set up in the experiment. Two conventional roller pump circuits were used to compare the two oxygenators and an alternative circuit consisting of the Quadrox-iD Pediatric oxygenator and Maquet Rotaflow centrifugal pump system was used to identify differences between circuits. All three circuits were primed with Lactated RingersSolution and human blood, with an hematocrit of 40%. Testing occurred at flow rates of 250, 500, and 750 ml/ min at 37°C for mean arterial line pressures of 60, 80, and 100 mmHg. The results of the experiment showed lower pressure drops and greater retention of total hemodynamic energy (THE) across the Quadrox-iD Pediatric oxygenator compared to the Medtronic 0800 oxygenator. Furthermore, the centrifugal pump used in the alternative circuit showed no back flow at flow rates as low as 250 ml/min while, on the other hand, rpm levels were kept below 2200 for flow rates as high as 750 ml/min. Findings support the usage of the Quadrox-iD Pediatric oxygenator in a circuit utilizing the Maquet Rotaflow centrifugal pump system due to lower pressure drops and greater percentage of THE retained across the circuit. Additional advantages of the alternative circuit include rapid set-up time, easy transport, lower priming volumes, and no gravity-dependent venous drainage system so that it can be situated in close proximity to and at the level of the patient

  • extracorporeal life support systems alternative vs conventional circuits
    Perfusion, 2011
    Co-Authors: Sameer Khan, Feng Qiu, Rahul Vasavada, Allan Kunselman
    Abstract:

    Emerging technologies and practices for pediatric and neonatal extracorporeal life support (ECLS) are promising. This experiment sought to compare the Medtronic 0800 silicon rubber membrane oxygenator to the Quadrox-iD Pediatric oxygenator in the conventional roller pump circuit, as well as comparing the conventional circuit to an alternative circuit. Three circuits were set up in the experiment. Two conventional roller pump circuits were used to compare the two oxygenators and an alternative circuit consisting of the Quadrox-iD Pediatric oxygenator and Maquet Rotaflow centrifugal pump system was used to identify differences between circuits. All three circuits were primed with Lactated Ringers' Solution and human blood, with an hematocrit of 40%. Testing occurred at flow rates of 250, 500, and 750 ml/ min at 37°C for mean arterial line pressures of 60, 80, and 100 mmHg. The results of the experiment showed lower pressure drops and greater retention of total hemodynamic energy (THE) across the Quadrox-iD Pediatric oxygenator compared to the Medtronic 0800 oxygenator. Furthermore, the centrifugal pump used in the alternative circuit showed no back flow at flow rates as low as 250 ml/min while, on the other hand, rpm levels were kept below 2200 for flow rates as high as 750 ml/min. Findings support the usage of the Quadrox-iD Pediatric oxygenator in a circuit utilizing the Maquet Rotaflow centrifugal pump system due to lower pressure drops and greater percentage of THE retained across the circuit. Additional advantages of the alternative circuit include rapid set-up time, easy transport, lower priming volumes, and no gravity-dependent venous drainage system so that it can be situated in close proximity to and at the level of the patient.

Sameer Khan - One of the best experts on this subject based on the ideXlab platform.

  • Ündar A. Extracorporeal life support systems: alternative vs. conventional circuits. Perfusion
    2016
    Co-Authors: Sameer Khan, Feng Qiu, Rahul Vasavada, Allan Kunselman
    Abstract:

    Emerging technologies and practices for pediatric and neonatal extracorporeal life support (ECLS) are promising. This experiment sought to compare the Medtronic 0800 silicon rubber membrane oxygenator to the Quadrox-iD Pediatric oxygenator in the conventional roller pump circuit, as well as comparing the conventional circuit to an alternative circuit. Three circuits were set up in the experiment. Two conventional roller pump circuits were used to compare the two oxygenators and an alternative circuit consisting of the Quadrox-iD Pediatric oxygenator and Maquet Rotaflow centrifugal pump system was used to identify differences between circuits. All three circuits were primed with Lactated RingersSolution and human blood, with an hematocrit of 40%. Testing occurred at flow rates of 250, 500, and 750 ml/ min at 37°C for mean arterial line pressures of 60, 80, and 100 mmHg. The results of the experiment showed lower pressure drops and greater retention of total hemodynamic energy (THE) across the Quadrox-iD Pediatric oxygenator compared to the Medtronic 0800 oxygenator. Furthermore, the centrifugal pump used in the alternative circuit showed no back flow at flow rates as low as 250 ml/min while, on the other hand, rpm levels were kept below 2200 for flow rates as high as 750 ml/min. Findings support the usage of the Quadrox-iD Pediatric oxygenator in a circuit utilizing the Maquet Rotaflow centrifugal pump system due to lower pressure drops and greater percentage of THE retained across the circuit. Additional advantages of the alternative circuit include rapid set-up time, easy transport, lower priming volumes, and no gravity-dependent venous drainage system so that it can be situated in close proximity to and at the level of the patient

  • extracorporeal life support systems alternative vs conventional circuits
    Perfusion, 2011
    Co-Authors: Sameer Khan, Feng Qiu, Rahul Vasavada, Allan Kunselman
    Abstract:

    Emerging technologies and practices for pediatric and neonatal extracorporeal life support (ECLS) are promising. This experiment sought to compare the Medtronic 0800 silicon rubber membrane oxygenator to the Quadrox-iD Pediatric oxygenator in the conventional roller pump circuit, as well as comparing the conventional circuit to an alternative circuit. Three circuits were set up in the experiment. Two conventional roller pump circuits were used to compare the two oxygenators and an alternative circuit consisting of the Quadrox-iD Pediatric oxygenator and Maquet Rotaflow centrifugal pump system was used to identify differences between circuits. All three circuits were primed with Lactated Ringers' Solution and human blood, with an hematocrit of 40%. Testing occurred at flow rates of 250, 500, and 750 ml/ min at 37°C for mean arterial line pressures of 60, 80, and 100 mmHg. The results of the experiment showed lower pressure drops and greater retention of total hemodynamic energy (THE) across the Quadrox-iD Pediatric oxygenator compared to the Medtronic 0800 oxygenator. Furthermore, the centrifugal pump used in the alternative circuit showed no back flow at flow rates as low as 250 ml/min while, on the other hand, rpm levels were kept below 2200 for flow rates as high as 750 ml/min. Findings support the usage of the Quadrox-iD Pediatric oxygenator in a circuit utilizing the Maquet Rotaflow centrifugal pump system due to lower pressure drops and greater percentage of THE retained across the circuit. Additional advantages of the alternative circuit include rapid set-up time, easy transport, lower priming volumes, and no gravity-dependent venous drainage system so that it can be situated in close proximity to and at the level of the patient.

Karen Smith - One of the best experts on this subject based on the ideXlab platform.

  • induced hypothermia using large volume ice cold intravenous fluid in comatose survivors of out of hospital cardiac arrest a preliminary report
    Resuscitation, 2003
    Co-Authors: Stephen Anthony Bernard, Michael Buist, Orlando Monteiro, Karen Smith
    Abstract:

    Abstract Study hypothesis: Recent studies have shown that induced hypothermia for twelve to twenty four hours improves outcome in patients who are resuscitated from out-of-hospital cardiac arrest. These studies used surface cooling, but this technique provided for relatively slow decreases in core temperature. Results from animal models suggest that further improvements in outcome may be possible if hypothermia is induced earlier after resuscitation from cardiac arrest. We hypothesized that a rapid infusion of large volume (30 ml/kg), ice-cold (4°C) intravenous fluid would be a safe, rapid and inexpensive technique to induce mild hypothermia in comatose survivors of out-of-hospital cardiac arrest. Methods: We enrolled 22 patients who were comatose following resuscitation from out-of-hospital cardiac arrest. After initial evaluation in the Emergency Department (ED), a large volume (30 ml/kg) of ice-cold (4°C) Lactated Ringers Solution was infused intravenously over 30 min. Data on vital signs, arterial blood gas, electrolyte and hematological was collected immediately before and after the infusion. Results: The rapid infusion of large volume, ice-cold crystalloid fluid resulted in a significant decrease in median core temperature from 35.5 to 33.8°C. There were also significant improvements in mean arterial blood pressure, renal function and acid–base analysis. No patient developed pulmonary odema. Conclusion: A rapid infusion of large volume, ice-cold crystalloid fluid is an inexpensive and effective method of inducing mild hypothermia in comatose survivors of out-of-hospital cardiac arrest, and is associated with beneficial haemodynamic, renal and acid–base effects. Further studies of this technique are warranted.

Rahul Vasavada - One of the best experts on this subject based on the ideXlab platform.

  • Ündar A. Extracorporeal life support systems: alternative vs. conventional circuits. Perfusion
    2016
    Co-Authors: Sameer Khan, Feng Qiu, Rahul Vasavada, Allan Kunselman
    Abstract:

    Emerging technologies and practices for pediatric and neonatal extracorporeal life support (ECLS) are promising. This experiment sought to compare the Medtronic 0800 silicon rubber membrane oxygenator to the Quadrox-iD Pediatric oxygenator in the conventional roller pump circuit, as well as comparing the conventional circuit to an alternative circuit. Three circuits were set up in the experiment. Two conventional roller pump circuits were used to compare the two oxygenators and an alternative circuit consisting of the Quadrox-iD Pediatric oxygenator and Maquet Rotaflow centrifugal pump system was used to identify differences between circuits. All three circuits were primed with Lactated RingersSolution and human blood, with an hematocrit of 40%. Testing occurred at flow rates of 250, 500, and 750 ml/ min at 37°C for mean arterial line pressures of 60, 80, and 100 mmHg. The results of the experiment showed lower pressure drops and greater retention of total hemodynamic energy (THE) across the Quadrox-iD Pediatric oxygenator compared to the Medtronic 0800 oxygenator. Furthermore, the centrifugal pump used in the alternative circuit showed no back flow at flow rates as low as 250 ml/min while, on the other hand, rpm levels were kept below 2200 for flow rates as high as 750 ml/min. Findings support the usage of the Quadrox-iD Pediatric oxygenator in a circuit utilizing the Maquet Rotaflow centrifugal pump system due to lower pressure drops and greater percentage of THE retained across the circuit. Additional advantages of the alternative circuit include rapid set-up time, easy transport, lower priming volumes, and no gravity-dependent venous drainage system so that it can be situated in close proximity to and at the level of the patient

  • extracorporeal life support systems alternative vs conventional circuits
    Perfusion, 2011
    Co-Authors: Sameer Khan, Feng Qiu, Rahul Vasavada, Allan Kunselman
    Abstract:

    Emerging technologies and practices for pediatric and neonatal extracorporeal life support (ECLS) are promising. This experiment sought to compare the Medtronic 0800 silicon rubber membrane oxygenator to the Quadrox-iD Pediatric oxygenator in the conventional roller pump circuit, as well as comparing the conventional circuit to an alternative circuit. Three circuits were set up in the experiment. Two conventional roller pump circuits were used to compare the two oxygenators and an alternative circuit consisting of the Quadrox-iD Pediatric oxygenator and Maquet Rotaflow centrifugal pump system was used to identify differences between circuits. All three circuits were primed with Lactated Ringers' Solution and human blood, with an hematocrit of 40%. Testing occurred at flow rates of 250, 500, and 750 ml/ min at 37°C for mean arterial line pressures of 60, 80, and 100 mmHg. The results of the experiment showed lower pressure drops and greater retention of total hemodynamic energy (THE) across the Quadrox-iD Pediatric oxygenator compared to the Medtronic 0800 oxygenator. Furthermore, the centrifugal pump used in the alternative circuit showed no back flow at flow rates as low as 250 ml/min while, on the other hand, rpm levels were kept below 2200 for flow rates as high as 750 ml/min. Findings support the usage of the Quadrox-iD Pediatric oxygenator in a circuit utilizing the Maquet Rotaflow centrifugal pump system due to lower pressure drops and greater percentage of THE retained across the circuit. Additional advantages of the alternative circuit include rapid set-up time, easy transport, lower priming volumes, and no gravity-dependent venous drainage system so that it can be situated in close proximity to and at the level of the patient.

Feng Qiu - One of the best experts on this subject based on the ideXlab platform.

  • Ündar A. Extracorporeal life support systems: alternative vs. conventional circuits. Perfusion
    2016
    Co-Authors: Sameer Khan, Feng Qiu, Rahul Vasavada, Allan Kunselman
    Abstract:

    Emerging technologies and practices for pediatric and neonatal extracorporeal life support (ECLS) are promising. This experiment sought to compare the Medtronic 0800 silicon rubber membrane oxygenator to the Quadrox-iD Pediatric oxygenator in the conventional roller pump circuit, as well as comparing the conventional circuit to an alternative circuit. Three circuits were set up in the experiment. Two conventional roller pump circuits were used to compare the two oxygenators and an alternative circuit consisting of the Quadrox-iD Pediatric oxygenator and Maquet Rotaflow centrifugal pump system was used to identify differences between circuits. All three circuits were primed with Lactated RingersSolution and human blood, with an hematocrit of 40%. Testing occurred at flow rates of 250, 500, and 750 ml/ min at 37°C for mean arterial line pressures of 60, 80, and 100 mmHg. The results of the experiment showed lower pressure drops and greater retention of total hemodynamic energy (THE) across the Quadrox-iD Pediatric oxygenator compared to the Medtronic 0800 oxygenator. Furthermore, the centrifugal pump used in the alternative circuit showed no back flow at flow rates as low as 250 ml/min while, on the other hand, rpm levels were kept below 2200 for flow rates as high as 750 ml/min. Findings support the usage of the Quadrox-iD Pediatric oxygenator in a circuit utilizing the Maquet Rotaflow centrifugal pump system due to lower pressure drops and greater percentage of THE retained across the circuit. Additional advantages of the alternative circuit include rapid set-up time, easy transport, lower priming volumes, and no gravity-dependent venous drainage system so that it can be situated in close proximity to and at the level of the patient

  • extracorporeal life support systems alternative vs conventional circuits
    Perfusion, 2011
    Co-Authors: Sameer Khan, Feng Qiu, Rahul Vasavada, Allan Kunselman
    Abstract:

    Emerging technologies and practices for pediatric and neonatal extracorporeal life support (ECLS) are promising. This experiment sought to compare the Medtronic 0800 silicon rubber membrane oxygenator to the Quadrox-iD Pediatric oxygenator in the conventional roller pump circuit, as well as comparing the conventional circuit to an alternative circuit. Three circuits were set up in the experiment. Two conventional roller pump circuits were used to compare the two oxygenators and an alternative circuit consisting of the Quadrox-iD Pediatric oxygenator and Maquet Rotaflow centrifugal pump system was used to identify differences between circuits. All three circuits were primed with Lactated Ringers' Solution and human blood, with an hematocrit of 40%. Testing occurred at flow rates of 250, 500, and 750 ml/ min at 37°C for mean arterial line pressures of 60, 80, and 100 mmHg. The results of the experiment showed lower pressure drops and greater retention of total hemodynamic energy (THE) across the Quadrox-iD Pediatric oxygenator compared to the Medtronic 0800 oxygenator. Furthermore, the centrifugal pump used in the alternative circuit showed no back flow at flow rates as low as 250 ml/min while, on the other hand, rpm levels were kept below 2200 for flow rates as high as 750 ml/min. Findings support the usage of the Quadrox-iD Pediatric oxygenator in a circuit utilizing the Maquet Rotaflow centrifugal pump system due to lower pressure drops and greater percentage of THE retained across the circuit. Additional advantages of the alternative circuit include rapid set-up time, easy transport, lower priming volumes, and no gravity-dependent venous drainage system so that it can be situated in close proximity to and at the level of the patient.