LANA

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 19710 Experts worldwide ranked by ideXlab platform

Kenneth M Kaye - One of the best experts on this subject based on the ideXlab platform.

  • Kaposi's Sarcoma-Associated Herpesvirus LANA-Adjacent Regions with Distinct Functions in Episome Segregation or Maintenance.
    Journal of Virology, 2019
    Co-Authors: Franceline Juillard, Erika De Leon Vazquez, Shijun Li, Kenneth M Kaye
    Abstract:

    Kaposi's sarcoma-associated herpesvirus (KSHV) latency-associated nuclear antigen (LANA) is a 1,162-amino-acid protein that mediates episome persistence of viral genomes. LANA binds the KSHV terminal-repeat (TR) sequence through its carboxy-terminal domain to mediate DNA replication. LANA simultaneously binds mitotic chromosomes and TR DNA to segregate virus genomes to daughter cell nuclei. Amino-terminal LANA attaches to chromosomes by binding histones H2A/H2B, and carboxy-terminal LANA contributes to mitotic-chromosome binding. Although amino- and carboxy-terminal LANA are essential for episome persistence, they are not sufficient, since deletion of all internal LANA sequence renders LANA highly deficient for episome maintenance. Internal LANA sequence upstream of the internal repeat elements contributes to episome segregation and persistence. Here, we investigate this region with a panel of LANA deletion mutants. Mutants retained the ability to associate with mitotic chromosomes and bind TR DNA. In contrast to prior results, deletion of most of this sequence did not reduce LANA's ability to mediate DNA replication. Deletions of upstream sequence within the region compromised segregation of TR DNA to daughter cells, as assessed by retention of green fluorescent protein (GFP) expression from a replication-deficient TR plasmid. However, deletion of this upstream sequence did not reduce episome maintenance. In contrast, deletions that included an 80-amino-acid sequence immediately downstream resulted in highly deficient episome persistence. LANA with this downstream sequence deleted maintained the ability to replicate and segregate TR DNA, suggesting a unique role for the residues. Therefore, this work identifies adjacent LANA regions with distinct roles in episome segregation and persistence.IMPORTANCE KSHV LANA mediates episomal persistence of viral genomes. LANA binds the KSHV terminal-repeat (TR) sequence to mediate DNA replication and tethers KSHV DNA to mitotic chromosomes to segregate genomes to daughter cell nuclei. Here, we investigate LANA sequence upstream of the internal repeat elements that contributes to episome segregation and persistence. Mutants with deletions within this sequence maintained the ability to bind mitotic chromosomes or bind and replicate TR DNA. Deletion of upstream sequence within the region reduced segregation of TR DNA to daughter cells, but not episome maintenance. In contrast, mutants with deletions of 80 amino acids immediately downstream were highly deficient for episome persistence yet maintained the ability to replicate and segregate TR DNA, the two principal components of episome persistence, suggesting another role for the residues. In summary, this work identifies adjacent LANA sequence with distinct roles in episome segregation and persistence.

  • cross species conservation of episome maintenance provides a basis for in vivo investigation of kaposi s sarcoma herpesvirus LANA
    PLOS Pathogens, 2017
    Co-Authors: Aline C Habison, Rajesh Ponnusamy, Bruno Correia, Marta Pires De Miranda, Pedro J Simas, Chantal Beauchemin, Sofia A Cerqueira, Edward J Usherwood, Colin E Mcvey, Kenneth M Kaye
    Abstract:

    Many pathogens, including Kaposi’s sarcoma herpesvirus (KSHV), lack tractable small animal models. KSHV persists as a multi-copy, nuclear episome in latently infected cells. KSHV latency-associated nuclear antigen (kLANA) binds viral terminal repeat (kTR) DNA to mediate episome persistence. Model pathogen murine gammaherpesvirus 68 (MHV68) mLANA acts analogously on mTR DNA. kLANA and mLANA differ substantially in size and kTR and mTR show little sequence conservation. Here, we find kLANA and mLANA act reciprocally to mediate episome persistence of TR DNA. Further, kLANA rescued mLANA deficient MHV68, enabling a chimeric virus to establish latent infection in vivo in germinal center B cells. The level of chimeric virus in vivo latency was moderately reduced compared to WT infection, but WT or chimeric MHV68 infected cells had similar viral genome copy numbers as assessed by immunofluorescence of LANA intranuclear dots or qPCR. Thus, despite more than 60 Ma of evolutionary divergence, mLANA and kLANA act reciprocally on TR DNA, and kLANA functionally substitutes for mLANA, allowing kLANA investigation in vivo. Analogous chimeras may allow in vivo investigation of genes of other human pathogens.

  • kshv but not mhv 68 LANA induces a strong bend upon binding to terminal repeat viral dna
    Nucleic Acids Research, 2015
    Co-Authors: Rajesh Ponnusamy, Maxim V Petoukhov, Bruno Correia, Tania F Custodio, Franceline Juillard, Marta Pires De Miranda, M A Carrondo, Pedro J Simas, Kenneth M Kaye, Dmitri I Svergun
    Abstract:

    Latency-associated nuclear antigen (LANA) is central to episomal tethering, replication and transcriptional regulation of γ2-herpesviruses. LANA binds cooperatively to the terminal repeat (TR) region of the viral episome via adjacent LANA binding sites (LBS), but the molecular mechanism by which LANA assembles on the TR remains elusive. We show that KSHV LANA and MHV-68 LANA proteins bind LBS DNA using strikingly different modes. Solution structure of LANA complexes revealed that while kLANA tetramer is intrinsically bent both in the free and bound state to LBS1–2 DNA, mLANA oligomers instead adopt a rigid linear conformation. In addition, we report a novel non-ring kLANA structure that displays more flexibility at its assembly interface than previously demonstrated. We identified a hydrophobic pivot point located at the dimer–dimer assembly interface, which gives rotational freedom for kLANA to adopt variable conformations to accommodate both LBS1–2 and LBS2–1–3 DNA. Alterations in the arrangement of LBS within TR or at the tetramer assembly interface have a drastic effect on the ability of kLANA binding. We also show kLANA and mLANA DNA binding functions can be reciprocated. Although KSHV and MHV-68 are closely related, the findings provide new insights into how the structure, oligomerization, and DNA binding of LANA have evolved differently to assemble on the TR DNA.

  • kaposi s sarcoma associated herpesvirus LANA recruits the dna polymerase clamp loader to mediate efficient replication and virus persistence
    Proceedings of the National Academy of Sciences of the United States of America, 2014
    Co-Authors: Toshiki Tsurimoto, Franceline Juillard, Erika De Leon Vazquez, Shijun Li, Lin Li, She Chen, Kenneth M Kaye
    Abstract:

    Abstract Kaposi's sarcoma-associated herpesvirus (KSHV) latently infects tumor cells and persists as a multiple-copy, extrachromosomal, circular episome. To persist, the viral genome must replicate with each cell cycle. The KSHV latency-associated nuclear antigen (LANA) mediates viral DNA replication and persistence, but little is known regarding the underlying mechanisms. We find that LANA recruits replication factor C (RFC), the DNA polymerase clamp [proliferating cell nuclear antigen (PCNA)] loader, to drive DNA replication efficiently. Mutated LANA lacking RFC interaction was deficient for LANA-mediated DNA replication and episome persistence. RFC depletion had a negative impact on LANA’s ability to replicate and maintain viral DNA in cells containing artificial KSHV episomes or in infected cells, leading to loss of virus. LANA substantially increased PCNA loading onto DNA in vitro and recruited RFC and PCNA to KSHV DNA in cells. These findings suggest that PCNA loading is a rate-limiting step in DNA replication that is incompatible with viral survival. LANA enhancement of PCNA loading permits efficient virus replication and persistence, revealing a previously unidentified mechanism for KSHV latency.

  • a short sequence immediately upstream of the internal repeat elements is critical for kshv LANA mediated dna replication and impacts episome persistence
    Virology, 2014
    Co-Authors: Erika De Leon Vazquez, Franceline Juillard, Bernard Rosner, Kenneth M Kaye
    Abstract:

    Kaposi's sarcoma-associated herpesvirus LANA (1162 residues) mediates episomal persistence of viral genomes during latency. LANA mediates viral DNA replication and segregates episomes to daughter nuclei. A 59 residue deletion immediately upstream of the internal repeat elements rendered LANA highly deficient for DNA replication and modestly deficient for the ability to segregate episomes, while smaller deletions did not. The 59 amino acid deletion reduced LANA episome persistence by ~14-fold, while sequentially smaller deletions resulted in ~3-fold, or no deficiency. Three distinct LANA regions reorganized heterochromatin, one of which contains the deleted sequence, but the deletion did not abolish LANA's ability to alter chromatin. Therefore, this work identifies a short internal LANA sequence that is critical for DNA replication, has modest effects on episome segregation, and substantially impacts episome persistence; this region may exert its effects through an interacting host cell protein(s).

Subhash C Verma - One of the best experts on this subject based on the ideXlab platform.

  • LANA and hnrnp a1 regulate the translation of LANA mrna through g quadruplexes
    Journal of Virology, 2019
    Co-Authors: Prerna Dabral, Jay Babu, Andrew Zareie, Subhash C Verma
    Abstract:

    During the latent phase, Kaposi's sarcoma-associated herpes virus (KSHV) maintains itself inside the host by escaping the host immune surveillance mechanism through restricted protein expression. Latency-associated nuclear antigen (LANA), the most abundantly expressed protein, is essential for viral persistence, as it plays important roles in latent viral DNA replication and efficient segregation of the viral genome to the daughter cells following cell division. KSHV evades immune detection by maintaining the levels of LANA protein below a threshold required for detection by the host immune system but sufficient to maintain the viral genome. LANA achieves this by controlling its expression through regulation of its promoters and by inhibiting its presentation through interaction with the proteins of class I and class II major histocompatibility complex (MHC) pathways. In this study, we identified a mechanism of LANA expression and restricted immune recognition through formation of G-quadruplexes in LANA mRNA. We show that the formation of these stable structures in LANA mRNA inhibits its translation to control antigen presentation, which was supported by treatment of cells with TMPyP4, a G-quadruplex-stabilizing ligand. We identified heterogenous ribonucleoprotein A1 (hnRNP A1) as a G-quadruplex-unwinding helicase, which unfolds these stable secondary structures to regulate LANA translation.IMPORTANCE LANA, the most abundantly expressed protein during latency, is a multifunctional protein which is absolutely required for the persistence of KSHV in the host cell. Even though the functions of LANA in aiding pathogenesis of the virus have been extensively studied, the mechanism of how LANA escapes host's immune surveillance is not fully understood. This study sheds light on the autoregulatory role of LANA to modulate its expression and immune evasion through formation of G-quadruplexes in its mRNA. We used G-quadruplex-stabilizing ligand to define the inhibition in LANA expression and presentation on the cell surface through MHC class I. We defined the autoregulatory role of LANA and identified a cellular RNA helicase, hnRNP A1, regulating the translation of LANA mRNA. This interaction of hnRNP A1 with LANA mRNA could be exploited for controlling KSHV latency.

  • Minichromosome Maintenance Proteins Cooperate with LANA during the G1/S Phase of the Cell Cycle To Support Viral DNA Replication.
    Journal of Virology, 2019
    Co-Authors: Prerna Dabral, Timsy Uppal, Cyprian C Rossetto, Subhash C Verma
    Abstract:

    Latency-associated nuclear antigen (LANA) is essential for maintaining the viral genome by regulating replication and segregation of the viral episomes. The virus maintains 50 to 100 episomal copies during latency and replicates in synchrony with the cellular DNA of the infected cells. Since virus lacks its own replication machinery, it utilizes the cellular proteins for replication and maintenance, and LANA has been shown to make many of these proteins available for replication by directly recruiting them to the viral origin of replication within the terminal repeat (TR) region. Our studies identified members of the minichromosome maintenance (MCM) complex as potential LANA-interacting proteins. Here, we show that LANA specifically interacts with the components of the MCM complex, primarily during the G1/S phase of the cell cycle. MCM3 and -4 of the MCM complex specifically bound to the amino-terminal domain, while MCM6 bound to both the amino- and carboxyl-terminal domains of LANA. The MCM binding region in the N-terminal domain mapped to the chromatin binding domain (CBD). LANA with point mutations in the carboxyl-terminal domain identified an MCM6 binding domain, and overexpression of that domain (amino acids [aa] 1100 to 1150) abolished TR replication. Introduction of a peptide encompassing the LANA aa 1104 to 1123 reduced MCM6 association with LANA and TR replication. Moreover, a recombinant Kaposi’s sarcoma-associated herpesvirus (KSHV) expressing LANA with a deletion of aa 1100 to 1150 (BAC16Δ1100–1150, where BAC is bacmid) showed reduced replication and persistence of viral genome copies compared to levels with the wild-type BAC16. Additionally, the role of MCMs in viral replication was confirmed by depleting MCMs and assaying transient and long-term maintenance of the viral episomes. The recruitment of MCMs to the replication origins through LANA was demonstrated through chromatin immunoprecipitation and isolation of proteins on nascent replicated DNA (iPOND). These data clearly show the role of MCMs in latent DNA replication and the potential for targeting the C-terminal domain of LANA to block viral persistence. IMPORTANCE LANA-mediated latent DNA replication is essential for efficient maintenance of KSHV episomes in the host. During latency, virus relies on the host cellular machinery for replication, which occurs in synchrony with the cellular DNA. LANA interacts with the components of multiple cellular pathways, including cellular replication machinery, and recruits them to the viral origin for DNA replication. In this study, we characterize the interactions between LANA and minichromosome maintenance (MCM) proteins, members of the cellular replication complex. We demonstrated a cell cycle-dependent interaction between LANA and MCMs and determined their importance for viral genome replication and maintenance through biochemical assays. In addition, we mapped a 50-amino acid region in LANA which was capable of abrogating the association of MCM6 with LANA and blocking DNA replication. We also detected LANA along with MCMs at the replication forks using a novel approach, isolation of proteins on nascent DNA (iPOND).

  • minichromosome maintenance proteins cooperate with LANA during the g1 s phase of the cell cycle to support viral dna replication
    Journal of Virology, 2019
    Co-Authors: Prerna Dabral, Timsy Uppal, Cyprian C Rossetto, Subhash C Verma
    Abstract:

    Latency-associated nuclear antigen (LANA) is essential for maintaining the viral genome by regulating replication and segregation of the viral episomes. The virus maintains 50 to 100 episomal copies during latency and replicates in synchrony with the cellular DNA of the infected cells. Since virus lacks its own replication machinery, it utilizes the cellular proteins for replication and maintenance, and LANA has been shown to make many of these proteins available for replication by directly recruiting them to the viral origin of replication within the terminal repeat (TR) region. Our studies identified members of the minichromosome maintenance (MCM) complex as potential LANA-interacting proteins. Here, we show that LANA specifically interacts with the components of the MCM complex, primarily during the G1/S phase of the cell cycle. MCM3 and -4 of the MCM complex specifically bound to the amino-terminal domain, while MCM6 bound to both the amino- and carboxyl-terminal domains of LANA. The MCM binding region in the N-terminal domain mapped to the chromatin binding domain (CBD). LANA with point mutations in the carboxyl-terminal domain identified an MCM6 binding domain, and overexpression of that domain (amino acids [aa] 1100 to 1150) abolished TR replication. Introduction of a peptide encompassing the LANA aa 1104 to 1123 reduced MCM6 association with LANA and TR replication. Moreover, a recombinant Kaposi’s sarcoma-associated herpesvirus (KSHV) expressing LANA with a deletion of aa 1100 to 1150 (BAC16Δ1100–1150, where BAC is bacmid) showed reduced replication and persistence of viral genome copies compared to levels with the wild-type BAC16. Additionally, the role of MCMs in viral replication was confirmed by depleting MCMs and assaying transient and long-term maintenance of the viral episomes. The recruitment of MCMs to the replication origins through LANA was demonstrated through chromatin immunoprecipitation and isolation of proteins on nascent replicated DNA (iPOND). These data clearly show the role of MCMs in latent DNA replication and the potential for targeting the C-terminal domain of LANA to block viral persistence. IMPORTANCE LANA-mediated latent DNA replication is essential for efficient maintenance of KSHV episomes in the host. During latency, virus relies on the host cellular machinery for replication, which occurs in synchrony with the cellular DNA. LANA interacts with the components of multiple cellular pathways, including cellular replication machinery, and recruits them to the viral origin for DNA replication. In this study, we characterize the interactions between LANA and minichromosome maintenance (MCM) proteins, members of the cellular replication complex. We demonstrated a cell cycle-dependent interaction between LANA and MCMs and determined their importance for viral genome replication and maintenance through biochemical assays. In addition, we mapped a 50-amino acid region in LANA which was capable of abrogating the association of MCM6 with LANA and blocking DNA replication. We also detected LANA along with MCMs at the replication forks using a novel approach, isolation of proteins on nascent DNA (iPOND).

  • kshv encoded LANA recruits nucleosome assembly protein nap1l1 for regulating viral dna replication and transcription
    Scientific Reports, 2016
    Co-Authors: Namrata Gupta, Suhani Thakker, Subhash C Verma
    Abstract:

    The establishment of latency is an essential for lifelong persistence and pathogenesis of Kaposi’s sarcoma-associated herpesvirus (KSHV). Latency-associated nuclear antigen (LANA) is the most abundantly expressed protein during latency and is important for viral genome replication and transcription. Replication-coupled nucleosome assembly is a major step in packaging the newly synthesized DNA into chromatin, but the mechanism of KSHV genome chromatinization post-replication is not understood. Here, we show that nucleosome assembly protein 1-like protein 1 (NAP1L1) associates with LANA. Our binding assays revealed an association of LANA with NAP1L1 in KSHV-infected cells, which binds through its amino terminal domain. Association of these proteins confirmed their localization in specific nuclear compartments of the infected cells. Chromatin immunoprecipitation assays from NAP1L1-depleted cells showed LANA-mediated recruitment of NAP1L1 at the terminal repeat (TR) region of the viral genome. Presence of NAP1L1 stimulated LANA-mediated DNA replication and persistence of a TR-containing plasmid. Depletion of NAP1L1 led to a reduced nucleosome positioning on the viral genome. Furthermore, depletion of NAP1L1 increased the transcription of viral lytic genes and overexpression decreased the promoter activities of LANA-regulated genes. These results confirmed that LANA recruitment of NAP1L1 helps in assembling nucleosome for the chromatinization of newly synthesized viral DNA.

  • kaposi s sarcoma associated herpesvirus encoded LANA recruits topoisomerase iiβ for latent dna replication of the terminal repeats
    Journal of Virology, 2012
    Co-Authors: Pravinkumar Purushothaman, Maria E Mcdowell, James Mcguinness, Ruth Salas, Sharif M Rumjahn, Subhash C Verma
    Abstract:

    ABSTRACT The latency-associated nuclear antigen (LANA) encoded by Kaposi9s sarcoma-associated herpesvirus (KSHV) plays a major role in maintaining latency and is critical for the perpetual segregation of viral episomes to the progeny nuclei of newly divided cells. LANA binds to KSHV terminal repeat (TR) DNA and tethers the viral episomes to host chromosomes through the association of chromatin-bound cellular proteins. TR elements serve as potential origin sites of KSHV replication and have been shown to play important roles in latent DNA replication and transcription of adjacent genes. Affinity chromatography and proteomics analysis using KSHV TR DNA and the LANA binding site as the affinity column identified topoisomerase IIβ (TopoIIβ) as a LANA-interacting protein. Here, we show that TopoIIβ forms complexes with LANA that colocalize as punctuate bodies in the nucleus of KSHV-infected cells. The specific TopoIIβ binding region of LANA has been identified to its N terminus and the first 32 amino acid residues containing the nucleosome-binding region crucial for binding. Moreover, this region could also act as a dominant negative to disrupt association of TopoIIβ with LANA. TopoIIβ plays an important role in LANA-dependent latent DNA replication, as addition of ellipticine, a selective inhibitor of TopoII, negatively regulated replication mediated by the TR. DNA break labeling and chromatin immunoprecipitation assay using biotin-16-dUTP and terminal deoxynucleotide transferase showed that TopoIIβ mediates a transient DNA break on viral DNA. These studies confirm that LANA recruits TopoIIβ at the origins of latent replication to unwind the DNA for replication.

Erle S Robertson - One of the best experts on this subject based on the ideXlab platform.

  • shugoshin 1 is dislocated by kshv encoded LANA inducing aneuploidy
    PLOS Pathogens, 2018
    Co-Authors: Fengchao Lang, Rajnish Kumar Singh, Erle S Robertson
    Abstract:

    Shugoshin-1 (Sgo1) protects the integrity of the centromeres, and H2A phosphorylation is critical for this process. The mitotic checkpoint kinase Bub1, phosphorylates H2A and ensures fidelity of chromosome segregation and chromosome number. Oncogenic KSHV induces genetic alterations through chromosomal instability (CIN), and its essential antigen LANA regulates Bub1. We show that LANA inhibits Bub1 phosphorylation of H2A and Cdc20, important for chromosome segregation and mitotic signaling. Inhibition of H2A phosphorylation at residue T120 by LANA resulted in dislocation of Sgo1, and cohesin from the centromeres. Arrest of Cdc20 phosphorylation also rescued degradation of Securin and Cyclin B1 at mitotic exit, and interaction of H2A, and Cdc20 with Bub1 was inhibited by LANA. The N-terminal nuclear localization sequence domain of LANA was essential for LANA and Bub1 interaction, reversed LANA inhibited phosphorylation of H2A and Cdc20, and attenuated LANA-induced aneuploidy and cell proliferation. This molecular mechanism whereby KSHV-induced CIN, demonstrated that the NNLS of LANA is a promising target for development of anti-viral therapies targeting KSHV associated cancers.

  • bub1 in complex with LANA recruits pcna to regulate kaposi s sarcoma associated herpesvirus latent replication and dna translesion synthesis
    Journal of Virology, 2015
    Co-Authors: Erle S Robertson
    Abstract:

    ABSTRACT Latent DNA replication of Kaposi9s sarcoma-associated herpesvirus (KSHV) initiates at the terminal repeat (TR) element and requires trans -acting elements, both viral and cellular, such as ORCs, MCMs, and latency-associated nuclear antigen (LANA). However, how cellular proteins are recruited to the viral genome is not very clear. Here, we demonstrated that the host cellular protein, Bub1, is involved in KSHV latent DNA replication. We show that Bub1 constitutively interacts with proliferating cell nuclear antigen (PCNA) via a highly conserved PIP box motif within the kinase domain. Furthermore, we demonstrated that Bub1 can form a complex with LANA and PCNA in KSHV-positive cells. This strongly indicated that Bub1 serves as a scaffold or molecular bridge between LANA and PCNA. LANA recruited PCNA to the KSHV genome via Bub1 to initiate viral replication in S phase and interacted with PCNA to promote its monoubiquitination in response to UV-induced damage for translesion DNA synthesis. This resulted in increased survival of KSHV-infected cells. IMPORTANCE During latency in KSHV-infected cells, the viral episomal DNA replicates once each cell cycle. KSHV does not express DNA replication proteins during latency. Instead, KSHV LANA recruits the host cell DNA replication machinery to the replication origin. However, the mechanism by which LANA mediates replication is uncertain. Here, we show that LANA is able to form a complex with PCNA, a critical protein for viral DNA replication. Furthermore, our findings suggest that Bub1, a spindle checkpoint protein, serves as a scaffold or molecular bridge between LANA and PCNA. Our data further support a role for Bub1 and LANA in PCNA-mediated cellular DNA replication processes as well as monoubiquitination of PCNA in response to UV damage. These data reveal a therapeutic target for inhibition of KSHV persistence in malignant cells.

  • kaposi s sarcoma associated herpesvirus encoded LANA can induce chromosomal instability through targeted degradation of the mitotic checkpoint kinase bub1
    Journal of Virology, 2014
    Co-Authors: Bingyi Xiao, Jie Lu, Shuvomoy Banerjee, Erle S Robertson
    Abstract:

    Kaposi's sarcoma-associated herpesvirus (KSHV) has a significant contributory role in the development of three major human neoplastic or lymphoproliferative diseases: Kaposi's sarcoma (KS), primary effusion lymphoma (PEL), and multicentric Castleman's disease (MCD). These diseases are associated with chromosomal instability, a hallmark of human cancer. The latency-associated nuclear antigen (LANA) encoded by KSHV plays a key role in regulating a number of cellular pathways critical for oncogenesis. KSHV LANA alone can induce the development of B-cell hyperplasia and lymphoma in mice expressing LANA. LANA also induces chromosomal instability, thus promoting oncogenesis. However, the precise mechanism underlying LANA-mediated chromosomal instability remains uncharted. Here we report that LANA promoted the induction of chromosomal instability and the formation of micronuclei and multinucleation through its interaction with one of the critical spindle checkpoint proteins, Bub1, and the resulting degradation of Bub1. This interaction occurs through the Knl and kinase domains of Bub1, identified as important for stability and degradation. These results suggest that LANA can dysregulate Bub1 activity, which leads to aberrant chromosome replication and aneuploidy, thus contributing to KSHV-mediated oncogenesis. IMPORTANCE This work represents the first set of results identifying a novel mechanism by which LANA, a latency-associated antigen encoded by KSHV, can induce the degradation of Bub1, a spindle checkpoint protein that is important for spindle checkpoint signaling and chromosome segregation. The downregulation of Bub1 mediated by LANA resulted in chromosomal instability, a hallmark of cancer. We further investigated the specific domains of Bub1 that are required for the interaction between LANA and Bub1. The results demonstrated that the Knl and kinase domains of Bub1 are required for the interaction between LANA and Bub1. In addition, we also investigated the mechanism by which LANA promoted Bub1 degradation. Our results showed that LANA interacted physically with the anaphase-promoting complex (APC/C), thus promoting the degradation of Bub1 in a ubiquitin-dependent process.

  • irf 4 mediated ciita transcription is blocked by kshv encoded LANA to inhibit mhc ii presentation
    PLOS Pathogens, 2013
    Co-Authors: Shuvomoy Banerjee, Jie Lu, Amanda Cervini, Andrew D Hislop, Richard Dzeng, Erle S Robertson
    Abstract:

    Peptides presentation to T cells by MHC class II molecules is of importance in initiation of immune response to a pathogen. The level of MHC II expression directly influences T lymphocyte activation and is often targeted by various viruses. Kaposi's sarcoma-associated herpesvirus (KSHV) encoded LANA is known to evade MHC class I peptide processing, however, the effect of LANA on MHC class II remains unclear. Here, we report that LANA down-regulates MHC II expression and presentation by inhibiting the transcription of MHC II transactivator (CIITA) promoter pIII and pIV in a dose-dependent manner. Strikingly, although LANA knockdown efficiently disrupts the inhibition of CIITA transcripts from its pIII and pIV promoter region, the expression of HLA-DQβ but no other MHC II molecules was significantly restored. Moreover, we revealed that the presentation of HLA-DQβ enhanced by LANA knockdown did not help LANA-specific CD4+ T cell recognition of PEL cells, and the inhibition of CIITA by LANA is independent of IL-4 or IFN-γ signaling but dependent on the direct interaction of LANA with IRF-4 (an activator of both the pIII and pIV CIITA promoters). This interaction dramatically blocked the DNA-binding ability of IRF-4 on both pIII and pIV promoters. Thus, our data implies that LANA can evade MHC II presentation and suppress CIITA transcription to provide a unique strategy of KSHV escape from immune surveillance by cytotoxic T cells.

  • carboxyl terminal amino acids 1052 to 1082 of the latency associated nuclear antigen LANA interact with rbp jκ and are responsible for LANA mediated rta repression
    Journal of Virology, 2012
    Co-Authors: Zhiheng He, Deguang Liang, Quanzhi Zhang, Hongxing Zhang, Qiang Deng, Erle S Robertson
    Abstract:

    Kaposi's sarcoma-associated herpesvirus (KSHV), also known as human herpesvirus 8, is closely associated with several malignancies, including Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman's disease. KSHV can establish lifelong latency in the host, but the mechanism is not fully understood. Previous studies have proposed a feedback model in which the viral replication and transcription activator (RTA) can induce the expression of the latency-associated nuclear antigen (LANA) during early infection. LANA, in turn, represses transcription and RTA function to establish and maintain KSHV latency. The interaction between LANA and the recombination signal sequence binding protein Jκ (RBP-Jκ, also called CSL), a major transcriptional repressor of the Notch signaling pathway, is essential for RTA repression. In the present study, we show that the LANA carboxyl-terminal amino acids 1052 to 1082 are responsible for the LANA interaction with RBP-Jκ. The secondary structure of the LANA carboxyl terminus resembles the RBP-Jκ-associated module (RAM) of Notch receptor. Furthermore, deletion of the region of LANA residues 1052 to 1082 resulted in aberrant expression of RTA, leading to elevated viral lytic replication. For the first time, we dissected a conserved RBP-Jκ binding domain in LANA and demonstrated that this domain was indispensable for LANA-mediated repression of KSHV lytic genes, thus helping the virus maintain latency and control viral reactivation.

Thomas F Schulz - One of the best experts on this subject based on the ideXlab platform.

  • kaposi sarcoma herpesvirus kshv latency associated nuclear antigen LANA recruits components of the mrn mre11 rad50 nbs1 repair complex to modulate an innate immune signaling pathway and viral latency
    PLOS Pathogens, 2017
    Co-Authors: Giuseppe Mariggio, Magdalena Weidnerglunde, Jessica Ruckert, Guigen Zhang, Sandra Koch, Semra Kati, Susann Santag, Thomas F Schulz
    Abstract:

    Kaposi Sarcoma Herpesvirus (KSHV), a γ2-herpesvirus and class 1 carcinogen, is responsible for at least three human malignancies: Kaposi Sarcoma (KS), Primary Effusion Lymphoma (PEL) and Multicentric Castleman’s Disease (MCD). Its major nuclear latency protein, LANA, is indispensable for the maintenance and replication of latent viral DNA in infected cells. Although LANA is mainly a nuclear protein, cytoplasmic isoforms of LANA exist and can act as antagonists of the cytoplasmic DNA sensor, cGAS. Here, we show that cytosolic LANA also recruits members of the MRN (Mre11-Rad50-NBS1) repair complex in the cytosol and thereby inhibits their recently reported role in the sensing of cytoplasmic DNA and activation of the NF-κB pathway. Inhibition of NF-κB activation by cytoplasmic LANA is accompanied by increased lytic replication in KSHV-infected cells, suggesting that MRN-dependent NF-κB activation contributes to KSHV latency. Cytoplasmic LANA may therefore support the activation of KSHV lytic replication in part by counteracting the activation of NF-κB in response to cytoplasmic DNA. This would complement the recently described role of cytoplasmic LANA in blocking an interferon response triggered by cGAS and thereby promoting lytic reactivation. Our findings highlight a second point at which cytoplasmic LANA interferes with the innate immune response, as well as the importance of the recently discovered role of cytoplasmic MRN complex members as innate sensors of cytoplasmic DNA for the control of KSHV replication.

  • cytoplasmic isoforms of kaposi sarcoma herpesvirus LANA recruit and antagonize the innate immune dna sensor cgas
    Proceedings of the National Academy of Sciences of the United States of America, 2016
    Co-Authors: Guigen Zhang, Magdalena Weidnerglunde, Baca Chan, Naira Samarina, Bizunesh Abere, Anna Buch, Andreas Pich, Melanie M Brinkmann, Thomas F Schulz
    Abstract:

    The latency-associated nuclear antigen (LANA) of Kaposi sarcoma herpesvirus (KSHV) is mainly localized and functions in the nucleus of latently infected cells, playing a pivotal role in the replication and maintenance of latent viral episomal DNA. In addition, N-terminally truncated cytoplasmic isoforms of LANA, resulting from internal translation initiation, have been reported, but their function is unknown. Using coimmunoprecipitation and MS, we found the cGMP-AMP synthase (cGAS), an innate immune DNA sensor, to be a cellular interaction partner of cytoplasmic LANA isoforms. By directly binding to cGAS, LANA, and particularly, a cytoplasmic isoform, inhibit the cGAS-STING–dependent phosphorylation of TBK1 and IRF3 and thereby antagonize the cGAS-mediated restriction of KSHV lytic replication. We hypothesize that cytoplasmic forms of LANA, whose expression increases during lytic replication, inhibit cGAS to promote the reactivation of the KSHV from latency. This observation points to a novel function of the cytoplasmic isoforms of LANA during lytic replication and extends the function of LANA from its role during latency to the lytic replication cycle.

  • the 3d structure of kaposi sarcoma herpesvirus LANA c terminal domain bound to dna
    Proceedings of the National Academy of Sciences of the United States of America, 2015
    Co-Authors: J Hellert, Magdalena Weidnerglunde, Joern Krausze, Christiane Ritter, Thomas F Schulz, Heinrich Lunsdorf, Thorsten Luhrs
    Abstract:

    Kaposi sarcoma herpesvirus (KSHV) persists as a latent nuclear episome in dividing host cells. This episome is tethered to host chromatin to ensure proper segregation during mitosis. For duplication of the latent genome, the cellular replication machinery is recruited. Both of these functions rely on the constitutively expressed latency-associated nuclear antigen (LANA) of the virus. Here, we report the crystal structure of the KSHV LANA DNA-binding domain (DBD) in complex with its high-affinity viral target DNA, LANA binding site 1 (LBS1), at 2.9 A resolution. In contrast to homologous proteins such as Epstein-Barr virus nuclear antigen 1 (EBNA-1) of the related γ-herpesvirus Epstein-Barr virus, specific DNA recognition by LANA is highly asymmetric. In addition to solving the crystal structure, we found that apart from the two known LANA binding sites, LBS1 and LBS2, LANA also binds to a novel site, denoted LBS3. All three sites are located in a region of the KSHV terminal repeat subunit previously recognized as a minimal replicator. Moreover, we show that the LANA DBD can coat DNA of arbitrary sequence by virtue of a characteristic lysine patch, which is absent in EBNA-1 of the Epstein-Barr virus. Likely, these higher-order assemblies involve the self-association of LANA into supermolecular spirals. One such spiral assembly was solved as a crystal structure of 3.7 A resolution in the absence of DNA. On the basis of our data, we propose a model for the controlled nucleation of higher-order LANA oligomers that might contribute to the characteristic subnuclear KSHV microdomains (“LANA speckles”), a hallmark of KSHV latency.

  • a structural basis for brd2 4 mediated host chromatin interaction and oligomer assembly of kaposi sarcoma associated herpesvirus and murine gammaherpesvirus LANA proteins
    PLOS Pathogens, 2013
    Co-Authors: J Hellert, Magdalena Weidnerglunde, Joern Krausze, Ulrike Richter, Heiko Adler, Roman Fedorov, Marcel Pietrek, Jessica Ruckert, Christiane Ritter, Thomas F Schulz
    Abstract:

    Kaposi sarcoma-associated herpesvirus (KSHV) establishes a lifelong latent infection and causes several malignancies in humans. Murine herpesvirus 68 (MHV-68) is a related γ2-herpesvirus frequently used as a model to study the biology of γ-herpesviruses in vivo. The KSHV latency-associated nuclear antigen (kLANA) and the MHV68 mLANA (orf73) protein are required for latent viral replication and persistence. Latent episomal KSHV genomes and kLANA form nuclear microdomains, termed ‘LANA speckles’, which also contain cellular chromatin proteins, including BRD2 and BRD4, members of the BRD/BET family of chromatin modulators. We solved the X-ray crystal structure of the C-terminal DNA binding domains (CTD) of kLANA and MHV-68 mLANA. While these structures share the overall fold with the EBNA1 protein of Epstein-Barr virus, they differ substantially in their surface characteristics. Opposite to the DNA binding site, both kLANA and mLANA CTD contain a characteristic lysine-rich positively charged surface patch, which appears to be a unique feature of γ2-herpesviral LANA proteins. Importantly, kLANA and mLANA CTD dimers undergo higher order oligomerization. Using NMR spectroscopy we identified a specific binding site for the ET domains of BRD2/4 on kLANA. Functional studies employing multiple kLANA mutants indicate that the oligomerization of native kLANA CTD dimers, the characteristic basic patch and the ET binding site on the kLANA surface are required for the formation of kLANA ‘nuclear speckles’ and latent replication. Similarly, the basic patch on mLANA contributes to the establishment of MHV-68 latency in spleen cells in vivo. In summary, our data provide a structural basis for the formation of higher order LANA oligomers, which is required for nuclear speckle formation, latent replication and viral persistence.

  • hhv 8 encoded LANA 1 alters the higher organization of the cell nucleus
    Molecular Cancer, 2007
    Co-Authors: Gyorgy Stuber, Thomas F Schulz, Emrah Kati, Julie Sheldon, Karin Mattsson, Emilie Flaberg, Laszlo Markasz, George Klein, Laszlo Szekely
    Abstract:

    The latency-associated nuclear antigen (LANA-1) of Human Herpes Virus 8 (HHV-8), alternatively called Kaposi Sarcoma Herpes Virus (KSHV) is constitutively expressed in all HHV-8 infected cells. LANA-1 accumulates in well-defined foci that co-localize with the viral episomes. We have previously shown that these foci are tightly associated with the borders of heterochromatin [1]. We have also shown that exogenously expressed LANA-1 causes an extensive re-organization of Hoechst 33248 DNA staining patterns of the nuclei in non-HHV-8 infected cells [2]. Here we show that this effect includes the release of the bulk of DNA from heterochromatic areas, in both human and mouse cells, without affecting the overall levels of heterochromatin associated histone H3 lysine 9 tri-methylation (3MK9H3). The release of DNA from the heterochromatic chromocenters in LANA-1 transfected mouse cells co-incides with the dispersion of the chromocenter associated methylcytosin binding protein 2 (MECP2). The localization of 3MK9H3 to the remnants of the chromocenters remains unaltered. Moreover, exogeneously expressed LANA-1 leads to the relocation of the chromocenters to the nuclear periphery, indicating extensive changes in the positioning of the chromosomal domains in the LANA-1 harboring interphase nucleus. Using a series of deletion mutants we have shown that the chromatin rearranging effects of LANA-1 require the presence of a short (57 amino acid) region that is located immediately upstream of the internal acidic repeats. This sequence lies within the previously mapped binding site to histone methyltransferase SUV39H1. We suggest that the highly concentrated LANA-1, anchored to the host genome in the nuclear foci of latently infected cells and replicated through each cell generation, may function as "epigenetic modifier". The induction of histone modification in adjacent host genes may lead to altered gene expression, thereby contributing to the viral oncogenesis.

Erika De Leon Vazquez - One of the best experts on this subject based on the ideXlab platform.

  • Kaposi's Sarcoma-Associated Herpesvirus LANA-Adjacent Regions with Distinct Functions in Episome Segregation or Maintenance.
    Journal of Virology, 2019
    Co-Authors: Franceline Juillard, Erika De Leon Vazquez, Shijun Li, Kenneth M Kaye
    Abstract:

    Kaposi's sarcoma-associated herpesvirus (KSHV) latency-associated nuclear antigen (LANA) is a 1,162-amino-acid protein that mediates episome persistence of viral genomes. LANA binds the KSHV terminal-repeat (TR) sequence through its carboxy-terminal domain to mediate DNA replication. LANA simultaneously binds mitotic chromosomes and TR DNA to segregate virus genomes to daughter cell nuclei. Amino-terminal LANA attaches to chromosomes by binding histones H2A/H2B, and carboxy-terminal LANA contributes to mitotic-chromosome binding. Although amino- and carboxy-terminal LANA are essential for episome persistence, they are not sufficient, since deletion of all internal LANA sequence renders LANA highly deficient for episome maintenance. Internal LANA sequence upstream of the internal repeat elements contributes to episome segregation and persistence. Here, we investigate this region with a panel of LANA deletion mutants. Mutants retained the ability to associate with mitotic chromosomes and bind TR DNA. In contrast to prior results, deletion of most of this sequence did not reduce LANA's ability to mediate DNA replication. Deletions of upstream sequence within the region compromised segregation of TR DNA to daughter cells, as assessed by retention of green fluorescent protein (GFP) expression from a replication-deficient TR plasmid. However, deletion of this upstream sequence did not reduce episome maintenance. In contrast, deletions that included an 80-amino-acid sequence immediately downstream resulted in highly deficient episome persistence. LANA with this downstream sequence deleted maintained the ability to replicate and segregate TR DNA, suggesting a unique role for the residues. Therefore, this work identifies adjacent LANA regions with distinct roles in episome segregation and persistence.IMPORTANCE KSHV LANA mediates episomal persistence of viral genomes. LANA binds the KSHV terminal-repeat (TR) sequence to mediate DNA replication and tethers KSHV DNA to mitotic chromosomes to segregate genomes to daughter cell nuclei. Here, we investigate LANA sequence upstream of the internal repeat elements that contributes to episome segregation and persistence. Mutants with deletions within this sequence maintained the ability to bind mitotic chromosomes or bind and replicate TR DNA. Deletion of upstream sequence within the region reduced segregation of TR DNA to daughter cells, but not episome maintenance. In contrast, mutants with deletions of 80 amino acids immediately downstream were highly deficient for episome persistence yet maintained the ability to replicate and segregate TR DNA, the two principal components of episome persistence, suggesting another role for the residues. In summary, this work identifies adjacent LANA sequence with distinct roles in episome segregation and persistence.

  • kaposi s sarcoma associated herpesvirus LANA recruits the dna polymerase clamp loader to mediate efficient replication and virus persistence
    Proceedings of the National Academy of Sciences of the United States of America, 2014
    Co-Authors: Toshiki Tsurimoto, Franceline Juillard, Erika De Leon Vazquez, Shijun Li, Lin Li, She Chen, Kenneth M Kaye
    Abstract:

    Abstract Kaposi's sarcoma-associated herpesvirus (KSHV) latently infects tumor cells and persists as a multiple-copy, extrachromosomal, circular episome. To persist, the viral genome must replicate with each cell cycle. The KSHV latency-associated nuclear antigen (LANA) mediates viral DNA replication and persistence, but little is known regarding the underlying mechanisms. We find that LANA recruits replication factor C (RFC), the DNA polymerase clamp [proliferating cell nuclear antigen (PCNA)] loader, to drive DNA replication efficiently. Mutated LANA lacking RFC interaction was deficient for LANA-mediated DNA replication and episome persistence. RFC depletion had a negative impact on LANA’s ability to replicate and maintain viral DNA in cells containing artificial KSHV episomes or in infected cells, leading to loss of virus. LANA substantially increased PCNA loading onto DNA in vitro and recruited RFC and PCNA to KSHV DNA in cells. These findings suggest that PCNA loading is a rate-limiting step in DNA replication that is incompatible with viral survival. LANA enhancement of PCNA loading permits efficient virus replication and persistence, revealing a previously unidentified mechanism for KSHV latency.

  • a short sequence immediately upstream of the internal repeat elements is critical for kshv LANA mediated dna replication and impacts episome persistence
    Virology, 2014
    Co-Authors: Erika De Leon Vazquez, Franceline Juillard, Bernard Rosner, Kenneth M Kaye
    Abstract:

    Kaposi's sarcoma-associated herpesvirus LANA (1162 residues) mediates episomal persistence of viral genomes during latency. LANA mediates viral DNA replication and segregates episomes to daughter nuclei. A 59 residue deletion immediately upstream of the internal repeat elements rendered LANA highly deficient for DNA replication and modestly deficient for the ability to segregate episomes, while smaller deletions did not. The 59 amino acid deletion reduced LANA episome persistence by ~14-fold, while sequentially smaller deletions resulted in ~3-fold, or no deficiency. Three distinct LANA regions reorganized heterochromatin, one of which contains the deleted sequence, but the deletion did not abolish LANA's ability to alter chromatin. Therefore, this work identifies a short internal LANA sequence that is critical for DNA replication, has modest effects on episome segregation, and substantially impacts episome persistence; this region may exert its effects through an interacting host cell protein(s).

  • identification of kaposi s sarcoma associated herpesvirus LANA regions important for episome segregation replication and persistence
    Journal of Virology, 2013
    Co-Authors: Erika De Leon Vazquez, Vincent J Carey, Kenneth M Kaye
    Abstract:

    Kaposi's sarcoma-associated herpesvirus (KSHV) latency-associated nuclear antigen (LANA) is a 1,162-amino-acid protein that mediates the maintenance of episomal viral genomes in latently infected cells. The two central components of episome persistence are DNA replication with each cell division and the segregation of DNA to progeny nuclei. LANA self-associates to bind KSHV terminal-repeat (TR) DNA and to mediate its replication. LANA also simultaneously binds to TR DNA and mitotic chromosomes to mediate the segregation of episomes to daughter nuclei. The N-terminal region of LANA binds histones H2A and H2B to attach to mitotic chromosomes, while the C-terminal region binds TR DNA and also associates with chromosomes. Both the N- and C-terminal regions of LANA are essential for episome persistence. We recently showed that deletion of all internal LANA sequences results in highly deficient episome maintenance. Here we assess independent internal LANA regions for effects on episome persistence. We generated a panel of LANA mutants that included deletions in the large internal repeat region and in the unique internal sequence. All mutants contained the essential N- and C-terminal regions, and as expected, all maintained the ability to associate with mitotic chromosomes in a wild-type fashion and to bind TR DNA, as assessed by electrophoretic mobility shift assays (EMSA). Deletion of the internal regions did not reduce the half-life of LANA. Notably, deletions within either the repeat elements or the unique sequence resulted in deficiencies in DNA replication. However, only the unique internal sequence exerted effects on the ability of LANA to retain green fluorescent protein (GFP) expression from TR-containing episomes deficient in DNA replication, consistent with a role in episome segregation; this region did not independently associate with mitotic chromosomes. All mutants were deficient in episome persistence, and the deficiencies ranged from minor to severe. Mutants deficient in DNA replication that contained deletions within the unique internal sequence had the most-severe deficits. These data suggest that internal LANA regions exert critical roles in LANA-mediated DNA replication, segregation, and episome persistence, likely through interactions with key host cell factors.

  • the internal kaposi s sarcoma associated herpesvirus LANA regions exert a critical role on episome persistence
    Journal of Virology, 2011
    Co-Authors: Erika De Leon Vazquez, Kenneth M Kaye
    Abstract:

    ABSTRACT Kaposi9s sarcoma-associated herpesvirus (KSHV) latency-associated nuclear antigen (LANA) is a 1,162-amino-acid protein that acts on viral terminal repeat (TR) DNA to mediate KSHV episome persistence. The two essential components of episome persistence are DNA replication prior to cell division and episome segregation to daughter nuclei. These functions are located within N- and C-terminal regions of LANA. N- and C-terminal regions of LANA are sufficient for TR DNA replication. In addition, N- and C-terminal regions of LANA tether episomes to mitotic chromosomes to segregate episomes to progeny cell nuclei. To generate a tethering mechanism, N-terminal LANA binds histones H2A/H2B to attach to mitotic chromosomes, and C-terminal LANA binds TR DNA and also associates with mitotic chromosomes. Here, we test the importance of the internal LANA sequence for episome persistence. We generated LANA mutants that contain N- and C-terminal regions of LANA but have most of the internal sequence deleted. As expected, the LANA mutants bound mitotic chromosomes in a wild-type pattern and also bound TR DNA as assayed by electrophoretic mobility shift assays (EMSA). The mutants mediated TR DNA replication, although with reduced efficiency compared with LANA. Despite the ability to replicate DNA and exert the chromosome and DNA binding functions necessary for segregating episomes to daughter nuclei, the mutants were highly deficient for the ability to mediate both short- and long-term episome persistence. These data indicate that internal LANA sequence exerts a critical effect on its ability to maintain episomes, possibly through effects on TR DNA replication.