Machinery Part

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 39798 Experts worldwide ranked by ideXlab platform

R. Gordon Kirk - One of the best experts on this subject based on the ideXlab platform.

  • Application of Computational Fluid Dynamics Analysis for Rotating MachineryPart II: Labyrinth Seal Analysis
    Journal of Engineering for Gas Turbines and Power, 2005
    Co-Authors: Toshio Hirano, Zenglin Guo, R. Gordon Kirk
    Abstract:

    Labyrinth seals are used in various kinds of turbo machines to reduce internal leakage flow. The working fluid, or the gas passing through the rotor shaft labyrinth seals, often generates driving force components that may increase the unstable vibration of the rotor. It is important to know the accurate rotordynamic force components for predicting the instability of the rotor-bearing-seal system. The major goals of this research were to calculate the rotordynamic force of a labyrinth seals utilizing a commercial CFD program and to further compare those results to an existing bulk flow computer program currently used by major US Machinery manufacturers. The labyrinth seals of a steam turbine and a compressor eye seal are taken as objects of analysis. For each case, a 3D model with eccentric rotor was solved to obtain the rotordynamic force components. The leakage flow and rotor dynamics force predicted by CFX TASCFlow are compared with the results of the existing bulk flow analysis program DYNLAB. The results show that the bulk flow program gives a pessimistic prediction of the destabilizing forces for the conditions under investigation. Further research work will be required to fully understand the complex leakage flows in turbo Machinery.

  • Application of CFD Analysis for Rotating MachineryPart I: Hydrodynamic, Hydrostatic Bearings and Squeeze Film Damper
    Journal of Engineering for Gas Turbines and Power, 2005
    Co-Authors: Zenglin Guo, Toshio Hirano, R. Gordon Kirk
    Abstract:

    The traditional method for bearing and damper analysis usually involves a development of rather complicated numerical calculation programs that may just focus on a simplified and specific physical model. The application of the general CFD codes may make this analysis available and effective where complex flow geometries are involved or when more detailed solutions are needed. In this study, CFX-TASCflow is employed to simulate various fixed geometry fluid-film bearing and damper designs. Some of the capabilities in CFX-TASCflow are applied to simulate the pressure field and calculate the static and dynamic characteristics of hydrodynamic, hydrostatic, and hybrid bearings as well as squeeze film dampers. The comparison between the CFD analysis and current computer programs used in industry has been made. The results show reasonable agreement in general. Some of the possible reasons for the differences are discussed. It leaves room for further investigation and improvement on the methods of computation.

  • Application of CFD Analysis for Rotating Machinery: Part 2 — Labyrinth Seal Analysis
    Volume 4: Turbo Expo 2003, 2003
    Co-Authors: Toshio Hirano, Zenglin Guo, R. Gordon Kirk
    Abstract:

    Labyrinth seals are used in various kinds of turbo machines to reduce internal leakage flow. The working fluid or, the gas passing through the rotor shaft labyrinth seals, often generates driving force components that may increase the unstable vibration of the rotor. It is important to know the accurate rotordynamic force components for predicting the instability of the rotor-bearing-seal system. The major goals of this research was to calculate the rotordynamic force of a labyrinth seals utilizing a commercial CFD program and to further compare those results to an existing bulk flow computer program currently used by major US Machinery manufacturers. The labyrinth seals of a steam turbine and a compressor eye seal are taken as objects of analysis. For each case, a 3D model with eccentric rotor was solved to obtain the rotordynamic force components. The leakage flow and rotor dynamics force predicted by CFX TASCFlow are compared with the results the existing bulk flow analysis program DYNLAB. The results show that the bulk flow program gives a pessimistic prediction of the destabilizing forces for the conditions under investigation. Further research work will be required to fully understand the complex leakage flows in turbo Machinery.Copyright © 2003 by ASME

  • Application of CFD Analysis for Rotating Machinery: Part 1 — Hydrodynamic, Hydrostatic Bearings and Squeeze Film Damper
    Volume 4: Turbo Expo 2003, 2003
    Co-Authors: Zenglin Guo, Toshio Hirano, R. Gordon Kirk
    Abstract:

    The traditional method for bearing and damper analysis usually involves a development of rather complicated numerical calculation programs that may just focus on a simplified and specific physical model. The application of the general CFD codes may make this analysis available and effective where complex flow geometries are involved or when more detailed solutions are needed. In this study, CFX-TASCflow is employed to simulate various fixed geometry fluid-film bearing and damper designs. Some of the capabilities in CFX-TASCflow are applied to simulate the pressure field and calculate the static and dynamic characteristics of hydrodynamic, hydrostatic and hybrid bearings as well as squeeze film dampers. The comparison between the CFD analysis and current computer programs used in industry has been made. The results show reasonable agreement in general. Some of possible reasons for the differences are discussed. It leaves room for further investigation and improvement on the methods of computation.Copyright © 2003 by ASME

Luca Gregori - One of the best experts on this subject based on the ideXlab platform.

  • use of modal representation for the supporting structure in model based fault identification of large rotating Machinery Part 1 theoretical remarks
    Mechanical Systems and Signal Processing, 2006
    Co-Authors: Paolo Pennacchi, Gian Antonio Zanetta, Nicolo' Bachschmid, Andrea Vania, Luca Gregori
    Abstract:

    Abstract Fault identification by means of model-based techniques, both in frequency and time domain, is often employed in diagnostics of rotating machines, when the main task is to locate and to evaluate the severity of the malfunction. The model of the fully assembled machine is composed by the submodels of the rotor, of the bearings and of the foundation, while the effect of the faults is modelled by means of equivalent force systems. Some identification techniques, such as the least squares identification in frequency domain, proposed by the authors, have proven to be quite robust even if the submodels are not fine-tuned. Anyhow, the use of a reliable model can increase the accuracy of the identification. Normally a supporting structure is represented by means of rigid foundation or by pedestals, i.e. 2 d.o.f. mass–spring–damper systems, but these kind of models are often not able to reproduce correctly the influence of the dynamical behaviour of the supporting structure on the shaft, especially in large machines where coupled modes are present. Therefore, peculiar aspect of this paper is the use of a modal foundation to model the supporting structure of the machine and the method is discussed in detail in this first Part. The modal representation of the foundation is then introduced in the least squares identification technique in frequency domain.

  • Use of modal representation for the supporting structure in model-based fault identification of large rotating Machinery: Part 2—application to a real machine
    Mechanical Systems and Signal Processing, 2006
    Co-Authors: Paolo Pennacchi, Gian Antonio Zanetta, Nicolo' Bachschmid, Andrea Vania, Luca Gregori
    Abstract:

    Abstract Model-based techniques are often employed in diagnostics of rotating machines to locate and to evaluate the severity of a malfunction. The use of a reliable model can increase the accuracy of identification. Rigid supports or lumped mass pedestals are not always enough to account for foundation dynamics; a modal representation of the supports can improve the identification results. The method, discussed in the first Part, is here validated using experimental data of a 320 MW steam turbogenerator. To the authors’ knowledge, this is the first case of fault identification on real data from a large machine, where the supporting structure is accounted for by means of a modal model.

Toshio Hirano - One of the best experts on this subject based on the ideXlab platform.

  • application of computational fluid dynamics analysis for rotating Machinery Part ii labyrinth seal analysis
    Journal of Engineering for Gas Turbines and Power-transactions of The Asme, 2005
    Co-Authors: Toshio Hirano, Zenglin Guo, Gordon R Kirk
    Abstract:

    Labyrinth seals are used in various kinds of turbo machines to reduce internal leakage flow. The working fluid, or the gas passing through the rotor shaft labyrinth seals, often generates driving force components that may increase the unstable vibration of the rotor. It is important to know the accurate rotordynamic force components for predicting the instability of the rotor-bearing-seal system. The major goals of this research were to calculate the rotordynamic force of a labyrinth seals utilizing a commercial CFD program and to further compare those results to an existing bulk flow computer program currently used by major US Machinery manufacturers. The labyrinth seals of a steam turbine and a compressor eye seal are taken as objects of analysis. For each case, a 3D model with eccentric rotor was solved to obtain the rotordynamic force components. The leakage flow and rotor dynamics force predicted by CFX TASCFlow are compared with the results of the existing bulk flow analysis program DYNLAB. The results show that the bulk flow program gives a pessimistic prediction of the destabilizing forces for the conditions under investigation. Further research work will be required to fully understand the complex leakage flows in turbo Machinery.

  • Application of Computational Fluid Dynamics Analysis for Rotating MachineryPart II: Labyrinth Seal Analysis
    Journal of Engineering for Gas Turbines and Power, 2005
    Co-Authors: Toshio Hirano, Zenglin Guo, R. Gordon Kirk
    Abstract:

    Labyrinth seals are used in various kinds of turbo machines to reduce internal leakage flow. The working fluid, or the gas passing through the rotor shaft labyrinth seals, often generates driving force components that may increase the unstable vibration of the rotor. It is important to know the accurate rotordynamic force components for predicting the instability of the rotor-bearing-seal system. The major goals of this research were to calculate the rotordynamic force of a labyrinth seals utilizing a commercial CFD program and to further compare those results to an existing bulk flow computer program currently used by major US Machinery manufacturers. The labyrinth seals of a steam turbine and a compressor eye seal are taken as objects of analysis. For each case, a 3D model with eccentric rotor was solved to obtain the rotordynamic force components. The leakage flow and rotor dynamics force predicted by CFX TASCFlow are compared with the results of the existing bulk flow analysis program DYNLAB. The results show that the bulk flow program gives a pessimistic prediction of the destabilizing forces for the conditions under investigation. Further research work will be required to fully understand the complex leakage flows in turbo Machinery.

  • application of cfd analysis for rotating Machinery Part i hydrodynamic hydrostatic bearings and squeeze film damper
    Journal of Engineering for Gas Turbines and Power-transactions of The Asme, 2005
    Co-Authors: Toshio Hirano, Gordon R Kirk
    Abstract:

    The traditional method for bearing and damper analysis usually involves a development of rather complicated numerical calculation programs that may just focus on a simplified and specific physical model. The application of the general CFD codes may make this analysis available and effective where complex flow geometries are involved or when more detailed solutions are needed. In this study, CFX-TASCflow is employed to simulate various fixed geometry fluid-film bearing and damper designs. Some of the capabilities in CFX-TASCflow are applied to simulate the pressure field and calculate the static and dynamic characteristics of hydrodynamic, hydrostatic, and hybrid bearings as well as squeeze film dampers. The comparison between the CFD analysis and current computer programs used in industry has been made. The results show reasonable agreement in general. Some of the possible reasons for the differences are discussed. It leaves room for further investigation and improvement on the methods of computation.

  • Application of CFD Analysis for Rotating MachineryPart I: Hydrodynamic, Hydrostatic Bearings and Squeeze Film Damper
    Journal of Engineering for Gas Turbines and Power, 2005
    Co-Authors: Zenglin Guo, Toshio Hirano, R. Gordon Kirk
    Abstract:

    The traditional method for bearing and damper analysis usually involves a development of rather complicated numerical calculation programs that may just focus on a simplified and specific physical model. The application of the general CFD codes may make this analysis available and effective where complex flow geometries are involved or when more detailed solutions are needed. In this study, CFX-TASCflow is employed to simulate various fixed geometry fluid-film bearing and damper designs. Some of the capabilities in CFX-TASCflow are applied to simulate the pressure field and calculate the static and dynamic characteristics of hydrodynamic, hydrostatic, and hybrid bearings as well as squeeze film dampers. The comparison between the CFD analysis and current computer programs used in industry has been made. The results show reasonable agreement in general. Some of the possible reasons for the differences are discussed. It leaves room for further investigation and improvement on the methods of computation.

  • Application of CFD Analysis for Rotating Machinery: Part 2 — Labyrinth Seal Analysis
    Volume 4: Turbo Expo 2003, 2003
    Co-Authors: Toshio Hirano, Zenglin Guo, R. Gordon Kirk
    Abstract:

    Labyrinth seals are used in various kinds of turbo machines to reduce internal leakage flow. The working fluid or, the gas passing through the rotor shaft labyrinth seals, often generates driving force components that may increase the unstable vibration of the rotor. It is important to know the accurate rotordynamic force components for predicting the instability of the rotor-bearing-seal system. The major goals of this research was to calculate the rotordynamic force of a labyrinth seals utilizing a commercial CFD program and to further compare those results to an existing bulk flow computer program currently used by major US Machinery manufacturers. The labyrinth seals of a steam turbine and a compressor eye seal are taken as objects of analysis. For each case, a 3D model with eccentric rotor was solved to obtain the rotordynamic force components. The leakage flow and rotor dynamics force predicted by CFX TASCFlow are compared with the results the existing bulk flow analysis program DYNLAB. The results show that the bulk flow program gives a pessimistic prediction of the destabilizing forces for the conditions under investigation. Further research work will be required to fully understand the complex leakage flows in turbo Machinery.Copyright © 2003 by ASME

Zenglin Guo - One of the best experts on this subject based on the ideXlab platform.

  • application of computational fluid dynamics analysis for rotating Machinery Part ii labyrinth seal analysis
    Journal of Engineering for Gas Turbines and Power-transactions of The Asme, 2005
    Co-Authors: Toshio Hirano, Zenglin Guo, Gordon R Kirk
    Abstract:

    Labyrinth seals are used in various kinds of turbo machines to reduce internal leakage flow. The working fluid, or the gas passing through the rotor shaft labyrinth seals, often generates driving force components that may increase the unstable vibration of the rotor. It is important to know the accurate rotordynamic force components for predicting the instability of the rotor-bearing-seal system. The major goals of this research were to calculate the rotordynamic force of a labyrinth seals utilizing a commercial CFD program and to further compare those results to an existing bulk flow computer program currently used by major US Machinery manufacturers. The labyrinth seals of a steam turbine and a compressor eye seal are taken as objects of analysis. For each case, a 3D model with eccentric rotor was solved to obtain the rotordynamic force components. The leakage flow and rotor dynamics force predicted by CFX TASCFlow are compared with the results of the existing bulk flow analysis program DYNLAB. The results show that the bulk flow program gives a pessimistic prediction of the destabilizing forces for the conditions under investigation. Further research work will be required to fully understand the complex leakage flows in turbo Machinery.

  • Application of Computational Fluid Dynamics Analysis for Rotating MachineryPart II: Labyrinth Seal Analysis
    Journal of Engineering for Gas Turbines and Power, 2005
    Co-Authors: Toshio Hirano, Zenglin Guo, R. Gordon Kirk
    Abstract:

    Labyrinth seals are used in various kinds of turbo machines to reduce internal leakage flow. The working fluid, or the gas passing through the rotor shaft labyrinth seals, often generates driving force components that may increase the unstable vibration of the rotor. It is important to know the accurate rotordynamic force components for predicting the instability of the rotor-bearing-seal system. The major goals of this research were to calculate the rotordynamic force of a labyrinth seals utilizing a commercial CFD program and to further compare those results to an existing bulk flow computer program currently used by major US Machinery manufacturers. The labyrinth seals of a steam turbine and a compressor eye seal are taken as objects of analysis. For each case, a 3D model with eccentric rotor was solved to obtain the rotordynamic force components. The leakage flow and rotor dynamics force predicted by CFX TASCFlow are compared with the results of the existing bulk flow analysis program DYNLAB. The results show that the bulk flow program gives a pessimistic prediction of the destabilizing forces for the conditions under investigation. Further research work will be required to fully understand the complex leakage flows in turbo Machinery.

  • Application of CFD Analysis for Rotating MachineryPart I: Hydrodynamic, Hydrostatic Bearings and Squeeze Film Damper
    Journal of Engineering for Gas Turbines and Power, 2005
    Co-Authors: Zenglin Guo, Toshio Hirano, R. Gordon Kirk
    Abstract:

    The traditional method for bearing and damper analysis usually involves a development of rather complicated numerical calculation programs that may just focus on a simplified and specific physical model. The application of the general CFD codes may make this analysis available and effective where complex flow geometries are involved or when more detailed solutions are needed. In this study, CFX-TASCflow is employed to simulate various fixed geometry fluid-film bearing and damper designs. Some of the capabilities in CFX-TASCflow are applied to simulate the pressure field and calculate the static and dynamic characteristics of hydrodynamic, hydrostatic, and hybrid bearings as well as squeeze film dampers. The comparison between the CFD analysis and current computer programs used in industry has been made. The results show reasonable agreement in general. Some of the possible reasons for the differences are discussed. It leaves room for further investigation and improvement on the methods of computation.

  • Application of CFD Analysis for Rotating Machinery: Part 2 — Labyrinth Seal Analysis
    Volume 4: Turbo Expo 2003, 2003
    Co-Authors: Toshio Hirano, Zenglin Guo, R. Gordon Kirk
    Abstract:

    Labyrinth seals are used in various kinds of turbo machines to reduce internal leakage flow. The working fluid or, the gas passing through the rotor shaft labyrinth seals, often generates driving force components that may increase the unstable vibration of the rotor. It is important to know the accurate rotordynamic force components for predicting the instability of the rotor-bearing-seal system. The major goals of this research was to calculate the rotordynamic force of a labyrinth seals utilizing a commercial CFD program and to further compare those results to an existing bulk flow computer program currently used by major US Machinery manufacturers. The labyrinth seals of a steam turbine and a compressor eye seal are taken as objects of analysis. For each case, a 3D model with eccentric rotor was solved to obtain the rotordynamic force components. The leakage flow and rotor dynamics force predicted by CFX TASCFlow are compared with the results the existing bulk flow analysis program DYNLAB. The results show that the bulk flow program gives a pessimistic prediction of the destabilizing forces for the conditions under investigation. Further research work will be required to fully understand the complex leakage flows in turbo Machinery.Copyright © 2003 by ASME

  • application of cfd analysis for rotating Machinery Part 2 labyrinth seal analysis
    ASME Turbo Expo 2003 collocated with the 2003 International Joint Power Generation Conference, 2003
    Co-Authors: Toshio Hirano, Zenglin Guo, Gordon R Kirk
    Abstract:

    Labyrinth seals are used in various kinds of turbo machines to reduce internal leakage flow. The working fluid or, the gas passing through the rotor shaft labyrinth seals, often generates driving force components that may increase the unstable vibration of the rotor. It is important to know the accurate rotordynamic force components for predicting the instability of the rotor-bearing-seal system. The major goals of this research was to calculate the rotordynamic force of a labyrinth seals utilizing a commercial CFD program and to further compare those results to an existing bulk flow computer program currently used by major US Machinery manufacturers. The labyrinth seals of a steam turbine and a compressor eye seal are taken as objects of analysis. For each case, a 3D model with eccentric rotor was solved to obtain the rotordynamic force components. The leakage flow and rotor dynamics force predicted by CFX TASCFlow are compared with the results the existing bulk flow analysis program DYNLAB. The results show that the bulk flow program gives a pessimistic prediction of the destabilizing forces for the conditions under investigation. Further research work will be required to fully understand the complex leakage flows in turbo Machinery.Copyright © 2003 by ASME

Paolo Pennacchi - One of the best experts on this subject based on the ideXlab platform.

  • use of modal representation for the supporting structure in model based fault identification of large rotating Machinery Part 1 theoretical remarks
    Mechanical Systems and Signal Processing, 2006
    Co-Authors: Paolo Pennacchi, Gian Antonio Zanetta, Nicolo' Bachschmid, Andrea Vania, Luca Gregori
    Abstract:

    Abstract Fault identification by means of model-based techniques, both in frequency and time domain, is often employed in diagnostics of rotating machines, when the main task is to locate and to evaluate the severity of the malfunction. The model of the fully assembled machine is composed by the submodels of the rotor, of the bearings and of the foundation, while the effect of the faults is modelled by means of equivalent force systems. Some identification techniques, such as the least squares identification in frequency domain, proposed by the authors, have proven to be quite robust even if the submodels are not fine-tuned. Anyhow, the use of a reliable model can increase the accuracy of the identification. Normally a supporting structure is represented by means of rigid foundation or by pedestals, i.e. 2 d.o.f. mass–spring–damper systems, but these kind of models are often not able to reproduce correctly the influence of the dynamical behaviour of the supporting structure on the shaft, especially in large machines where coupled modes are present. Therefore, peculiar aspect of this paper is the use of a modal foundation to model the supporting structure of the machine and the method is discussed in detail in this first Part. The modal representation of the foundation is then introduced in the least squares identification technique in frequency domain.

  • Use of modal representation for the supporting structure in model-based fault identification of large rotating Machinery: Part 2—application to a real machine
    Mechanical Systems and Signal Processing, 2006
    Co-Authors: Paolo Pennacchi, Gian Antonio Zanetta, Nicolo' Bachschmid, Andrea Vania, Luca Gregori
    Abstract:

    Abstract Model-based techniques are often employed in diagnostics of rotating machines to locate and to evaluate the severity of a malfunction. The use of a reliable model can increase the accuracy of identification. Rigid supports or lumped mass pedestals are not always enough to account for foundation dynamics; a modal representation of the supports can improve the identification results. The method, discussed in the first Part, is here validated using experimental data of a 320 MW steam turbogenerator. To the authors’ knowledge, this is the first case of fault identification on real data from a large machine, where the supporting structure is accounted for by means of a modal model.