Magnesium Transporter

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 1167 Experts worldwide ranked by ideXlab platform

George A Otoole - One of the best experts on this subject based on the ideXlab platform.

  • the pseudomonas aeruginosa Magnesium Transporter mgte inhibits transcription of the type iii secretion system
    Infection and Immunity, 2010
    Co-Authors: Gregory G Anderson, Timothy L Yahr, Rustin R Lovewell, George A Otoole
    Abstract:

    Pseudomonas aeruginosa is an opportunistic pathogen that causes life-long pneumonia in individuals with cystic fibrosis (CF). These long-term infections are maintained by bacterial biofilm formation in the CF lung. We have recently developed a model of P. aeruginosa biofilm formation on cultured CF airway epithelial cells. Using this model, we discovered that mutation of a putative Magnesium Transporter gene, called mgtE, led to increased cytotoxicity of P. aeruginosa toward epithelial cells. This altered toxicity appeared to be dependent upon expression of the type III secretion system (T3SS). In this study, we found that mutation of mgtE results in increased T3SS gene transcription. Through epistasis analyses, we discovered that MgtE influences the ExsE-ExsC-ExsD-ExsA gene regulatory system of T3SS by either directly or indirectly inhibiting ExsA activity. While variations in calcium levels modulate T3SS gene expression in P. aeruginosa, we found that addition of exogenous Magnesium did not inhibit T3SS activity. Furthermore, mgtE variants that were defective for Magnesium transport could still complement the cytotoxicity effect. Thus, the Magnesium transport function of MgtE does not fully explain the regulatory effects of MgtE on cytotoxicity. Overall, our results indicate that MgtE modulates expression of T3SS genes.

  • in vitro analysis of tobramycin treated pseudomonas aeruginosa biofilms on cystic fibrosis derived airway epithelial cells
    Infection and Immunity, 2008
    Co-Authors: Gregory G Anderson, Sophie Moreaumarquis, Bruce A Stanton, George A Otoole
    Abstract:

    P. aeruginosa forms biofilms in the lungs of individuals with cystic fibrosis (CF); however, there have been no effective model systems for studying biofilm formation in the CF lung. We have developed a tissue culture system for growth of P. aeruginosa biofilms on CF-derived human airway cells that promotes the formation of highly antibiotic-resistant microcolonies, which produce an extracellular polysaccharide matrix and require the known abiotic biofilm formation genes flgK and pilB. Treatment of P. aeruginosa biofilms with tobramycin reduced the virulence of the biofilms both by reducing bacterial numbers and by altering virulence gene expression. We performed microarray analysis of these biofilms on epithelial cells after treatment with tobramycin, and we compared these results with gene expression of (i) tobramycin-treated planktonic P. aeruginosa and (ii) tobramycin-treated P. aeruginosa biofilms on an abiotic surface. Despite the conservation in functions required to form a biofilm, our results show that the responses to tobramycin treatment of biofilms grown on biotic versus abiotic surfaces are different, as exemplified by downregulation of genes involved in Pseudomonas quinolone signal biosynthesis specifically in epithelial cell-grown biofilms versus plastic-grown biofilms. We also identified the gene PA0913, which is upregulated by tobramycin specifically in biofilms grown on CF airway cells and codes for a probable Magnesium Transporter, MgtE. Mutation of the PA0913 gene increased the bacterial virulence of biofilms on the epithelial cells, consistent with a role for the gene in the suppression of bacterial virulence. Taken together, our data show that analysis of biofilms on airway cells provides new insights into the interaction of these microbial communities with the host.

  • in vitro analysis of tobramycin treated pseudomonas aeruginosa biofilms on cystic fibrosis derived airway epithelial cells
    Infection and Immunity, 2008
    Co-Authors: Gregory G Anderson, Sophie Moreaumarquis, Bruce A Stanton, George A Otoole
    Abstract:

    P. aeruginosa forms biofilms in the lungs of individuals with cystic fibrosis (CF); however, there have been no effective model systems for studying biofilm formation in the CF lung. We have developed a tissue culture system for growth of P. aeruginosa biofilms on CF-derived human airway cells that promotes the formation of highly antibiotic-resistant microcolonies, which produce an extracellular polysaccharide matrix and require the known abiotic biofilm formation genes flgK and pilB. Treatment of P. aeruginosa biofilms with tobramycin reduced the virulence of the biofilms both by reducing bacterial numbers and by altering virulence gene expression. We performed microarray analysis of these biofilms on epithelial cells after treatment with tobramycin, and we compared these results with gene expression of (i) tobramycin-treated planktonic P. aeruginosa and (ii) tobramycin-treated P. aeruginosa biofilms on an abiotic surface. Despite the conservation in functions required to form a biofilm, our results show that the responses to tobramycin treatment of biofilms grown on biotic versus abiotic surfaces are different, as exemplified by downregulation of genes involved in Pseudomonas quinolone signal biosynthesis specifically in epithelial cell-grown biofilms versus plastic-grown biofilms. We also identified the gene PA0913, which is upregulated by tobramycin specifically in biofilms grown on CF airway cells and codes for a probable Magnesium Transporter, MgtE. Mutation of the PA0913 gene increased the bacterial virulence of biofilms on the epithelial cells, consistent with a role for the gene in the suppression of bacterial virulence. Taken together, our data show that analysis of biofilms on airway cells provides new insights into the interaction of these microbial communities with the host.

Gregory G Anderson - One of the best experts on this subject based on the ideXlab platform.

  • pseudomonas aeruginosa Magnesium Transporter mgte inhibits type iii secretion system gene expression by stimulating rsmyz transcription
    PMC, 2017
    Co-Authors: Shubham Chakravarty, Cameron N Melton, Adam Bailin, Timothy L Yahr, Gregory G Anderson
    Abstract:

    Pseudomonas aeruginosa causes numerous acute and chronic opportunistic infections in humans. One of its most formidable weapons is a type III secretion system (T3SS), which injects powerful toxins directly into host cells. The toxins lead to cell dysfunction and, ultimately, cell death. Identification of regulatory pathways that control T3SS gene expression may lead to the discovery of novel therapeutics to treat P. aeruginosa infections. In a previous study, we found that expression of the Magnesium Transporter gene mgtE inhibits T3SS gene transcription. MgtE-dependent inhibition appeared to interfere with the synthesis or function of the master T3SS transcriptional activator ExsA, although the exact mechanism was unclear. We now demonstrate that mgtE expression acts through the GacAS two-component system to activate rsmY and rsmZ transcription. This event ultimately leads to inhibition of exsA translation. This inhibitory effect is specific to exsA as translation of other genes in the exsCEBA operon is not inhibited by mgtE Moreover, our data reveal that MgtE acts solely through this pathway to regulate T3SS gene transcription. Our study reveals an important mechanism that may allow P. aeruginosa to fine-tune T3SS activity in response to certain environmental stimuli.IMPORTANCE The type III secretion system (T3SS) is a critical virulence factor utilized by numerous Gram-negative bacteria, including Pseudomonas aeruginosa, to intoxicate and kill host cells. Elucidating T3SS regulatory mechanisms may uncover targets for novel anti-P. aeruginosa therapeutics and provide deeper understanding of bacterial pathogenesis. We previously found that the Magnesium Transporter MgtE inhibits T3SS gene transcription in P. aeruginosa In this study, we describe the mechanism of MgtE-dependent inhibition of the T3SS. Our report also illustrates how MgtE might respond to environmental cues, such as Magnesium levels, to fine-tune T3SS gene expression.

  • antibiotic treatment of pseudomonas aeruginosa biofilms stimulates expression of the Magnesium Transporter gene mgte
    Microbiology, 2014
    Co-Authors: Shubham Chakravarty, Carly V Redelman, Gregory G Anderson
    Abstract:

    Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen with the capacity to cause serious disease, including chronic biofilm infections in the lungs of cystic fibrosis (CF) patients. These infections are treated with high concentrations of antibiotics. Virulence modulation is an important tool utilized by P. aeruginosa to propagate infection and biofilm formation in the CF airway. Many different virulence modulatory pathways and proteins have been identified, including the Magnesium Transporter protein MgtE. We have recently found that isogenic deletion of mgtE leads to increased cytotoxicity through effects on the type III secretion system. To explore the role of the CF lung environment in MgtE activity, we investigated mgtE transcriptional regulation following antibiotic treatment. Utilizing quantitative real-time-PCR, we have demonstrated an increase in mgtE transcript levels following antibiotic treatment with most of the 12 antibiotics tested. To begin to determine the regulatory network governing mgtE expression, we screened a transposon-mutant library of P. aeruginosa to look for mutants with potentially altered mgtE activity, using cytotoxicity as a readout. In this screen, we observed that AlgR, which regulates production of the biofilm polysaccharide alginate, alters MgtE-mediated cytotoxicity. This cross-talk between MgtE and AlgR suggests that AlgR is involved in linking external inducing signals (e.g. antibiotics) to mgtE transcription and downstream virulence and biofilm activities. Analysing such interactions may lead to a better understanding of how the CF lung environment shapes P. aeruginosa biofilm infections.

  • the pseudomonas aeruginosa Magnesium Transporter mgte inhibits transcription of the type iii secretion system
    Infection and Immunity, 2010
    Co-Authors: Gregory G Anderson, Timothy L Yahr, Rustin R Lovewell, George A Otoole
    Abstract:

    Pseudomonas aeruginosa is an opportunistic pathogen that causes life-long pneumonia in individuals with cystic fibrosis (CF). These long-term infections are maintained by bacterial biofilm formation in the CF lung. We have recently developed a model of P. aeruginosa biofilm formation on cultured CF airway epithelial cells. Using this model, we discovered that mutation of a putative Magnesium Transporter gene, called mgtE, led to increased cytotoxicity of P. aeruginosa toward epithelial cells. This altered toxicity appeared to be dependent upon expression of the type III secretion system (T3SS). In this study, we found that mutation of mgtE results in increased T3SS gene transcription. Through epistasis analyses, we discovered that MgtE influences the ExsE-ExsC-ExsD-ExsA gene regulatory system of T3SS by either directly or indirectly inhibiting ExsA activity. While variations in calcium levels modulate T3SS gene expression in P. aeruginosa, we found that addition of exogenous Magnesium did not inhibit T3SS activity. Furthermore, mgtE variants that were defective for Magnesium transport could still complement the cytotoxicity effect. Thus, the Magnesium transport function of MgtE does not fully explain the regulatory effects of MgtE on cytotoxicity. Overall, our results indicate that MgtE modulates expression of T3SS genes.

  • in vitro analysis of tobramycin treated pseudomonas aeruginosa biofilms on cystic fibrosis derived airway epithelial cells
    Infection and Immunity, 2008
    Co-Authors: Gregory G Anderson, Sophie Moreaumarquis, Bruce A Stanton, George A Otoole
    Abstract:

    P. aeruginosa forms biofilms in the lungs of individuals with cystic fibrosis (CF); however, there have been no effective model systems for studying biofilm formation in the CF lung. We have developed a tissue culture system for growth of P. aeruginosa biofilms on CF-derived human airway cells that promotes the formation of highly antibiotic-resistant microcolonies, which produce an extracellular polysaccharide matrix and require the known abiotic biofilm formation genes flgK and pilB. Treatment of P. aeruginosa biofilms with tobramycin reduced the virulence of the biofilms both by reducing bacterial numbers and by altering virulence gene expression. We performed microarray analysis of these biofilms on epithelial cells after treatment with tobramycin, and we compared these results with gene expression of (i) tobramycin-treated planktonic P. aeruginosa and (ii) tobramycin-treated P. aeruginosa biofilms on an abiotic surface. Despite the conservation in functions required to form a biofilm, our results show that the responses to tobramycin treatment of biofilms grown on biotic versus abiotic surfaces are different, as exemplified by downregulation of genes involved in Pseudomonas quinolone signal biosynthesis specifically in epithelial cell-grown biofilms versus plastic-grown biofilms. We also identified the gene PA0913, which is upregulated by tobramycin specifically in biofilms grown on CF airway cells and codes for a probable Magnesium Transporter, MgtE. Mutation of the PA0913 gene increased the bacterial virulence of biofilms on the epithelial cells, consistent with a role for the gene in the suppression of bacterial virulence. Taken together, our data show that analysis of biofilms on airway cells provides new insights into the interaction of these microbial communities with the host.

  • in vitro analysis of tobramycin treated pseudomonas aeruginosa biofilms on cystic fibrosis derived airway epithelial cells
    Infection and Immunity, 2008
    Co-Authors: Gregory G Anderson, Sophie Moreaumarquis, Bruce A Stanton, George A Otoole
    Abstract:

    P. aeruginosa forms biofilms in the lungs of individuals with cystic fibrosis (CF); however, there have been no effective model systems for studying biofilm formation in the CF lung. We have developed a tissue culture system for growth of P. aeruginosa biofilms on CF-derived human airway cells that promotes the formation of highly antibiotic-resistant microcolonies, which produce an extracellular polysaccharide matrix and require the known abiotic biofilm formation genes flgK and pilB. Treatment of P. aeruginosa biofilms with tobramycin reduced the virulence of the biofilms both by reducing bacterial numbers and by altering virulence gene expression. We performed microarray analysis of these biofilms on epithelial cells after treatment with tobramycin, and we compared these results with gene expression of (i) tobramycin-treated planktonic P. aeruginosa and (ii) tobramycin-treated P. aeruginosa biofilms on an abiotic surface. Despite the conservation in functions required to form a biofilm, our results show that the responses to tobramycin treatment of biofilms grown on biotic versus abiotic surfaces are different, as exemplified by downregulation of genes involved in Pseudomonas quinolone signal biosynthesis specifically in epithelial cell-grown biofilms versus plastic-grown biofilms. We also identified the gene PA0913, which is upregulated by tobramycin specifically in biofilms grown on CF airway cells and codes for a probable Magnesium Transporter, MgtE. Mutation of the PA0913 gene increased the bacterial virulence of biofilms on the epithelial cells, consistent with a role for the gene in the suppression of bacterial virulence. Taken together, our data show that analysis of biofilms on airway cells provides new insights into the interaction of these microbial communities with the host.

Anne Galinier - One of the best experts on this subject based on the ideXlab platform.

  • rhomboid intramembrane protease yqgp licenses bacterial membrane protein quality control as adaptor of ftsh aaa protease
    The EMBO Journal, 2020
    Co-Authors: Jakub Began, Baptiste Cordier, Petra Rampirova, Jana Březinová, Jordan Delisle, Rozalie Hexnerova, Milan Kožisek, Yohann Coute, Mathieu Baudet, Anne Galinier
    Abstract:

    : Magnesium homeostasis is essential for life and depends on Magnesium Transporters, whose activity and ion selectivity need to be tightly controlled. Rhomboid intramembrane proteases pervade the prokaryotic kingdom, but their functions are largely elusive. Using proteomics, we find that Bacillus subtilis rhomboid protease YqgP interacts with the membrane-bound ATP-dependent processive metalloprotease FtsH and cleaves MgtE, the major high-affinity Magnesium Transporter in B. subtilis. MgtE cleavage by YqgP is potentiated in conditions of low Magnesium and high manganese or zinc, thereby protecting B. subtilis from Mn2+ /Zn2+ toxicity. The N-terminal cytosolic domain of YqgP binds Mn2+ and Zn2+ ions and facilitates MgtE cleavage. Independently of its intrinsic protease activity, YqgP acts as a substrate adaptor for FtsH, a function that is necessary for degradation of MgtE. YqgP thus unites protease and pseudoprotease function, hinting at the evolutionary origin of rhomboid pseudoproteases such as Derlins that are intimately involved in eukaryotic ER-associated degradation (ERAD). Conceptually, the YqgP-FtsH system we describe here is analogous to a primordial form of "ERAD" in bacteria and exemplifies an ancestral function of rhomboid-superfamily proteins.

Coute Yohann - One of the best experts on this subject based on the ideXlab platform.

  • Rhomboid intramembrane protease YqgP licenses bacterial membrane protein quality control as adaptor of FtsH AAA protease
    'EMBO', 2020
    Co-Authors: Began Jakub, Cordier Baptiste, Březinová Jana, Delisle Jordan, Hexnerová Rozálie, Srb Pavel, Rampírová Petra, Kožíšek Milan, Baudet Mathieu, Coute Yohann
    Abstract:

    International audienceMagnesium homeostasis is essential for life and depends on Magnesium Transporters, whose activity and ion selectivity need to be tightly controlled. Rhomboid intramembrane proteases pervade the prokaryotic kingdom, but their functions are largely elusive. Using proteomics, we find that Bacillus subtilis rhomboid protease YqgP interacts with the membrane-bound ATP-dependent proces-sive metalloprotease FtsH and cleaves MgtE, the major high-affinity Magnesium Transporter in B. subtilis. MgtE cleavage by YqgP is potentiated in conditions of low Magnesium and high manganese or zinc, thereby protecting B. subtilis from Mn 2+ /Zn 2+ toxicity. The N-terminal cytosolic domain of YqgP binds Mn 2+ and Zn 2+ ions and facilitates MgtE cleavage. Independently of its intrinsic protease activity, YqgP acts as a substrate adaptor for FtsH, a function that is necessary for degradation of MgtE. YqgP thus unites protease and pseudoprotease function, hinting at the evolutionary origin of rhomboid pseudoproteases such as Derlins that are intimately involved in eukaryotic ER-associated degradation (ERAD). Conceptually, the YqgP-FtsH system we describe here is analogous to a primordial form of "ERAD" in bacteria and exemplifies an ancestral function of rhomboid-superfamily proteins

Jakub Began - One of the best experts on this subject based on the ideXlab platform.

  • rhomboid intramembrane protease yqgp licenses bacterial membrane protein quality control as adaptor of ftsh aaa protease
    The EMBO Journal, 2020
    Co-Authors: Jakub Began, Baptiste Cordier, Petra Rampirova, Jana Březinová, Jordan Delisle, Rozalie Hexnerova, Milan Kožisek, Yohann Coute, Mathieu Baudet, Anne Galinier
    Abstract:

    : Magnesium homeostasis is essential for life and depends on Magnesium Transporters, whose activity and ion selectivity need to be tightly controlled. Rhomboid intramembrane proteases pervade the prokaryotic kingdom, but their functions are largely elusive. Using proteomics, we find that Bacillus subtilis rhomboid protease YqgP interacts with the membrane-bound ATP-dependent processive metalloprotease FtsH and cleaves MgtE, the major high-affinity Magnesium Transporter in B. subtilis. MgtE cleavage by YqgP is potentiated in conditions of low Magnesium and high manganese or zinc, thereby protecting B. subtilis from Mn2+ /Zn2+ toxicity. The N-terminal cytosolic domain of YqgP binds Mn2+ and Zn2+ ions and facilitates MgtE cleavage. Independently of its intrinsic protease activity, YqgP acts as a substrate adaptor for FtsH, a function that is necessary for degradation of MgtE. YqgP thus unites protease and pseudoprotease function, hinting at the evolutionary origin of rhomboid pseudoproteases such as Derlins that are intimately involved in eukaryotic ER-associated degradation (ERAD). Conceptually, the YqgP-FtsH system we describe here is analogous to a primordial form of "ERAD" in bacteria and exemplifies an ancestral function of rhomboid-superfamily proteins.