Mycetozoa

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 81 Experts worldwide ranked by ideXlab platform

Jan Pawlowski - One of the best experts on this subject based on the ideXlab platform.

  • deep phylogeny and evolution of slime moulds Mycetozoa
    Protist, 2010
    Co-Authors: Anna Maria Fioredonno, Sergey I Nikolaev, Michaela Nelson, Jan Pawlowski, Thomas Cavaliersmith, Sandra L Baldauf
    Abstract:

    Mycetozoa, characterized by spore-bearing fruiting bodies, are the most diverse Amoebozoa. They traditionally comprise three taxa: Myxogastria, Dictyostelia and Protostelia. Myxogastria and Dictyostelia typically have multispored fruiting bodies, but controversy exists whether they are related or arose independently from different unicellular ancestors. Protostelid slime moulds, with single-spored fruiting bodies, are possible evolutionary intermediates between them and typical amoebae, but have received almost no molecular study. Protostelid morphology is so varied that they might not be monophyletic. We therefore provide 38 new 18S rRNA and/or EF-1alpha gene sequences from Mycetozoa and related species, including four protostelids and the enigmatic Ceratiomyxa fruticulosa. Phylogenetic analyses support the monophyly of Dictyostelia, Myxogastria, and Ceratiomyxa (here collectively called "macroMycetozoa") and show that protostelids are Amoebozoa, mostly related to non-fruiting amoebae of the class Variosea, but may not be monophyletic; some phylogenetic relationships remain poorly resolved. Ceratiomyxa fruticulosa, originally regarded as a myxogastrid, but in recent decades included in Protostelia, is a deeply diverging sister to Myxogastria. The protostelids studied here plus varipodid amoebae and the flagellates Phalansterium and Multicilia together probably form the outgroup to macroMycetozoa plus Archamoebae. Thus protostelids and Variosea are especially significant for understanding the evolutionary transition from solitary amoebae to macroMycetozoa.

  • semimorula liquescens is a modified echinostelid myxomycete Mycetozoa
    Mycologia, 2009
    Co-Authors: Anna Maria Fioredonno, Jan Pawlowski, Edward F Haskins, Thomas Cavaliersmith
    Abstract:

    The enigmatic Semimorula liquescens E.F. Haskins, McGuin. & C.S. Berry has been isolated repeatedly from dried infructescences of Lythrum salicaria collected from Seattle and Kirkland, Washington. Detailed developmental, morphological and ultrastructural studies suggested that it represents a taxon within Mycetozoa, closely allied with Myxogastria (Myxomycetes) but with unique characteristics. Phylogeny based on two genes places it with confidence in family Echinosteliidae. This species differs from a typical Echinostelium in the way spores germinate and in the lack of a stalked sporophore, the latter being a secondary loss. Semimorula liquescens therefore might be a useful negative model to search for genes inducing stalk formation during sporulation.

  • phylogeny of lobose amoebae based on actin and small subunit ribosomal rna genes
    Journal of Eukaryotic Microbiology, 2005
    Co-Authors: Jose Fahrni, Ignacio Bolivar, Cedric Berney, Elena Nassonova, Alexey V Smirnov, Jan Pawlowski
    Abstract:

    Lobose amoebae are abundant free-living protists and important pathogenic agents, yet their evolutionary history and position in the universal tree of life are poorly known. Molecular data for lobose amoebae are limited to a few species, and all phylogenetic studies published so far lacked representatives of many of their taxonomic groups. Here we analyse actin and small-subunit ribosomal RNA (SSU rRNA) gene sequences of a broad taxon sampling of naked, lobose amoebae. Our results support the existence of a monophyletic Amoebozoa clade, which comprises all lobose amoebae examined so far, as well as the amitochondriate pelobionts and entamoebids, and the slime molds. Both actin and SSU rRNA phylogenies distinguish two well-defined clades of amoebae, the “Gymnamoebia sensu stricto” and the Archamoebae (pelobionts+entamoebids), and one weakly supported and ill-resolved group comprising some naked, lobose amoebae and the Mycetozoa.

  • phylogeny of lobose amoebae based on actin and small subunit ribosomal rna genes
    Molecular Biology and Evolution, 2003
    Co-Authors: Jose Fahrni, Ignacio Bolivar, Cedric Berney, Elena Nassonova, Alexey V Smirnov, Jan Pawlowski
    Abstract:

    Lobose amoebae are abundant free-living protists and important pathogenic agents, yet their evolutionary history and position in the universal tree of life are poorly known. Molecular data for lobose amoebae are limited to a few species, and all phylogenetic studies published so far lacked representatives of many of their taxonomic groups. Here we analyze actin and small-subunit ribosomal RNA (SSU rRNA) gene sequences of a broad taxon sampling of naked, lobose amoebae. Our results support the existence of a monophyletic Amoebozoa clade, which comprises all lobose amoebae examined so far, the amitochondriate pelobionts and entamoebids, and the slime molds. Both actin and SSU rRNA phylogenies distinguish two well-defined clades of amoebae, the "Gymnamoebia sensu stricto" and the Archamoebae (pelobionts + entamoebids), and one weakly supported and ill-resolved group comprising some naked, lobose amoebae and the Mycetozoa.

Jose Fahrni - One of the best experts on this subject based on the ideXlab platform.

  • phylogeny of lobose amoebae based on actin and small subunit ribosomal rna genes
    Journal of Eukaryotic Microbiology, 2005
    Co-Authors: Jose Fahrni, Ignacio Bolivar, Cedric Berney, Elena Nassonova, Alexey V Smirnov, Jan Pawlowski
    Abstract:

    Lobose amoebae are abundant free-living protists and important pathogenic agents, yet their evolutionary history and position in the universal tree of life are poorly known. Molecular data for lobose amoebae are limited to a few species, and all phylogenetic studies published so far lacked representatives of many of their taxonomic groups. Here we analyse actin and small-subunit ribosomal RNA (SSU rRNA) gene sequences of a broad taxon sampling of naked, lobose amoebae. Our results support the existence of a monophyletic Amoebozoa clade, which comprises all lobose amoebae examined so far, as well as the amitochondriate pelobionts and entamoebids, and the slime molds. Both actin and SSU rRNA phylogenies distinguish two well-defined clades of amoebae, the “Gymnamoebia sensu stricto” and the Archamoebae (pelobionts+entamoebids), and one weakly supported and ill-resolved group comprising some naked, lobose amoebae and the Mycetozoa.

  • phylogeny of lobose amoebae based on actin and small subunit ribosomal rna genes
    Molecular Biology and Evolution, 2003
    Co-Authors: Jose Fahrni, Ignacio Bolivar, Cedric Berney, Elena Nassonova, Alexey V Smirnov, Jan Pawlowski
    Abstract:

    Lobose amoebae are abundant free-living protists and important pathogenic agents, yet their evolutionary history and position in the universal tree of life are poorly known. Molecular data for lobose amoebae are limited to a few species, and all phylogenetic studies published so far lacked representatives of many of their taxonomic groups. Here we analyze actin and small-subunit ribosomal RNA (SSU rRNA) gene sequences of a broad taxon sampling of naked, lobose amoebae. Our results support the existence of a monophyletic Amoebozoa clade, which comprises all lobose amoebae examined so far, the amitochondriate pelobionts and entamoebids, and the slime molds. Both actin and SSU rRNA phylogenies distinguish two well-defined clades of amoebae, the "Gymnamoebia sensu stricto" and the Archamoebae (pelobionts + entamoebids), and one weakly supported and ill-resolved group comprising some naked, lobose amoebae and the Mycetozoa.

Cedric Berney - One of the best experts on this subject based on the ideXlab platform.

  • phylogeny of lobose amoebae based on actin and small subunit ribosomal rna genes
    Journal of Eukaryotic Microbiology, 2005
    Co-Authors: Jose Fahrni, Ignacio Bolivar, Cedric Berney, Elena Nassonova, Alexey V Smirnov, Jan Pawlowski
    Abstract:

    Lobose amoebae are abundant free-living protists and important pathogenic agents, yet their evolutionary history and position in the universal tree of life are poorly known. Molecular data for lobose amoebae are limited to a few species, and all phylogenetic studies published so far lacked representatives of many of their taxonomic groups. Here we analyse actin and small-subunit ribosomal RNA (SSU rRNA) gene sequences of a broad taxon sampling of naked, lobose amoebae. Our results support the existence of a monophyletic Amoebozoa clade, which comprises all lobose amoebae examined so far, as well as the amitochondriate pelobionts and entamoebids, and the slime molds. Both actin and SSU rRNA phylogenies distinguish two well-defined clades of amoebae, the “Gymnamoebia sensu stricto” and the Archamoebae (pelobionts+entamoebids), and one weakly supported and ill-resolved group comprising some naked, lobose amoebae and the Mycetozoa.

  • phylogeny of lobose amoebae based on actin and small subunit ribosomal rna genes
    Molecular Biology and Evolution, 2003
    Co-Authors: Jose Fahrni, Ignacio Bolivar, Cedric Berney, Elena Nassonova, Alexey V Smirnov, Jan Pawlowski
    Abstract:

    Lobose amoebae are abundant free-living protists and important pathogenic agents, yet their evolutionary history and position in the universal tree of life are poorly known. Molecular data for lobose amoebae are limited to a few species, and all phylogenetic studies published so far lacked representatives of many of their taxonomic groups. Here we analyze actin and small-subunit ribosomal RNA (SSU rRNA) gene sequences of a broad taxon sampling of naked, lobose amoebae. Our results support the existence of a monophyletic Amoebozoa clade, which comprises all lobose amoebae examined so far, the amitochondriate pelobionts and entamoebids, and the slime molds. Both actin and SSU rRNA phylogenies distinguish two well-defined clades of amoebae, the "Gymnamoebia sensu stricto" and the Archamoebae (pelobionts + entamoebids), and one weakly supported and ill-resolved group comprising some naked, lobose amoebae and the Mycetozoa.

Ignacio Bolivar - One of the best experts on this subject based on the ideXlab platform.

  • phylogeny of lobose amoebae based on actin and small subunit ribosomal rna genes
    Journal of Eukaryotic Microbiology, 2005
    Co-Authors: Jose Fahrni, Ignacio Bolivar, Cedric Berney, Elena Nassonova, Alexey V Smirnov, Jan Pawlowski
    Abstract:

    Lobose amoebae are abundant free-living protists and important pathogenic agents, yet their evolutionary history and position in the universal tree of life are poorly known. Molecular data for lobose amoebae are limited to a few species, and all phylogenetic studies published so far lacked representatives of many of their taxonomic groups. Here we analyse actin and small-subunit ribosomal RNA (SSU rRNA) gene sequences of a broad taxon sampling of naked, lobose amoebae. Our results support the existence of a monophyletic Amoebozoa clade, which comprises all lobose amoebae examined so far, as well as the amitochondriate pelobionts and entamoebids, and the slime molds. Both actin and SSU rRNA phylogenies distinguish two well-defined clades of amoebae, the “Gymnamoebia sensu stricto” and the Archamoebae (pelobionts+entamoebids), and one weakly supported and ill-resolved group comprising some naked, lobose amoebae and the Mycetozoa.

  • phylogeny of lobose amoebae based on actin and small subunit ribosomal rna genes
    Molecular Biology and Evolution, 2003
    Co-Authors: Jose Fahrni, Ignacio Bolivar, Cedric Berney, Elena Nassonova, Alexey V Smirnov, Jan Pawlowski
    Abstract:

    Lobose amoebae are abundant free-living protists and important pathogenic agents, yet their evolutionary history and position in the universal tree of life are poorly known. Molecular data for lobose amoebae are limited to a few species, and all phylogenetic studies published so far lacked representatives of many of their taxonomic groups. Here we analyze actin and small-subunit ribosomal RNA (SSU rRNA) gene sequences of a broad taxon sampling of naked, lobose amoebae. Our results support the existence of a monophyletic Amoebozoa clade, which comprises all lobose amoebae examined so far, the amitochondriate pelobionts and entamoebids, and the slime molds. Both actin and SSU rRNA phylogenies distinguish two well-defined clades of amoebae, the "Gymnamoebia sensu stricto" and the Archamoebae (pelobionts + entamoebids), and one weakly supported and ill-resolved group comprising some naked, lobose amoebae and the Mycetozoa.

Alexey V Smirnov - One of the best experts on this subject based on the ideXlab platform.

  • phylogeny of lobose amoebae based on actin and small subunit ribosomal rna genes
    Journal of Eukaryotic Microbiology, 2005
    Co-Authors: Jose Fahrni, Ignacio Bolivar, Cedric Berney, Elena Nassonova, Alexey V Smirnov, Jan Pawlowski
    Abstract:

    Lobose amoebae are abundant free-living protists and important pathogenic agents, yet their evolutionary history and position in the universal tree of life are poorly known. Molecular data for lobose amoebae are limited to a few species, and all phylogenetic studies published so far lacked representatives of many of their taxonomic groups. Here we analyse actin and small-subunit ribosomal RNA (SSU rRNA) gene sequences of a broad taxon sampling of naked, lobose amoebae. Our results support the existence of a monophyletic Amoebozoa clade, which comprises all lobose amoebae examined so far, as well as the amitochondriate pelobionts and entamoebids, and the slime molds. Both actin and SSU rRNA phylogenies distinguish two well-defined clades of amoebae, the “Gymnamoebia sensu stricto” and the Archamoebae (pelobionts+entamoebids), and one weakly supported and ill-resolved group comprising some naked, lobose amoebae and the Mycetozoa.

  • phylogeny of lobose amoebae based on actin and small subunit ribosomal rna genes
    Molecular Biology and Evolution, 2003
    Co-Authors: Jose Fahrni, Ignacio Bolivar, Cedric Berney, Elena Nassonova, Alexey V Smirnov, Jan Pawlowski
    Abstract:

    Lobose amoebae are abundant free-living protists and important pathogenic agents, yet their evolutionary history and position in the universal tree of life are poorly known. Molecular data for lobose amoebae are limited to a few species, and all phylogenetic studies published so far lacked representatives of many of their taxonomic groups. Here we analyze actin and small-subunit ribosomal RNA (SSU rRNA) gene sequences of a broad taxon sampling of naked, lobose amoebae. Our results support the existence of a monophyletic Amoebozoa clade, which comprises all lobose amoebae examined so far, the amitochondriate pelobionts and entamoebids, and the slime molds. Both actin and SSU rRNA phylogenies distinguish two well-defined clades of amoebae, the "Gymnamoebia sensu stricto" and the Archamoebae (pelobionts + entamoebids), and one weakly supported and ill-resolved group comprising some naked, lobose amoebae and the Mycetozoa.