Nucellus

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 1212 Experts worldwide ranked by ideXlab platform

Fulvio Pupilli - One of the best experts on this subject based on the ideXlab platform.

  • Did apomixis evolve from sex or was it the other way around
    Journal of Experimental Botany, 2019
    Co-Authors: Emidio Albertini, Gianni Barcaccia, John G Carman, Fulvio Pupilli
    Abstract:

    In angiosperms, there are two pathways of reproduction through seeds: sexual, or amphimictic, and asexual, or apomictic. The essential feature of apomixis is that an embryo in an ovule is formed autonomously. It may form from a cell of the Nucellus or integuments in an otherwise sexual ovule, a process referred to as adventitious embryony. Alternatively, the embryo may form by parthenogenesis from an unreduced egg that forms in an unreduced embryo sac. The latter may form from an ameiotic megasporocyte, in which case it is referred to as diplospory, or from a cell of the Nucellus or integument, in which case it is referred to as apospory. Progeny of apomictic plants are generally identical to the mother plant. Apomixis has been seen over the years as either a gain- or loss-of-function over sexuality, implying that the latter is the default condition. Here, we consider an additional point of view, that apomixis may be anciently polyphenic with sex and that both reproductive phenisms involve anciently canalized components of complex molecular processes. This polyphenism viewpoint suggests that apomixis fails to occur in obligately sexual eukaryotes because genetic or epigenetic modifications have silenced the primitive sex apomixis switch and/or disrupted molecular capacities for apomixis. In eukaryotes where sex and apomixis are clearly polyphenic, apomixis exponentially drives clonal fecundity during reproductively favorable conditions, while stress induces sex for stress-tolerant spore or egg formation. The latter often guarantees species survival during environmentally harsh seasons.

  • Image_1_Ovule Gene Expression Analysis in Sexual and Aposporous Apomictic Hypericum perforatum L. (Hypericaceae) Accessions.TIF
    2019
    Co-Authors: Giulio Galla, Fulvio Pupilli, Andrea Basso, Simone Grisan, Michele Bellucci, Gianni Barcaccia
    Abstract:

    Hypericum perforatum L. (2n = 4x = 32) is an attractive model system for the study of aposporous apomixis. The earliest phenotypic features of aposporous apomixis in this species are the mitotic formation of unreduced embryo sacs from a somatic cell of the ovule Nucellus and the avoidance of meiosis. In this research we addressed gene expression variation in sexual and apomictic plants, by focusing on the ovule Nucellus, which is the cellular domain primarily involved into the differentiation of meiocyte precursors and aposporous embryo sacs, at a pre-meiotic developmental stage. Gene expression analyses performed by RNAseq identified 396 differentially expressed genes and 1834 transcripts displaying phenotype-specific expression. Furthermore, the sequencing and assembly of the genome from a diploid sexual accession allowed the annotation of a 50 kb sequence portion located upstream the HAPPY locus and to address the extent to which single transcripts were assembled in multiple variants and their co-expression levels. About one third of identified DEGs and phenotype-specific transcripts were associated to transcript variants with alternative expression patterns. Additionally, considering DEGs and phenotype-specific transcript, the co-expression level was estimated in about two transcripts per locus. Our gene expression study shows massive differences in the expression of several genes encoding for transposable elements. Transcriptional differences in the ovule Nucellus and pistil terminal developmental stages were also found for subset of genes encoding for potentially interacting proteins involved in pre-mRNA splicing. Furthermore, the sexual and aposporous ovule transcriptomes were characterized by differential expression in genes operating in RNA silencing, RNA-mediated DNA methylation (RdDM) and histone and chromatin modifications. These findings are consistent with a role of these processes in regulating cell fate determination in the ovule, as indicated by forward genetic studies in sexual model species. The association between aposporous apomixis, pre-mRNA splicing and DNA methylation mediated by sRNAs, which is supported by expression data and by the enrichment in GO terms related to these processes, is consistent with the massive differential expression of multiple transposon-related sequences observed in ovules collected from both sexual and aposporous apomictic accessions. Overall, our data suggest that phenotypic expression of aposporous apomixis is concomitant with the modulation of key genes involved in the two interconnected processes: RNA splicing and RNA-directed DNA methylation.

  • Table_1_Ovule Gene Expression Analysis in Sexual and Aposporous Apomictic Hypericum perforatum L. (Hypericaceae) Accessions.xlsx
    2019
    Co-Authors: Giulio Galla, Fulvio Pupilli, Andrea Basso, Simone Grisan, Michele Bellucci, Gianni Barcaccia
    Abstract:

    Hypericum perforatum L. (2n = 4x = 32) is an attractive model system for the study of aposporous apomixis. The earliest phenotypic features of aposporous apomixis in this species are the mitotic formation of unreduced embryo sacs from a somatic cell of the ovule Nucellus and the avoidance of meiosis. In this research we addressed gene expression variation in sexual and apomictic plants, by focusing on the ovule Nucellus, which is the cellular domain primarily involved into the differentiation of meiocyte precursors and aposporous embryo sacs, at a pre-meiotic developmental stage. Gene expression analyses performed by RNAseq identified 396 differentially expressed genes and 1834 transcripts displaying phenotype-specific expression. Furthermore, the sequencing and assembly of the genome from a diploid sexual accession allowed the annotation of a 50 kb sequence portion located upstream the HAPPY locus and to address the extent to which single transcripts were assembled in multiple variants and their co-expression levels. About one third of identified DEGs and phenotype-specific transcripts were associated to transcript variants with alternative expression patterns. Additionally, considering DEGs and phenotype-specific transcript, the co-expression level was estimated in about two transcripts per locus. Our gene expression study shows massive differences in the expression of several genes encoding for transposable elements. Transcriptional differences in the ovule Nucellus and pistil terminal developmental stages were also found for subset of genes encoding for potentially interacting proteins involved in pre-mRNA splicing. Furthermore, the sexual and aposporous ovule transcriptomes were characterized by differential expression in genes operating in RNA silencing, RNA-mediated DNA methylation (RdDM) and histone and chromatin modifications. These findings are consistent with a role of these processes in regulating cell fate determination in the ovule, as indicated by forward genetic studies in sexual model species. The association between aposporous apomixis, pre-mRNA splicing and DNA methylation mediated by sRNAs, which is supported by expression data and by the enrichment in GO terms related to these processes, is consistent with the massive differential expression of multiple transposon-related sequences observed in ovules collected from both sexual and aposporous apomictic accessions. Overall, our data suggest that phenotypic expression of aposporous apomixis is concomitant with the modulation of key genes involved in the two interconnected processes: RNA splicing and RNA-directed DNA methylation.

  • The MAP3K-Coding QUI-GON JINN (QGJ) Gene Is Essential to the Formation of Unreduced Embryo Sacs in Paspalum
    Frontiers Media S.A., 2018
    Co-Authors: Micaela Mancini, Fulvio Pupilli, Hugo Permingeat, Carolina Colono, Lorena Siena, Celeste Azzaro, Diva Maria De Alencar Dusi, Vera Tavares De Campos Carneiro, Maricel Podio, José Guillermo Seijo
    Abstract:

    Apomixis is a clonal mode of reproduction via seeds, which results from the failure of meiosis and fertilization in the sexual female reproductive pathway. In previous transcriptomic surveys, we identified a mitogen-activated protein kinase kinase kinase (N46) displaying differential representation in florets of sexual and apomictic Paspalum notatum genotypes. Here, we retrieved and characterized the N46 full cDNA sequence from sexual and apomictic floral transcriptomes. Phylogenetic analyses showed that N46 was a member of the YODA family, which was re-named QUI-GON JINN (QGJ). Differential expression in florets of sexual and apomictic plants was confirmed by qPCR. In situ hybridization experiments revealed expression in the Nucellus of aposporous plants’ ovules, which was absent in sexual plants. RNAi inhibition of QGJ expression in two apomictic genotypes resulted in significantly reduced rates of aposporous embryo sac formation, with respect to the level detected in wild type aposporous plants and transformation controls. The QGJ locus segregated independently of apospory. However, a probe derived from a related long non-coding RNA sequence (PN_LNC_QGJ) revealed RFLP bands cosegregating with the Paspalum apospory-controlling region (ACR). PN_LNC_QGJ is expressed in florets of apomictic plants only. Our results indicate that the activity of QGJ in the Nucellus of apomictic plants is necessary to form non-reduced embryo sacs and that a long non-coding sequence with regulatory potential is similar to sequences located within the ACR

  • Table_1_The MAP3K-Coding QUI-GON JINN (QGJ) Gene Is Essential to the Formation of Unreduced Embryo Sacs in Paspalum.DOCX
    2018
    Co-Authors: Micaela Mancini, Fulvio Pupilli, Hugo Permingeat, Carolina Colono, Lorena Siena, Celeste Azzaro, Diva Maria De Alencar Dusi, Vera Tavares De Campos Carneiro, Maricel Podio, José Guillermo Seijo
    Abstract:

    Apomixis is a clonal mode of reproduction via seeds, which results from the failure of meiosis and fertilization in the sexual female reproductive pathway. In previous transcriptomic surveys, we identified a mitogen-activated protein kinase kinase kinase (N46) displaying differential representation in florets of sexual and apomictic Paspalum notatum genotypes. Here, we retrieved and characterized the N46 full cDNA sequence from sexual and apomictic floral transcriptomes. Phylogenetic analyses showed that N46 was a member of the YODA family, which was re-named QUI-GON JINN (QGJ). Differential expression in florets of sexual and apomictic plants was confirmed by qPCR. In situ hybridization experiments revealed expression in the Nucellus of aposporous plants’ ovules, which was absent in sexual plants. RNAi inhibition of QGJ expression in two apomictic genotypes resulted in significantly reduced rates of aposporous embryo sac formation, with respect to the level detected in wild type aposporous plants and transformation controls. The QGJ locus segregated independently of apospory. However, a probe derived from a related long non-coding RNA sequence (PN_LNC_QGJ) revealed RFLP bands cosegregating with the Paspalum apospory-controlling region (ACR). PN_LNC_QGJ is expressed in florets of apomictic plants only. Our results indicate that the activity of QGJ in the Nucellus of apomictic plants is necessary to form non-reduced embryo sacs and that a long non-coding sequence with regulatory potential is similar to sequences located within the ACR.

José Guillermo Seijo - One of the best experts on this subject based on the ideXlab platform.

  • The MAP3K-Coding QUI-GON JINN (QGJ) Gene Is Essential to the Formation of Unreduced Embryo Sacs in Paspalum
    Frontiers Media S.A., 2018
    Co-Authors: Micaela Mancini, Fulvio Pupilli, Hugo Permingeat, Carolina Colono, Lorena Siena, Celeste Azzaro, Diva Maria De Alencar Dusi, Vera Tavares De Campos Carneiro, Maricel Podio, José Guillermo Seijo
    Abstract:

    Apomixis is a clonal mode of reproduction via seeds, which results from the failure of meiosis and fertilization in the sexual female reproductive pathway. In previous transcriptomic surveys, we identified a mitogen-activated protein kinase kinase kinase (N46) displaying differential representation in florets of sexual and apomictic Paspalum notatum genotypes. Here, we retrieved and characterized the N46 full cDNA sequence from sexual and apomictic floral transcriptomes. Phylogenetic analyses showed that N46 was a member of the YODA family, which was re-named QUI-GON JINN (QGJ). Differential expression in florets of sexual and apomictic plants was confirmed by qPCR. In situ hybridization experiments revealed expression in the Nucellus of aposporous plants’ ovules, which was absent in sexual plants. RNAi inhibition of QGJ expression in two apomictic genotypes resulted in significantly reduced rates of aposporous embryo sac formation, with respect to the level detected in wild type aposporous plants and transformation controls. The QGJ locus segregated independently of apospory. However, a probe derived from a related long non-coding RNA sequence (PN_LNC_QGJ) revealed RFLP bands cosegregating with the Paspalum apospory-controlling region (ACR). PN_LNC_QGJ is expressed in florets of apomictic plants only. Our results indicate that the activity of QGJ in the Nucellus of apomictic plants is necessary to form non-reduced embryo sacs and that a long non-coding sequence with regulatory potential is similar to sequences located within the ACR

  • Table_1_The MAP3K-Coding QUI-GON JINN (QGJ) Gene Is Essential to the Formation of Unreduced Embryo Sacs in Paspalum.DOCX
    2018
    Co-Authors: Micaela Mancini, Fulvio Pupilli, Hugo Permingeat, Carolina Colono, Lorena Siena, Celeste Azzaro, Diva Maria De Alencar Dusi, Vera Tavares De Campos Carneiro, Maricel Podio, José Guillermo Seijo
    Abstract:

    Apomixis is a clonal mode of reproduction via seeds, which results from the failure of meiosis and fertilization in the sexual female reproductive pathway. In previous transcriptomic surveys, we identified a mitogen-activated protein kinase kinase kinase (N46) displaying differential representation in florets of sexual and apomictic Paspalum notatum genotypes. Here, we retrieved and characterized the N46 full cDNA sequence from sexual and apomictic floral transcriptomes. Phylogenetic analyses showed that N46 was a member of the YODA family, which was re-named QUI-GON JINN (QGJ). Differential expression in florets of sexual and apomictic plants was confirmed by qPCR. In situ hybridization experiments revealed expression in the Nucellus of aposporous plants’ ovules, which was absent in sexual plants. RNAi inhibition of QGJ expression in two apomictic genotypes resulted in significantly reduced rates of aposporous embryo sac formation, with respect to the level detected in wild type aposporous plants and transformation controls. The QGJ locus segregated independently of apospory. However, a probe derived from a related long non-coding RNA sequence (PN_LNC_QGJ) revealed RFLP bands cosegregating with the Paspalum apospory-controlling region (ACR). PN_LNC_QGJ is expressed in florets of apomictic plants only. Our results indicate that the activity of QGJ in the Nucellus of apomictic plants is necessary to form non-reduced embryo sacs and that a long non-coding sequence with regulatory potential is similar to sequences located within the ACR.

Gianni Barcaccia - One of the best experts on this subject based on the ideXlab platform.

  • Did apomixis evolve from sex or was it the other way around
    Journal of Experimental Botany, 2019
    Co-Authors: Emidio Albertini, Gianni Barcaccia, John G Carman, Fulvio Pupilli
    Abstract:

    In angiosperms, there are two pathways of reproduction through seeds: sexual, or amphimictic, and asexual, or apomictic. The essential feature of apomixis is that an embryo in an ovule is formed autonomously. It may form from a cell of the Nucellus or integuments in an otherwise sexual ovule, a process referred to as adventitious embryony. Alternatively, the embryo may form by parthenogenesis from an unreduced egg that forms in an unreduced embryo sac. The latter may form from an ameiotic megasporocyte, in which case it is referred to as diplospory, or from a cell of the Nucellus or integument, in which case it is referred to as apospory. Progeny of apomictic plants are generally identical to the mother plant. Apomixis has been seen over the years as either a gain- or loss-of-function over sexuality, implying that the latter is the default condition. Here, we consider an additional point of view, that apomixis may be anciently polyphenic with sex and that both reproductive phenisms involve anciently canalized components of complex molecular processes. This polyphenism viewpoint suggests that apomixis fails to occur in obligately sexual eukaryotes because genetic or epigenetic modifications have silenced the primitive sex apomixis switch and/or disrupted molecular capacities for apomixis. In eukaryotes where sex and apomixis are clearly polyphenic, apomixis exponentially drives clonal fecundity during reproductively favorable conditions, while stress induces sex for stress-tolerant spore or egg formation. The latter often guarantees species survival during environmentally harsh seasons.

  • Image_1_Ovule Gene Expression Analysis in Sexual and Aposporous Apomictic Hypericum perforatum L. (Hypericaceae) Accessions.TIF
    2019
    Co-Authors: Giulio Galla, Fulvio Pupilli, Andrea Basso, Simone Grisan, Michele Bellucci, Gianni Barcaccia
    Abstract:

    Hypericum perforatum L. (2n = 4x = 32) is an attractive model system for the study of aposporous apomixis. The earliest phenotypic features of aposporous apomixis in this species are the mitotic formation of unreduced embryo sacs from a somatic cell of the ovule Nucellus and the avoidance of meiosis. In this research we addressed gene expression variation in sexual and apomictic plants, by focusing on the ovule Nucellus, which is the cellular domain primarily involved into the differentiation of meiocyte precursors and aposporous embryo sacs, at a pre-meiotic developmental stage. Gene expression analyses performed by RNAseq identified 396 differentially expressed genes and 1834 transcripts displaying phenotype-specific expression. Furthermore, the sequencing and assembly of the genome from a diploid sexual accession allowed the annotation of a 50 kb sequence portion located upstream the HAPPY locus and to address the extent to which single transcripts were assembled in multiple variants and their co-expression levels. About one third of identified DEGs and phenotype-specific transcripts were associated to transcript variants with alternative expression patterns. Additionally, considering DEGs and phenotype-specific transcript, the co-expression level was estimated in about two transcripts per locus. Our gene expression study shows massive differences in the expression of several genes encoding for transposable elements. Transcriptional differences in the ovule Nucellus and pistil terminal developmental stages were also found for subset of genes encoding for potentially interacting proteins involved in pre-mRNA splicing. Furthermore, the sexual and aposporous ovule transcriptomes were characterized by differential expression in genes operating in RNA silencing, RNA-mediated DNA methylation (RdDM) and histone and chromatin modifications. These findings are consistent with a role of these processes in regulating cell fate determination in the ovule, as indicated by forward genetic studies in sexual model species. The association between aposporous apomixis, pre-mRNA splicing and DNA methylation mediated by sRNAs, which is supported by expression data and by the enrichment in GO terms related to these processes, is consistent with the massive differential expression of multiple transposon-related sequences observed in ovules collected from both sexual and aposporous apomictic accessions. Overall, our data suggest that phenotypic expression of aposporous apomixis is concomitant with the modulation of key genes involved in the two interconnected processes: RNA splicing and RNA-directed DNA methylation.

  • Table_1_Ovule Gene Expression Analysis in Sexual and Aposporous Apomictic Hypericum perforatum L. (Hypericaceae) Accessions.xlsx
    2019
    Co-Authors: Giulio Galla, Fulvio Pupilli, Andrea Basso, Simone Grisan, Michele Bellucci, Gianni Barcaccia
    Abstract:

    Hypericum perforatum L. (2n = 4x = 32) is an attractive model system for the study of aposporous apomixis. The earliest phenotypic features of aposporous apomixis in this species are the mitotic formation of unreduced embryo sacs from a somatic cell of the ovule Nucellus and the avoidance of meiosis. In this research we addressed gene expression variation in sexual and apomictic plants, by focusing on the ovule Nucellus, which is the cellular domain primarily involved into the differentiation of meiocyte precursors and aposporous embryo sacs, at a pre-meiotic developmental stage. Gene expression analyses performed by RNAseq identified 396 differentially expressed genes and 1834 transcripts displaying phenotype-specific expression. Furthermore, the sequencing and assembly of the genome from a diploid sexual accession allowed the annotation of a 50 kb sequence portion located upstream the HAPPY locus and to address the extent to which single transcripts were assembled in multiple variants and their co-expression levels. About one third of identified DEGs and phenotype-specific transcripts were associated to transcript variants with alternative expression patterns. Additionally, considering DEGs and phenotype-specific transcript, the co-expression level was estimated in about two transcripts per locus. Our gene expression study shows massive differences in the expression of several genes encoding for transposable elements. Transcriptional differences in the ovule Nucellus and pistil terminal developmental stages were also found for subset of genes encoding for potentially interacting proteins involved in pre-mRNA splicing. Furthermore, the sexual and aposporous ovule transcriptomes were characterized by differential expression in genes operating in RNA silencing, RNA-mediated DNA methylation (RdDM) and histone and chromatin modifications. These findings are consistent with a role of these processes in regulating cell fate determination in the ovule, as indicated by forward genetic studies in sexual model species. The association between aposporous apomixis, pre-mRNA splicing and DNA methylation mediated by sRNAs, which is supported by expression data and by the enrichment in GO terms related to these processes, is consistent with the massive differential expression of multiple transposon-related sequences observed in ovules collected from both sexual and aposporous apomictic accessions. Overall, our data suggest that phenotypic expression of aposporous apomixis is concomitant with the modulation of key genes involved in the two interconnected processes: RNA splicing and RNA-directed DNA methylation.

Debra J. Skinner - One of the best experts on this subject based on the ideXlab platform.

  • expression based discovery of candidate ovule development regulators through transcriptional profiling of ovule mutants
    BMC Plant Biology, 2009
    Co-Authors: Debra J. Skinner, Charles S. Gasser
    Abstract:

    Background Arabidopsis ovules comprise four morphologically distinct parts: the Nucellus, which contains the embryo sac, two integuments that become the seed coat, and the funiculus that anchors the ovule within the carpel. Analysis of developmental mutants has shown that ovule morphogenesis relies on tightly regulated genetic interactions that can serve as a model for developmental regulation. Redundancy, pleiotropic effects and subtle phenotypes may preclude identification of mutants affecting some processes in screens for phenotypic changes. Expression-based gene discovery can be used access such obscured genes.

John S. Boyer - One of the best experts on this subject based on the ideXlab platform.

  • differences in membrane selectivity drive phloem transport to the apoplast from which maize florets develop
    Annals of Botany, 2013
    Co-Authors: Anching Tang, John S. Boyer
    Abstract:

    †Background and Aims Floral development depends on photosynthetic products delivered by the phloem. Previous work suggested the path to the flower involved either the apoplast or the symplast. The objective of the present work was to determine the path and its mechanism of operation. †Methods Maize (Zea mays) plants were grown until pollination. For simplicity, florets were harvested before fertilization to ensure that all tissues were of maternal origin. Because sucrose from phloem is hydrolysed to glucose on its way to the floret, the tissues were imaged and analysed for glucose using an enzyme-based assay. Also, carboxyfluorescein diacetate was fed to the stems and similarly imaged and analysed. †Key Results The images of live sections revealed that phloem contents were released to the pedicel apoplast below the Nucellus of the florets. Glucose or carboxyfluorescein were detected and could be washed out. For carboxyfluorescein, the plasma membranes of the phloem parenchyma appeared to control the release. After release, the Nucellus absorbed apoplast glucose selectively, rejecting carboxyfluorescein. †Conclusions Despite the absence of an embryo, the apoplast below the Nucellus was a depot for phloem contents, and the strictly symplast path is rejected. Because glucose and carboxyfluorescein were released non-selectively, the path to the floret resembled the one later when an embryo is present. The non-selective release indicates that turgor at phloem termini cannot balance the full osmotic potential of the phloem contents and would create a downward pressure gradient driving bulk flow toward the sink. Such a gradient was previously measured by Fisher and Cash-Clark in wheat. At the same time, selective absorption from the apoplast by the nucellar membranes would support full turgor in this tissue, isolating the embryo sac from the maternal plant. The isolation should continue later when an embryo develops.

  • imaging and quantifying carbohydrate transport to the developing ovaries of maize
    Annals of Botany, 2005
    Co-Authors: Pirjo Makela, John E Mclaughlin, John S. Boyer
    Abstract:

    • Background and Aims Shade or inadequate water can inhibit photosynthesis and limit the development of maize (Zea mays) ovaries around the time of pollination, potentially reducing the number of kernels at harvest. This study investigated whether the decreased photosynthesis diminished only the sugar supply or also altered the transport path to the ovaries. • Methods Photosynthesis and water potentials (Ψw) were measured in the leaves while dry matter delivery was monitored in the ovaries. Ovary glucose, starch and acid invertase activities were measured in situ. Stems were fed xylem-mobile safranin or phloem-mobile carboxyfluorescein (CF), and the dye transport to the ovaries was determined. • Key Results Under normal conditions, the ovaries gained in dry mass, and starch accumulated in the pedicel and ovary wall. Glucose accumulated in the pedicel, apparently in the apoplast where insoluble (cell-wall-bound) acid invertase acted on the arriving sucrose. A glucose gradient developed from pedicel to Nucellus. Safranin moved in the xylem and did not reach the ovary, but CF moved in the phloem and arrived at the ovary. CF also spread into the pedicel but unlike glucose it did not enter the Nucellus. Low Ψw or shade decreased leaf photosynthesis, ovary dry mass accumulation, invertase activities, pedicel glucose, starch accumulation and CF delivery. Removal of these treatments reversed the effects. • Conclusions The success of CF in tracing the general path and rate of carbohydrate transport gave visual evidence that phloem transport to the ovary decreased at low Ψw or in the shade but otherwise remained functional. The decreases indicated that losses in carbohydrate delivery are central features of failed ovary development under these conditions. The selectivity of transport into the Nucellus resembled the situation later when embryo and endosperm are present and selective uptake occurs from the apoplast.