O-Glycoprotein

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 22289106 Experts worldwide ranked by ideXlab platform

Joseph Sodroski - One of the best experts on this subject based on the ideXlab platform.

  • identification of a human immunodeficiency virus type 1 envelope glycoprotein variant resistant to cold inactivation
    Journal of Virology, 2009
    Co-Authors: Aemro Kassa, Andres Finzi, Marie Pancera, Joel R Courter, Amos B Smith, Joseph Sodroski
    Abstract:

    The human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein trimer consists of gp120 and gp41 subunits and undergoes a series of conformational changes upon binding to the receptors, CD4 and CCR5/CXCR4, that promote virus entry. Surprisingly, we found that the envelope glycoproteins of some HIV-1 strains are functionally inactivated by prolonged incubation on ice. Serial exposure of HIV-1 to extremes of temperature, followed by expansion of replication-competent viruses, allowed selection of a temperature-resistant virus. The envelope glycoproteins of this virus resisted cold inactivation due to a single passage-associated change, H66N, in the gp120 exterior envelope glycoprotein. Histidine 66 is located within the gp41-interactive inner domain of gp120 and, in other studies, has been shown to decrease the sampling of the CD4-bound conformation by unliganded gp120. Substituting asparagine or other amino acid residues for histidine 66 in cold-sensitive HIV-1 envelope glycoproteins resulted in cold-stable phenotypes. Cold inactivation of the HIV-1 envelope glycoproteins occurred even at high pH, indicating that protonation of histidine 66 is not necessary for this process. Increased exposure of epitopes in the ectodomain of the gp41 transmembrane envelope glycoprotein accompanied cold inactivation, but shedding of gp120 did not. An amino acid change in gp120 (S375W) that promotes the CD4-bound state or treatment with soluble CD4 or a small-molecule CD4 mimic resulted in increased cold sensitivity. These results indicate that the CD4-bound intermediate of the HIV-1 envelope glycoproteins is cold labile; avoiding the CD4-bound state increases temperature stability.

  • role of the gp120 inner domain β sandwich in the interaction between the human immunodeficiency virus envelope glycoprotein subunits
    Virology, 2003
    Co-Authors: Xinzhen Yang, Erin Mahony, Aemro Kassa, Geoff H Holm, Joseph Sodroski
    Abstract:

    The inner domain of the human immunodeficiency virus (HIV-1) gp120 glycoprotein has been proposed to mediate the noncovalent interaction with the gp41 transmembrane envelope glycoprotein. We used mutagenesis to investigate the functional importance of a conserved beta-sandwich located within the gp120 inner domain. Changes in aliphatic residues lining a hydrophobic groove on the surface of the beta-sandwich decreased the association of the gp120 and gp41 glycoproteins. Other changes in the base of the hydrophobic groove resulted in envelope glycoproteins that were structurally intact and able to bind receptors, but were inefficient in mediating either syncytium formation or virus entry. These results support a model in which the beta-sandwich in the gp120 inner domain contributes to gp120-gp41 contacts, thereby maintaining the integrity of the envelope glycoprotein complex and allowing adjustments in the gp120-gp41 interaction required for membrane fusion.

  • cytolysis by ccr5 using human immunodeficiency virus type 1 envelope glycoproteins is dependent on membrane fusion and can be inhibited by high levels of cd4 expression
    Journal of Virology, 2003
    Co-Authors: Jason A Labonte, Navid Madani, Joseph Sodroski
    Abstract:

    T-tropic (X4) and dualtropic (R5X4) human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins kill primary and immortalized CD4(+) CXCR4(+) T cells by mechanisms involving membrane fusion. However, because much of HIV-1 infection in vivo is mediated by M-tropic (R5) viruses whose envelope glycoproteins use CCR5 as a coreceptor, we tested a panel of R5 and R5X4 envelope glycoproteins for their ability to lyse CCR5(+) target cells. As is the case for CXCR4(+) target cells, HIV-1 envelope glycoproteins expressed by single-round HIV-1 vectors killed transduced CD4(+) CCR5(+) cells in a membrane fusion-dependent manner. Furthermore, a CD4-independent R5 HIV-1 envelope glycoprotein was able to kill CD4-negative target cells expressing CCR5, demonstrating that CD4 is not intrinsically required for the induction of death. Interestingly, high levels of CD4 expression protected cells from lysis and syncytium formation mediated by the HIV-1 envelope glycoproteins. Immunoprecipitation experiments showed that high levels of CD4 coexpression inhibited proteolytic processing of the HIV-1 envelope glycoprotein precursor gp160. This inhibition could be overcome by decreasing the CD4 binding ability of gp120. Studies were also undertaken to investigate the ability of virion-bound HIV-1 envelope glycoproteins to kill primary CD4(+) T cells. However, neither X4 nor R5X4 envelope glycoproteins on noninfectious virions caused death in primary CD4(+) T cells. These results demonstrate that the interaction of CCR5 with R5 HIV-1 envelope glycoproteins capable of inducing membrane fusion leads to cell lysis; overexpression of CD4 can inhibit cell killing by limiting envelope glycoprotein processing.

  • highly stable trimers formed by human immunodeficiency virus type 1 envelope glycoproteins fused with the trimeric motif of t4 bacteriophage fibritin
    Journal of Virology, 2002
    Co-Authors: Xinzhen Yang, Juliette Lee, Erin Mahony, Peter D Kwong, Richard T Wyatt, Joseph Sodroski
    Abstract:

    The envelope glycoproteins of human immunodeficiency virus type 1 (HIV-1) function as a trimer composed of three gp120 exterior glycoproteins and three gp41 transmembrane proteins. Soluble gp140 glycoproteins composed of the uncleaved ectodomains of gp120 and gp41 form unstable, heterogeneous oligomers, but soluble gp140 trimers can be stabilized by fusion with a C-terminal, trimeric GCN4 motif (X. Yang et al., J. Virol. 74:5716-5725, 2000). To understand the influence of the C-terminal trimerization domain on the properties of soluble HIV-1 envelope glycoprotein trimers, uncleaved, soluble gp140 glycoproteins were stabilized by fusion with another trimeric motif derived from T4 bacteriophage fibritin. The fibritin construct was more stable to heat and reducing conditions than the GCN4 construct. Both GCN4- and fibritin-stabilized soluble gp140 glycoproteins exhibited patterns of neutralizing and nonneutralizing antibody binding expected for the functional envelope glycoprotein spike. Of note, two potently neutralizing antibodies, immunoglobulin G1b12 and 2G12, exhibited the greatest recognition of the stabilized, soluble trimers, relative to recognition of the gp120 monomer. The observed similarities between the GCN4 and fibritin constructs indicate that the HIV-1 envelope glycoprotein ectodomains dictate many of the antigenic and structural features of these fusion proteins. The melting temperatures and ligand recognition properties of the GCN4- and fibritin-stabilized soluble gp140 glycoproteins suggest that these molecules assume conformations distinct from that of the fusion-active, six-helix bundle.

  • modifications that stabilize human immunodeficiency virus envelope glycoprotein trimers in solution
    Journal of Virology, 2000
    Co-Authors: Xinzhen Yang, Joseph Sodroski, Peter D Kwong, Lauren Florin, Michael Farzan, Peter Kolchinsky, Richard T Wyatt
    Abstract:

    The functional unit of the human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins is a trimer composed of three gp120 exterior glycoproteins and three gp41 transmembrane glycoproteins. The lability of intersubunit interactions has hindered the production and characterization of soluble, homogeneous envelope glycoprotein trimers. Here we report three modifications that stabilize soluble forms of HIV-1 envelope glycoprotein trimers: disruption of the proteolytic cleavage site between gp120 and gp41, introduction of cysteines that form intersubunit disulfide bonds, and addition of GCN4 trimeric helices. Characterization of these secreted glycoproteins by immunologic and biophysical methods indicates that these stable trimers retain structural integrity. The efficacy of the GCN4 sequences in stabilizing the trimers, the formation of intersubunit disulfide bonds between appropriately placed cysteines, and the ability of the trimers to interact with a helical, C-terminal gp41 peptide (DP178) support a model in which the N-terminal gp41 coiled coil exists in the envelope glycoprotein precursor and contributes to intersubunit interactions within the trimer. The availability of stable, soluble HIV-1 envelope glycoprotein trimers should expedite progress in understanding the structure and function of the virion envelope glycoprotein spikes.

Xinzhen Yang - One of the best experts on this subject based on the ideXlab platform.

  • role of the gp120 inner domain β sandwich in the interaction between the human immunodeficiency virus envelope glycoprotein subunits
    Virology, 2003
    Co-Authors: Xinzhen Yang, Erin Mahony, Aemro Kassa, Geoff H Holm, Joseph Sodroski
    Abstract:

    The inner domain of the human immunodeficiency virus (HIV-1) gp120 glycoprotein has been proposed to mediate the noncovalent interaction with the gp41 transmembrane envelope glycoprotein. We used mutagenesis to investigate the functional importance of a conserved beta-sandwich located within the gp120 inner domain. Changes in aliphatic residues lining a hydrophobic groove on the surface of the beta-sandwich decreased the association of the gp120 and gp41 glycoproteins. Other changes in the base of the hydrophobic groove resulted in envelope glycoproteins that were structurally intact and able to bind receptors, but were inefficient in mediating either syncytium formation or virus entry. These results support a model in which the beta-sandwich in the gp120 inner domain contributes to gp120-gp41 contacts, thereby maintaining the integrity of the envelope glycoprotein complex and allowing adjustments in the gp120-gp41 interaction required for membrane fusion.

  • highly stable trimers formed by human immunodeficiency virus type 1 envelope glycoproteins fused with the trimeric motif of t4 bacteriophage fibritin
    Journal of Virology, 2002
    Co-Authors: Xinzhen Yang, Juliette Lee, Erin Mahony, Peter D Kwong, Richard T Wyatt, Joseph Sodroski
    Abstract:

    The envelope glycoproteins of human immunodeficiency virus type 1 (HIV-1) function as a trimer composed of three gp120 exterior glycoproteins and three gp41 transmembrane proteins. Soluble gp140 glycoproteins composed of the uncleaved ectodomains of gp120 and gp41 form unstable, heterogeneous oligomers, but soluble gp140 trimers can be stabilized by fusion with a C-terminal, trimeric GCN4 motif (X. Yang et al., J. Virol. 74:5716-5725, 2000). To understand the influence of the C-terminal trimerization domain on the properties of soluble HIV-1 envelope glycoprotein trimers, uncleaved, soluble gp140 glycoproteins were stabilized by fusion with another trimeric motif derived from T4 bacteriophage fibritin. The fibritin construct was more stable to heat and reducing conditions than the GCN4 construct. Both GCN4- and fibritin-stabilized soluble gp140 glycoproteins exhibited patterns of neutralizing and nonneutralizing antibody binding expected for the functional envelope glycoprotein spike. Of note, two potently neutralizing antibodies, immunoglobulin G1b12 and 2G12, exhibited the greatest recognition of the stabilized, soluble trimers, relative to recognition of the gp120 monomer. The observed similarities between the GCN4 and fibritin constructs indicate that the HIV-1 envelope glycoprotein ectodomains dictate many of the antigenic and structural features of these fusion proteins. The melting temperatures and ligand recognition properties of the GCN4- and fibritin-stabilized soluble gp140 glycoproteins suggest that these molecules assume conformations distinct from that of the fusion-active, six-helix bundle.

  • modifications that stabilize human immunodeficiency virus envelope glycoprotein trimers in solution
    Journal of Virology, 2000
    Co-Authors: Xinzhen Yang, Joseph Sodroski, Peter D Kwong, Lauren Florin, Michael Farzan, Peter Kolchinsky, Richard T Wyatt
    Abstract:

    The functional unit of the human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins is a trimer composed of three gp120 exterior glycoproteins and three gp41 transmembrane glycoproteins. The lability of intersubunit interactions has hindered the production and characterization of soluble, homogeneous envelope glycoprotein trimers. Here we report three modifications that stabilize soluble forms of HIV-1 envelope glycoprotein trimers: disruption of the proteolytic cleavage site between gp120 and gp41, introduction of cysteines that form intersubunit disulfide bonds, and addition of GCN4 trimeric helices. Characterization of these secreted glycoproteins by immunologic and biophysical methods indicates that these stable trimers retain structural integrity. The efficacy of the GCN4 sequences in stabilizing the trimers, the formation of intersubunit disulfide bonds between appropriately placed cysteines, and the ability of the trimers to interact with a helical, C-terminal gp41 peptide (DP178) support a model in which the N-terminal gp41 coiled coil exists in the envelope glycoprotein precursor and contributes to intersubunit interactions within the trimer. The availability of stable, soluble HIV-1 envelope glycoprotein trimers should expedite progress in understanding the structure and function of the virion envelope glycoprotein spikes.

Yasuhiro Kajihara - One of the best experts on this subject based on the ideXlab platform.

  • glycoprotein semisynthesis by chemical insertion of glycosyl asparagine using a bifunctional thioacid mediated strategy
    Journal of the American Chemical Society, 2021
    Co-Authors: Kota Nomura, Yuta Maki, Ryo Okamoto, Ayano Satoh, Yasuhiro Kajihara
    Abstract:

    Glycosylation is a major modification of secreted and cell surface proteins, and the resultant glycans show considerable heterogeneity in their structures. To understand the biological processes arising from each glycoform, the preparation of homogeneous glycoproteins is essential for extensive biological experiments. To establish a more robust and rapid synthetic route for the synthesis of homogeneous glycoproteins, we studied several key reactions based on amino thioacids. We found that diacyl disulfide coupling (DDC) formed with glycosyl asparagine thioacid and peptide thioacid yielded glycopeptides. This efficient coupling reaction enabled us to develop a new glycoprotein synthesis method, such as the bifunctional thioacid-mediated strategy, which can couple two peptides with the N- and C-termini of glycosyl asparagine thioacid. Previous glycoprotein synthesis methods required valuable glycosyl asparagine in the early stage and subsequent multiple glycoprotein synthesis routes, whereas the developed concept can generate glycoproteins within a few steps from peptide and glycosyl asparagine thioacid. Herein, we report the characterization of the DDC of amino thioacids and the efficient ability of glycosyl asparagine thioacid to be used for robust glycoprotein semisynthesis.

  • monitoring of glycoprotein quality control system with a series of chemically synthesized homogeneous native and misfolded glycoproteins
    Journal of the American Chemical Society, 2018
    Co-Authors: Tatsuto Kiuchi, Masayuki Izumi, Akira Seko, Masafumi Sakono, Ryo Okamoto, Yuki Mukogawa, Arisa Shimada, Yoichi Takeda, Yasuhiro Kajihara
    Abstract:

    The glycoprotein quality control (GQC) system in the endoplasmic reticulum (ER) effectively uses chaperone-type enzymes and lectins such as UDP-glucose:glycoprotein glucosyltransferase (UGGT), calnexin (CNX), calreticulin (CRT), protein disulfide bond isomerases (ERp57 or PDIs), and glucosidases to generate native-folded glycoproteins from nascent glycopolypeptides. However, the individual processes of the GQC system at the molecular level are still unclear. We chemically synthesized a series of several homogeneous glycoproteins bearing M9-high-mannose type oligosaccharides (M9-glycan), such as erythropoietin (EPO), interferon-β (IFN-β), and interleukin 8 (IL8) and their misfolded counterparts, and used these glycoprotein probes to better understand the GQC process. The analyses by high performance liquid chromatography and mass spectrometer clearly showed refolding processes from synthetic misfolded glycoproteins to native form through folding intermediates, allowing for the relationship between the amou...

  • synthesis of glc1man9 glycoprotein probes by a misfolding enzymatic glucosylation misfolding sequence
    Angewandte Chemie, 2016
    Co-Authors: Masayuki Izumi, Akira Seko, Ryo Okamoto, Yoichi Takeda, Yukiho Oka, Yukishige Ito, Yasuhiro Kajihara
    Abstract:

    Glycoproteins in non-native conformations are often toxic to cells and may cause diseases, thus the quality control (QC) system eliminates these unwanted species. Lectin chaperone calreticulin and glucosidase II, both of which recognize the Glc1 Man9 oligosaccharide on glycoproteins, are important components of the glycoprotein QC system. Reported herein is the preparation of Glc1 Man9 -glycoproteins in both native and non-native conformations by using the following sequence: misfolding of chemically synthesized Man9 -glycoprotein, enzymatic glucosylation, and another misfolding step. By using synthetic glycoprotein probes, calreticulin was found to bind preferentially to a hydrophobic non-native glycoprotein whereas glucosidase II activity was not affected by glycoprotein conformation. The results demonstrate the ability of chemical synthesis to deliver homogeneous glycoproteins in several non-native conformations for probing the glycoprotein QC system.

  • chemical synthesis of homogeneous glycoproteins for the study of glycoprotein quality control system
    Israel Journal of Chemistry, 2015
    Co-Authors: Masayuki Izumi, Simone Dedola, Yasuhiro Kajihara
    Abstract:

    The glycoprotein quality control system exists in the endoplasmic reticulum to maintain protein homeostasis and prevent accumulation of aberrant glycoproteins. Folding sensor enzyme uridine diphosphate (UDP)glucose : glycoprotein glucosyltransferase (UGGT) plays an important role in this system through its ability to discriminate immature or misfolded glycoproteins from native ones. UGGT transfers a glucose residue to a glycoprotein containing Man9GlcNAc2 (M9; Man=mannose, GlcNAc=N-acetyl-D-glucosamine) N-glycan only when the glycoprotein has not attained a native form. We chemically prepared homogeneous glycoproteins containing M9 N-glycan in the native form as well as in misfolded forms and examined them as substrates of UGGT. Glucose transfer to misfolded glycoproteins was clearly observed by LC-MS, but glycoproteins in the native form were barely glucosylated. Furthermore, we constructed an in vitro glycoprotein folding system in the presence of UGGT and found out that all folding intermediates which appeared during folding were also glucosylated. Through these experiments, we demonstrated the usefulness of chemically synthesized homogeneous glycoproteins as probes to gain insights into the molecular basis of the glycoprotein quality control system.

  • decoration of proteins with sugar chains recent advances in glycoprotein synthesis
    Current Opinion in Chemical Biology, 2014
    Co-Authors: Ryo Okamoto, Masayuki Izumi, Yasuhiro Kajihara
    Abstract:

    Chemical or chemoenzymatic synthesis is an emerging approach to produce homogeneous glycoproteins, which are hard to obtain by conventional biotechnology methods. Recent advances in the synthetic methodologies for the decoration of protein molecules with oligosaccharides provide several remarkable syntheses of homogeneous glycoproteins. This short review highlights several of the latest syntheses of glycoproteins including therapeutically important glycoproteins, a highly glycosylated protein, and unnatural glycoproteins in order to illustrate the power of the modern glycoprotein synthesis. Structurally defined glycoproteins are a novel material for understanding the molecular basis of glycoprotein functions and for the development of the next generation of biopharmaceuticals.

Richard T Wyatt - One of the best experts on this subject based on the ideXlab platform.

  • highly stable trimers formed by human immunodeficiency virus type 1 envelope glycoproteins fused with the trimeric motif of t4 bacteriophage fibritin
    Journal of Virology, 2002
    Co-Authors: Xinzhen Yang, Juliette Lee, Erin Mahony, Peter D Kwong, Richard T Wyatt, Joseph Sodroski
    Abstract:

    The envelope glycoproteins of human immunodeficiency virus type 1 (HIV-1) function as a trimer composed of three gp120 exterior glycoproteins and three gp41 transmembrane proteins. Soluble gp140 glycoproteins composed of the uncleaved ectodomains of gp120 and gp41 form unstable, heterogeneous oligomers, but soluble gp140 trimers can be stabilized by fusion with a C-terminal, trimeric GCN4 motif (X. Yang et al., J. Virol. 74:5716-5725, 2000). To understand the influence of the C-terminal trimerization domain on the properties of soluble HIV-1 envelope glycoprotein trimers, uncleaved, soluble gp140 glycoproteins were stabilized by fusion with another trimeric motif derived from T4 bacteriophage fibritin. The fibritin construct was more stable to heat and reducing conditions than the GCN4 construct. Both GCN4- and fibritin-stabilized soluble gp140 glycoproteins exhibited patterns of neutralizing and nonneutralizing antibody binding expected for the functional envelope glycoprotein spike. Of note, two potently neutralizing antibodies, immunoglobulin G1b12 and 2G12, exhibited the greatest recognition of the stabilized, soluble trimers, relative to recognition of the gp120 monomer. The observed similarities between the GCN4 and fibritin constructs indicate that the HIV-1 envelope glycoprotein ectodomains dictate many of the antigenic and structural features of these fusion proteins. The melting temperatures and ligand recognition properties of the GCN4- and fibritin-stabilized soluble gp140 glycoproteins suggest that these molecules assume conformations distinct from that of the fusion-active, six-helix bundle.

  • modifications that stabilize human immunodeficiency virus envelope glycoprotein trimers in solution
    Journal of Virology, 2000
    Co-Authors: Xinzhen Yang, Joseph Sodroski, Peter D Kwong, Lauren Florin, Michael Farzan, Peter Kolchinsky, Richard T Wyatt
    Abstract:

    The functional unit of the human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins is a trimer composed of three gp120 exterior glycoproteins and three gp41 transmembrane glycoproteins. The lability of intersubunit interactions has hindered the production and characterization of soluble, homogeneous envelope glycoprotein trimers. Here we report three modifications that stabilize soluble forms of HIV-1 envelope glycoprotein trimers: disruption of the proteolytic cleavage site between gp120 and gp41, introduction of cysteines that form intersubunit disulfide bonds, and addition of GCN4 trimeric helices. Characterization of these secreted glycoproteins by immunologic and biophysical methods indicates that these stable trimers retain structural integrity. The efficacy of the GCN4 sequences in stabilizing the trimers, the formation of intersubunit disulfide bonds between appropriately placed cysteines, and the ability of the trimers to interact with a helical, C-terminal gp41 peptide (DP178) support a model in which the N-terminal gp41 coiled coil exists in the envelope glycoprotein precursor and contributes to intersubunit interactions within the trimer. The availability of stable, soluble HIV-1 envelope glycoprotein trimers should expedite progress in understanding the structure and function of the virion envelope glycoprotein spikes.

David M. Lubman - One of the best experts on this subject based on the ideXlab platform.

  • comparative serum glycoproteomics using lectin selected sialic acid glycoproteins with mass spectrometric analysis application to pancreatic cancer serum
    Journal of Proteome Research, 2006
    Co-Authors: Jia Zhao, Diane M Simeone, David G Heidt, Michelle A Anderson, David M. Lubman
    Abstract:

    A strategy is developed in this study for identifying sialylated glycoprotein markers in human cancer serum. This method consists of three steps:  lectin affinity selection, a liquid separation and characterization of the glycoprotein markers using mass spectrometry. In this work, we use three different lectins (Wheat Germ Agglutinin, (WGA) Elderberry lectin,(SNA), Maackia amurensis lectin, (MAL)) to extract sialylated glycoproteins from normal and cancer serum. Twelve highly abundant proteins are depleted from the serum using an IgY-12 antibody column. The use of the different lectin columns allows one to monitor the distribution of α(2,3) and α(2,6) linkage type sialylation in cancer serum vs that in normal samples. Extracted glycoproteins are fractionated using NPS−RP−HPLC followed by SDS-PAGE. Target glycoproteins are characterized further using mass spectrometry to eludicate the carbohydrate structure and glycosylation site. We applied this approach to the analysis of sialylated glycoproteins in panc...

  • comparative serum glycoproteomics using lectin selected sialic acid glycoproteins with mass spectrometric analysis application to pancreatic cancer serum
    Journal of Proteome Research, 2006
    Co-Authors: Jia Zhao, Diane M Simeone, David G Heidt, Michelle A Anderson, David M. Lubman
    Abstract:

    A strategy is developed in this study for identifying sialylated glycoprotein markers in human cancer serum. This method consists of three steps: lectin affinity selection, a liquid separation and characterization of the glycoprotein markers using mass spectrometry. In this work, we use three different lectins (Wheat Germ Agglutinin, (WGA) Elderberry lectin,(SNA), Maackia amurensis lectin, (MAL)) to extract sialylated glycoproteins from normal and cancer serum. Twelve highly abundant proteins are depleted from the serum using an IgY-12 antibody column. The use of the different lectin columns allows one to monitor the distribution of alpha(2,3) and alpha(2,6) linkage type sialylation in cancer serum vs that in normal samples. Extracted glycoproteins are fractionated using NPS-RP-HPLC followed by SDS-PAGE. Target glycoproteins are characterized further using mass spectrometry to elucidate the carbohydrate structure and glycosylation site. We applied this approach to the analysis of sialylated glycoproteins in pancreatic cancer serum. Approximately 130 sialylated glycoproteins are identified using microLC-MS/MS. Sialylated plasma protease C1 inhibitor is identified to be down-regulated in cancer serum. Changes in glycosylation sites in cancer serum are also observed by glycopeptide mapping using microLC-ESI-TOF-MS where the N83 glycosylation of alpha1-antitrypsin is down regulated. In addition, the glycan structures of the altered proteins are assigned using MALDI-QIT-MS. This strategy offers the ability to quantitatively analyze changes in glycoprotein abundance and detect the extent of glycosylation alteration as well as the carbohydrate structure that correlate with cancer.