Ordovician

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 64980 Experts worldwide ranked by ideXlab platform

Jean-françois Ghienne - One of the best experts on this subject based on the ideXlab platform.

  • lower palaeozoic unconformities in an intracratonic platform setting glacial erosion versus tectonics in the eastern murzuq basin southern libya
    International Journal of Earth Sciences, 2013
    Co-Authors: Jean-françois Ghienne, Lionel Degermann, Julien Moreau, Jean-loup Rubino
    Abstract:

    The stratigraphic record of the eastern Murzuq Basin has been importantly influenced by deformation resulting in angular and/or deeply erosional unconformities, though the overall context is intracratonic. Major transgressive events and the Ordovician glaciation are nevertheless documented, allowing the delineation of tectonic-, eustasy- or climate-driven unconformities. Lower Palaeozoic key events and related unconformities that characterize the North Gondwana platform have therefore a signature in the eastern Murzuq Basin. The basement/cover unconformity, also known as the infra-Tassilian surface, truncates all the deformed and metamorphosed Lower Cambrian and older rocks. Above is a ?Middle Cambrian to Lower Ordovician megasequence (Murizidie and Hasawnah Fms.), which is in turn truncated by an intra-Ordovician, angular unconformity. This megasequence is unconformably overlain by a Middle Ordovician (Hawaz Fm.) to Silurian (Tanzzuft and Akakus Fms) megasequence, which includes the Upper Ordovician glaciogenic unit (Mamuniyat Fm.), bounded at the base by a polygenic glacial erosion surface showing corrugated glacial lineations, tillites, and glaciotectonic structures. The Middle Ordovician to Silurian megasequence is finally truncated by a base-Devonian, angular unconformity overlain by fluvial sandstones. Regarding the possibility that those fluvial deposits may be as younger as Late Devonian in the eastern Murzuq Basin based on palaeoflora, the so-called Caledonian unconformity might be here a much younger (mid-Eifelian?) surface, and the occurrence of the Lower Devonian “Tadrart Fm.” is questioned. The Upper Ordovician glacial erosion surface, which is sometimes referred to as the Taconic unconformity, usually truncates Middle Ordovician strata in the Murzuq Basin but reaches significantly deeper stratigraphic levels in places that have been previously involved in the intra-Ordovician deformation event. In the Murizidie (southeastern Murzuq Basin), the infra-Tassilian surface, the intra-Ordovician unconformity, and the Upper Ordovician glacial erosion surface amalgamate together. Here, an estimate of the glacial erosion depth cannot be derived from the stratigraphic hiatus beneath the glacial incision, the main part of which relate to the intra-Ordovician tectonic event. The Upper Ordovician climate-related glacial erosion surface is not a valid unconformity for a sequence hierarchy framework of the Lower Palaeozoic, although it presents most of the physical attributes of tectonic-driven unconformities.

  • Lower Palaeozoic unconformities in an intracratonic platform setting: glacial erosion versus tectonics in the eastern Murzuq Basin (southern Libya)
    International Journal of Earth Sciences, 2013
    Co-Authors: Jean-françois Ghienne, Lionel Degermann, Julien Moreau, Jean-loup Rubino
    Abstract:

    The stratigraphic record of the eastern Murzuq Basin has been importantly influenced by deformation resulting in angular and/or deeply erosional unconformities, though the overall context is intracratonic. Major transgressive events and the Ordovician glaciation are nevertheless documented, allowing the delineation of tectonic-, eustasy- or climate-driven unconformities. Lower Palaeozoic key events and related unconformities that characterize the North Gondwana platform have therefore a signature in the eastern Murzuq Basin. The basement/cover unconformity, also known as the infra-Tassilian surface, truncates all the deformed and metamorphosed Lower Cambrian and older rocks. Above is a ?Middle Cambrian to Lower Ordovician megasequence (Murizidié and Hasawnah Fms.), which is in turn truncated by an intra-Ordovician, angular unconformity. This megasequence is unconformably overlain by a Middle Ordovician (Hawaz Fm.) to Silurian (Tanzzuft and Akakus Fms) megasequence, which includes the Upper Ordovician glaciogenic unit (Mamuniyat Fm.), bounded at the base by a polygenic glacial erosion surface showing corrugated glacial lineations, tillites, and glaciotectonic structures. The Middle Ordovician to Silurian megasequence is finally truncated by a base-Devonian, angular unconformity overlain by fluvial sandstones. Regarding the possibility that those fluvial deposits may be as younger as Late Devonian in the eastern Murzuq Basin based on palaeoflora, the so-called Caledonian unconformity might be here a much younger (mid-Eifelian?) surface, and the occurrence of the Lower Devonian “Tadrart Fm.” is questioned. The Upper Ordovician glacial erosion surface, which is sometimes referred to as the Taconic unconformity, usually truncates Middle Ordovician strata in the Murzuq Basin but reaches significantly deeper stratigraphic levels in places that have been previously involved in the intra-Ordovician deformation event. In the Murizidié (southeastern Murzuq Basin), the infra-Tassilian surface, the intra-Ordovician unconformity, and the Upper Ordovician glacial erosion surface amalgamate together. Here, an estimate of the glacial erosion depth cannot be derived from the stratigraphic hiatus beneath the glacial incision, the main part of which relate to the intra-Ordovician tectonic event. The Upper Ordovician climate-related glacial erosion surface is not a valid unconformity for a sequence hierarchy framework of the Lower Palaeozoic, although it presents most of the physical attributes of tectonic-driven unconformities.

  • Lower Palaeozoic unconformities in an intracratonic platform setting: glacial erosion versus tectonics in the eastern Murzuq Basin (southern Libya)
    International Journal of Earth Sciences, 2013
    Co-Authors: Jean-françois Ghienne, Lionel Degermann, Julien Moreau, Jean-loup Rubino
    Abstract:

    The stratigraphic record of the eastern Murzuq Basin has been importantly influenced by deformation resulting in angular and/or deeply erosional unconformities, though the overall context is intracratonic. Major transgressive events and the Ordovician glaciation are nevertheless documented, allowing the delineation of tectonic-, eustasy- or climate-driven unconformities. Lower Palaeozoic key events and related unconformities that characterize the North Gondwana platform have therefore a signature in the eastern Murzuq Basin. The basement/cover unconformity, also known as the infra-Tassilian surface, truncates all the deformed and metamorphosed Lower Cambrian and older rocks. Above is a ?Middle Cambrian to Lower Ordovician megasequence (Murizidié and Hasawnah Fms.), which is in turn truncated by an intra-Ordovician, angular unconformity. This megasequence is unconformably overlain by a Middle Ordovician (Hawaz Fm.) to Silurian (Tanzzuft and Akakus Fms) megasequence, which includes the Upper Ordovician glaciogenic unit (Mamuniyat Fm.), bounded at the base by a polygenic glacial erosion surface showing corrugated glacial lineations, tillites, and glaciotectonic structures. The Middle Ordovician to Silurian megasequence is finally truncated by a base-Devonian, angular unconformity overlain by fluvial sandstones. Regarding the possibility that those fluvial deposits may be as younger as Late Devonian in the eastern Murzuq Basin based on palaeoflora, the so-called Caledonian unconformity might be here a much younger (mid-Eifelian?) surface, and the occurrence of the Lower Devonian “Tadrart Fm.” is questioned. The Upper Ordovician glacial erosion surface, which is sometimes referred to as the Taconic unconformity, usually truncates Middle Ordovician strata in the Murzuq Basin but reaches significantly deeper stratigraphic levels in places that have been previously involved in the intra-Ordovician deformation event. In the Murizidié (southeastern Murzuq Basin), the infra-Tassilian surface, the intra-Ordovician unconformity, and the Upper Ordovician glacial erosion surface amalgamate together. Here, an estimate of the glacial erosion depth cannot be derived from the stratigraphic hiatus beneath the glacial incision, the main part of which relate to the intra-Ordovician tectonic event. The Upper Ordovician climate-related glacial erosion surface is not a valid unconformity for a sequence hierarchy framework of the Lower Palaeozoic, although it presents most of the physical attributes of tectonic-driven unconformities.

  • Ordovician chitinozoans and acritarchs from southern and southeastern Turkey
    Revue de Micropaléontologie, 2007
    Co-Authors: Florentin Paris, Jean-françois Ghienne, Marco Vecoli, Alain Le Hérissé, Olivier Monod, Huseyin Kozlu, W. T. Dean, Y. Günay
    Abstract:

    Revision of the lithostratigraphy of Ordovician deposits in southern and southeastern Turkey led to a re-evaluation of the age assignments of formations identified in the subsurface and at outcrop. Previous datings were based on macrofauna (mainly trilobites and graptolites). The present paper focuses exclusively on organic-walled microfossils (chitinozoans and acritarchs), which provide numerous chronostratigraphical improvements, especially in successions barren or poor in macrofossils. Close to 200 samples were collected in the Taurus chain (i.e. from Kemer, Seydisehir, Ovacik, Kozan, to Sariz regions in southern Turkey) and in the Border Folds (Mardin and Hakkari regions), usually regarded as part of the Arabian Plate in palaeogeographical reconstructions. Many samples are productive and yield chitinozoans and/or acritarchs of extremely variable preservation, depending on their geographical and geological location. In the Taurus chain, the material is “coalified” and frequently fragmented whereas, in the Border Folds, maturation of the organic matter is much lower and preservation of the microfossils is good to excellent. Several Ordovician chitinozoan biozones (northern Gondwana zonation) as well as diagnostic acritarch assemblages are identified in southern and southeastern Turkey. These Ordovician formations are assigned here to the new global stages of the Ordovician chronostratigraphical scale. The Seydisehir (upper part), Sobova, and Kilgen Lake (lower part) formations are referred to the Darriwilian. The Kilgen Lake (upper part), Sort Tepe, and Bedinan formations are attributed to the Sandbian and to the Katian, and the Halevikdere Formation (glacio-marine part) is assigned to the Hirnantian. Reworking of Early Ordovician acritarchs is documented in pre-glacial and in glacial Late Ordovician deposits. They indicate that active erosive processes occurred during the Middle and Late Ordovician sedimentation. The organic-walled microfossils recorded in the Ordovician of south and southeastern Turkey belong to the northern Gondwana realm. Interestingly however, some Baltoscandian influences are noted in the Border Folds during Early Late Ordovician.

Jean-loup Rubino - One of the best experts on this subject based on the ideXlab platform.

  • lower palaeozoic unconformities in an intracratonic platform setting glacial erosion versus tectonics in the eastern murzuq basin southern libya
    International Journal of Earth Sciences, 2013
    Co-Authors: Jean-françois Ghienne, Lionel Degermann, Julien Moreau, Jean-loup Rubino
    Abstract:

    The stratigraphic record of the eastern Murzuq Basin has been importantly influenced by deformation resulting in angular and/or deeply erosional unconformities, though the overall context is intracratonic. Major transgressive events and the Ordovician glaciation are nevertheless documented, allowing the delineation of tectonic-, eustasy- or climate-driven unconformities. Lower Palaeozoic key events and related unconformities that characterize the North Gondwana platform have therefore a signature in the eastern Murzuq Basin. The basement/cover unconformity, also known as the infra-Tassilian surface, truncates all the deformed and metamorphosed Lower Cambrian and older rocks. Above is a ?Middle Cambrian to Lower Ordovician megasequence (Murizidie and Hasawnah Fms.), which is in turn truncated by an intra-Ordovician, angular unconformity. This megasequence is unconformably overlain by a Middle Ordovician (Hawaz Fm.) to Silurian (Tanzzuft and Akakus Fms) megasequence, which includes the Upper Ordovician glaciogenic unit (Mamuniyat Fm.), bounded at the base by a polygenic glacial erosion surface showing corrugated glacial lineations, tillites, and glaciotectonic structures. The Middle Ordovician to Silurian megasequence is finally truncated by a base-Devonian, angular unconformity overlain by fluvial sandstones. Regarding the possibility that those fluvial deposits may be as younger as Late Devonian in the eastern Murzuq Basin based on palaeoflora, the so-called Caledonian unconformity might be here a much younger (mid-Eifelian?) surface, and the occurrence of the Lower Devonian “Tadrart Fm.” is questioned. The Upper Ordovician glacial erosion surface, which is sometimes referred to as the Taconic unconformity, usually truncates Middle Ordovician strata in the Murzuq Basin but reaches significantly deeper stratigraphic levels in places that have been previously involved in the intra-Ordovician deformation event. In the Murizidie (southeastern Murzuq Basin), the infra-Tassilian surface, the intra-Ordovician unconformity, and the Upper Ordovician glacial erosion surface amalgamate together. Here, an estimate of the glacial erosion depth cannot be derived from the stratigraphic hiatus beneath the glacial incision, the main part of which relate to the intra-Ordovician tectonic event. The Upper Ordovician climate-related glacial erosion surface is not a valid unconformity for a sequence hierarchy framework of the Lower Palaeozoic, although it presents most of the physical attributes of tectonic-driven unconformities.

  • Lower Palaeozoic unconformities in an intracratonic platform setting: glacial erosion versus tectonics in the eastern Murzuq Basin (southern Libya)
    International Journal of Earth Sciences, 2013
    Co-Authors: Jean-françois Ghienne, Lionel Degermann, Julien Moreau, Jean-loup Rubino
    Abstract:

    The stratigraphic record of the eastern Murzuq Basin has been importantly influenced by deformation resulting in angular and/or deeply erosional unconformities, though the overall context is intracratonic. Major transgressive events and the Ordovician glaciation are nevertheless documented, allowing the delineation of tectonic-, eustasy- or climate-driven unconformities. Lower Palaeozoic key events and related unconformities that characterize the North Gondwana platform have therefore a signature in the eastern Murzuq Basin. The basement/cover unconformity, also known as the infra-Tassilian surface, truncates all the deformed and metamorphosed Lower Cambrian and older rocks. Above is a ?Middle Cambrian to Lower Ordovician megasequence (Murizidié and Hasawnah Fms.), which is in turn truncated by an intra-Ordovician, angular unconformity. This megasequence is unconformably overlain by a Middle Ordovician (Hawaz Fm.) to Silurian (Tanzzuft and Akakus Fms) megasequence, which includes the Upper Ordovician glaciogenic unit (Mamuniyat Fm.), bounded at the base by a polygenic glacial erosion surface showing corrugated glacial lineations, tillites, and glaciotectonic structures. The Middle Ordovician to Silurian megasequence is finally truncated by a base-Devonian, angular unconformity overlain by fluvial sandstones. Regarding the possibility that those fluvial deposits may be as younger as Late Devonian in the eastern Murzuq Basin based on palaeoflora, the so-called Caledonian unconformity might be here a much younger (mid-Eifelian?) surface, and the occurrence of the Lower Devonian “Tadrart Fm.” is questioned. The Upper Ordovician glacial erosion surface, which is sometimes referred to as the Taconic unconformity, usually truncates Middle Ordovician strata in the Murzuq Basin but reaches significantly deeper stratigraphic levels in places that have been previously involved in the intra-Ordovician deformation event. In the Murizidié (southeastern Murzuq Basin), the infra-Tassilian surface, the intra-Ordovician unconformity, and the Upper Ordovician glacial erosion surface amalgamate together. Here, an estimate of the glacial erosion depth cannot be derived from the stratigraphic hiatus beneath the glacial incision, the main part of which relate to the intra-Ordovician tectonic event. The Upper Ordovician climate-related glacial erosion surface is not a valid unconformity for a sequence hierarchy framework of the Lower Palaeozoic, although it presents most of the physical attributes of tectonic-driven unconformities.

  • Lower Palaeozoic unconformities in an intracratonic platform setting: glacial erosion versus tectonics in the eastern Murzuq Basin (southern Libya)
    International Journal of Earth Sciences, 2013
    Co-Authors: Jean-françois Ghienne, Lionel Degermann, Julien Moreau, Jean-loup Rubino
    Abstract:

    The stratigraphic record of the eastern Murzuq Basin has been importantly influenced by deformation resulting in angular and/or deeply erosional unconformities, though the overall context is intracratonic. Major transgressive events and the Ordovician glaciation are nevertheless documented, allowing the delineation of tectonic-, eustasy- or climate-driven unconformities. Lower Palaeozoic key events and related unconformities that characterize the North Gondwana platform have therefore a signature in the eastern Murzuq Basin. The basement/cover unconformity, also known as the infra-Tassilian surface, truncates all the deformed and metamorphosed Lower Cambrian and older rocks. Above is a ?Middle Cambrian to Lower Ordovician megasequence (Murizidié and Hasawnah Fms.), which is in turn truncated by an intra-Ordovician, angular unconformity. This megasequence is unconformably overlain by a Middle Ordovician (Hawaz Fm.) to Silurian (Tanzzuft and Akakus Fms) megasequence, which includes the Upper Ordovician glaciogenic unit (Mamuniyat Fm.), bounded at the base by a polygenic glacial erosion surface showing corrugated glacial lineations, tillites, and glaciotectonic structures. The Middle Ordovician to Silurian megasequence is finally truncated by a base-Devonian, angular unconformity overlain by fluvial sandstones. Regarding the possibility that those fluvial deposits may be as younger as Late Devonian in the eastern Murzuq Basin based on palaeoflora, the so-called Caledonian unconformity might be here a much younger (mid-Eifelian?) surface, and the occurrence of the Lower Devonian “Tadrart Fm.” is questioned. The Upper Ordovician glacial erosion surface, which is sometimes referred to as the Taconic unconformity, usually truncates Middle Ordovician strata in the Murzuq Basin but reaches significantly deeper stratigraphic levels in places that have been previously involved in the intra-Ordovician deformation event. In the Murizidié (southeastern Murzuq Basin), the infra-Tassilian surface, the intra-Ordovician unconformity, and the Upper Ordovician glacial erosion surface amalgamate together. Here, an estimate of the glacial erosion depth cannot be derived from the stratigraphic hiatus beneath the glacial incision, the main part of which relate to the intra-Ordovician tectonic event. The Upper Ordovician climate-related glacial erosion surface is not a valid unconformity for a sequence hierarchy framework of the Lower Palaeozoic, although it presents most of the physical attributes of tectonic-driven unconformities.

Florentin Paris - One of the best experts on this subject based on the ideXlab platform.

  • Ordovician chitinozoans and acritarchs from southern and southeastern Turkey Chitinozoaires et acritarches ordoviciens du sud et du sud-est de la Turquie
    Revue de Micropaléontologie, 2007
    Co-Authors: Florentin Paris, Marco Vecoli, Alain Le Hérissé, Olivier Monod, Huseyin Kozlu, J.-f. Ghienne, W. T. Dean, Y. Günay
    Abstract:

    Revision of the lithostratigraphy of Ordovician deposits in southern and southeastern Turkey led to a re-evaluation of the age assignments of formations identified in the subsurface and at outcrop. Previous datings were based on macrofauna (mainly trilobites and graptolites). The present paper focuses exclusively on organic-walled microfossils (chitinozoans and acritarchs), which provide numerous chronostratigraphical improvements, especially in successions barren or poor in macrofossils. Close to 200 samples were collected in the Taurus chain (i.e. from Kemer, Seydisehir, Ovacik, Kozan, to Sariz regions in southern Turkey) and in the Border Folds (Mardin and Hakkari regions), usually regarded as part of the Arabian Plate in palaeogeographical reconstructions. Many samples are productive and yield chitinozoans and/or acritarchs of extremely variable preservation, depending on their geographical and geological location. In the Taurus chain, the material is “coalified” and frequently fragmented whereas, in the Border Folds, maturation of the organic matter is much lower and preservation of the microfossils is good to excellent. Several Ordovician chitinozoan biozones (northern Gondwana zonation) as well as diagnostic acritarch assemblages are identified in southern and southeastern Turkey. These Ordovician formations are assigned here to the new global stages of the Ordovician chronostratigraphical scale. The Seydisehir (upper part), Sobova, and Kilgen Lake (lower part) formations are referred to the Darriwilian. The Kilgen Lake (upper part), Sort Tepe, and Bedinan formations are attributed to the Sandbian and to the Katian, and the Halevikdere Formation (glacio-marine part) is assigned to the Hirnantian. Reworking of Early Ordovician acritarchs is documented in pre-glacial and in glacial Late Ordovician deposits. They indicate that active erosive processes occurred during the Middle and Late Ordovician sedimentation. The organic-walled microfossils recorded in the Ordovician of south and southeastern Turkey belong to the northern Gondwana realm. Interestingly however, some Baltoscandian influences are noted in the Border Folds during Early Late Ordovician.

  • Ordovician chitinozoans and acritarchs from southern and southeastern Turkey
    Revue de Micropaléontologie, 2007
    Co-Authors: Florentin Paris, Jean-françois Ghienne, Marco Vecoli, Alain Le Hérissé, Olivier Monod, Huseyin Kozlu, W. T. Dean, Y. Günay
    Abstract:

    Revision of the lithostratigraphy of Ordovician deposits in southern and southeastern Turkey led to a re-evaluation of the age assignments of formations identified in the subsurface and at outcrop. Previous datings were based on macrofauna (mainly trilobites and graptolites). The present paper focuses exclusively on organic-walled microfossils (chitinozoans and acritarchs), which provide numerous chronostratigraphical improvements, especially in successions barren or poor in macrofossils. Close to 200 samples were collected in the Taurus chain (i.e. from Kemer, Seydisehir, Ovacik, Kozan, to Sariz regions in southern Turkey) and in the Border Folds (Mardin and Hakkari regions), usually regarded as part of the Arabian Plate in palaeogeographical reconstructions. Many samples are productive and yield chitinozoans and/or acritarchs of extremely variable preservation, depending on their geographical and geological location. In the Taurus chain, the material is “coalified” and frequently fragmented whereas, in the Border Folds, maturation of the organic matter is much lower and preservation of the microfossils is good to excellent. Several Ordovician chitinozoan biozones (northern Gondwana zonation) as well as diagnostic acritarch assemblages are identified in southern and southeastern Turkey. These Ordovician formations are assigned here to the new global stages of the Ordovician chronostratigraphical scale. The Seydisehir (upper part), Sobova, and Kilgen Lake (lower part) formations are referred to the Darriwilian. The Kilgen Lake (upper part), Sort Tepe, and Bedinan formations are attributed to the Sandbian and to the Katian, and the Halevikdere Formation (glacio-marine part) is assigned to the Hirnantian. Reworking of Early Ordovician acritarchs is documented in pre-glacial and in glacial Late Ordovician deposits. They indicate that active erosive processes occurred during the Middle and Late Ordovician sedimentation. The organic-walled microfossils recorded in the Ordovician of south and southeastern Turkey belong to the northern Gondwana realm. Interestingly however, some Baltoscandian influences are noted in the Border Folds during Early Late Ordovician.

  • The Ordovician chitinozoan biodiversification and its leading factors
    Palaeogeography Palaeoclimatology Palaeoecology, 2007
    Co-Authors: Aïcha Achab, Florentin Paris
    Abstract:

    International audienceRegional and global dataset now available for almost all of the Ordovician fossil groups have led to a search for the causes controlling the major biodiversification events that occurred during the Ordovician period. A review of the physico-chemical state of the Ordovician world is presented, with an emphasis on the regional or global changes contemporaneous with the origination and extinction events that could have influenced the chitinozoan diversity. This study focuses on the chitinozoans because these enigmatic organic-walled microfossils are an important component of the Ordovician palaeoplankton and provide one of the best documented dataset. The intrinsic factors that initiated the Ordovician biodiversification of this group are not discussed because the chitinozoans are regarded as reproduction stages of cryptic "chitinozoan animals", whose biological characteristics are speculative, at best. This study has two main goals: i) the evaluation of the impact of regional and global physico-chemical events on chitinozoan diversity, ii) the comparison of the biodiversification patterns of the chitinozoans with other selected benthic and pelagic Ordovician fossil groups. The chitinozoan diversification was progressive and showed similar patterns in Laurentia, Baltica and northern Gondwana from the Tremadocian to the late Darriwilian, when the group reached its acme in Baltica and northern Gondwana. From the Middle­Upper Ordovician boundary onward, the biodiversification pattern documented in Laurentia diverged drastically from the two other regions. In the Late Ordovician, the contribution of the Laurentian chitinozoans to the global curve was high, suggesting major faunal inputs from the two other regions, which significantly lowered the endemic character prevalent in the Early­Middle Ordovician. In the Late Ordovician, large anti-clockwise oceanic currents developed as the result of a thermohaline circulation. This marine circulation was likely to have been driven by a global cooling concomitant with a major palaeogeographic reorganisation of the southern hemisphere. These oceanic/climatic changes intervened in the breakdown of the existing chitinozoan endemism. Globally, the chitinozoan biodiversity was not much higher in the mid Late Ordovician than in the late Darriwilian diversity peak. The most obvious feature is the progressive decrease in diversity during the Late Ordovician, long before the Hirnantian glaciation. The influences of cosmic and volcanic parameters are excluded as they appear to have had too low impact on the Late Ordovician decrease of chitinozoan diversity. Correlation is noticed between some diversification events and sea-level changes, at least on a regional scale. More globally, however, a climatic control is favoured. A durable greenhouse environment gave an efficient support to the diversification. Conversely, the onset of an icehouse environment in the early Late Ordovician onward, culminating with the Hirnantian glaciation, is interpreted as a limiting factor for the chitinozoan diversification. The reasons behind the onset of this icehouse episode are not fully understood, but they appear to be linked to changes in the palaeogeography (e.g., progressive closure of the Iapetus, northward drift of Avalonia and its docking with Baltica) and in the carbon cycle (e.g., high organic carbon burial with a lowering of the pCO2)

  • The Ordovician chitinozoan biodiversification and its leading factors
    Palaeogeography Palaeoclimatology Palaeoecology, 2006
    Co-Authors: Aïcha Achab, Florentin Paris
    Abstract:

    Abstract Regional and global dataset now available for almost all of the Ordovician fossil groups have led to a search for the causes controlling the major biodiversification events that occurred during the Ordovician period. A review of the physico-chemical state of the Ordovician world is presented, with an emphasis on the regional or global changes contemporaneous with the origination and extinction events that could have influenced the chitinozoan diversity. This study focuses on the chitinozoans because these enigmatic organic-walled microfossils are an important component of the Ordovician palaeoplankton and provide one of the best documented dataset. The intrinsic factors that initiated the Ordovician biodiversification of this group are not discussed because the chitinozoans are regarded as reproduction stages of cryptic “chitinozoan animals”, whose biological characteristics are speculative, at best. This study has two main goals: i) the evaluation of the impact of regional and global physico-chemical events on chitinozoan diversity, ii) the comparison of the biodiversification patterns of the chitinozoans with other selected benthic and pelagic Ordovician fossil groups. The chitinozoan diversification was progressive and showed similar patterns in Laurentia, Baltica and northern Gondwana from the Tremadocian to the late Darriwilian, when the group reached its acme in Baltica and northern Gondwana. From the Middle–Upper Ordovician boundary onward, the biodiversification pattern documented in Laurentia diverged drastically from the two other regions. In the Late Ordovician, the contribution of the Laurentian chitinozoans to the global curve was high, suggesting major faunal inputs from the two other regions, which significantly lowered the endemic character prevalent in the Early–Middle Ordovician. In the Late Ordovician, large anti-clockwise oceanic currents developed as the result of a thermohaline circulation. This marine circulation was likely to have been driven by a global cooling concomitant with a major palaeogeographic reorganisation of the southern hemisphere. These oceanic/climatic changes intervened in the breakdown of the existing chitinozoan endemism. Globally, the chitinozoan biodiversity was not much higher in the mid Late Ordovician than in the late Darriwilian diversity peak. The most obvious feature is the progressive decrease in diversity during the Late Ordovician, long before the Hirnantian glaciation. The influences of cosmic and volcanic parameters are excluded as they appear to have had too low impact on the Late Ordovician decrease of chitinozoan diversity. Correlation is noticed between some diversification events and sea-level changes, at least on a regional scale. More globally, however, a climatic control is favoured. A durable greenhouse environment gave an efficient support to the diversification. Conversely, the onset of an icehouse environment in the early Late Ordovician onward, culminating with the Hirnantian glaciation, is interpreted as a limiting factor for the chitinozoan diversification. The reasons behind the onset of this icehouse episode are not fully understood, but they appear to be linked to changes in the palaeogeography (e.g., progressive closure of the Iapetus, northward drift of Avalonia and its docking with Baltica) and in the carbon cycle (e.g., high organic carbon burial with a lowering of the p CO 2 ).

Julien Moreau - One of the best experts on this subject based on the ideXlab platform.

  • lower palaeozoic unconformities in an intracratonic platform setting glacial erosion versus tectonics in the eastern murzuq basin southern libya
    International Journal of Earth Sciences, 2013
    Co-Authors: Jean-françois Ghienne, Lionel Degermann, Julien Moreau, Jean-loup Rubino
    Abstract:

    The stratigraphic record of the eastern Murzuq Basin has been importantly influenced by deformation resulting in angular and/or deeply erosional unconformities, though the overall context is intracratonic. Major transgressive events and the Ordovician glaciation are nevertheless documented, allowing the delineation of tectonic-, eustasy- or climate-driven unconformities. Lower Palaeozoic key events and related unconformities that characterize the North Gondwana platform have therefore a signature in the eastern Murzuq Basin. The basement/cover unconformity, also known as the infra-Tassilian surface, truncates all the deformed and metamorphosed Lower Cambrian and older rocks. Above is a ?Middle Cambrian to Lower Ordovician megasequence (Murizidie and Hasawnah Fms.), which is in turn truncated by an intra-Ordovician, angular unconformity. This megasequence is unconformably overlain by a Middle Ordovician (Hawaz Fm.) to Silurian (Tanzzuft and Akakus Fms) megasequence, which includes the Upper Ordovician glaciogenic unit (Mamuniyat Fm.), bounded at the base by a polygenic glacial erosion surface showing corrugated glacial lineations, tillites, and glaciotectonic structures. The Middle Ordovician to Silurian megasequence is finally truncated by a base-Devonian, angular unconformity overlain by fluvial sandstones. Regarding the possibility that those fluvial deposits may be as younger as Late Devonian in the eastern Murzuq Basin based on palaeoflora, the so-called Caledonian unconformity might be here a much younger (mid-Eifelian?) surface, and the occurrence of the Lower Devonian “Tadrart Fm.” is questioned. The Upper Ordovician glacial erosion surface, which is sometimes referred to as the Taconic unconformity, usually truncates Middle Ordovician strata in the Murzuq Basin but reaches significantly deeper stratigraphic levels in places that have been previously involved in the intra-Ordovician deformation event. In the Murizidie (southeastern Murzuq Basin), the infra-Tassilian surface, the intra-Ordovician unconformity, and the Upper Ordovician glacial erosion surface amalgamate together. Here, an estimate of the glacial erosion depth cannot be derived from the stratigraphic hiatus beneath the glacial incision, the main part of which relate to the intra-Ordovician tectonic event. The Upper Ordovician climate-related glacial erosion surface is not a valid unconformity for a sequence hierarchy framework of the Lower Palaeozoic, although it presents most of the physical attributes of tectonic-driven unconformities.

  • Lower Palaeozoic unconformities in an intracratonic platform setting: glacial erosion versus tectonics in the eastern Murzuq Basin (southern Libya)
    International Journal of Earth Sciences, 2013
    Co-Authors: Jean-françois Ghienne, Lionel Degermann, Julien Moreau, Jean-loup Rubino
    Abstract:

    The stratigraphic record of the eastern Murzuq Basin has been importantly influenced by deformation resulting in angular and/or deeply erosional unconformities, though the overall context is intracratonic. Major transgressive events and the Ordovician glaciation are nevertheless documented, allowing the delineation of tectonic-, eustasy- or climate-driven unconformities. Lower Palaeozoic key events and related unconformities that characterize the North Gondwana platform have therefore a signature in the eastern Murzuq Basin. The basement/cover unconformity, also known as the infra-Tassilian surface, truncates all the deformed and metamorphosed Lower Cambrian and older rocks. Above is a ?Middle Cambrian to Lower Ordovician megasequence (Murizidié and Hasawnah Fms.), which is in turn truncated by an intra-Ordovician, angular unconformity. This megasequence is unconformably overlain by a Middle Ordovician (Hawaz Fm.) to Silurian (Tanzzuft and Akakus Fms) megasequence, which includes the Upper Ordovician glaciogenic unit (Mamuniyat Fm.), bounded at the base by a polygenic glacial erosion surface showing corrugated glacial lineations, tillites, and glaciotectonic structures. The Middle Ordovician to Silurian megasequence is finally truncated by a base-Devonian, angular unconformity overlain by fluvial sandstones. Regarding the possibility that those fluvial deposits may be as younger as Late Devonian in the eastern Murzuq Basin based on palaeoflora, the so-called Caledonian unconformity might be here a much younger (mid-Eifelian?) surface, and the occurrence of the Lower Devonian “Tadrart Fm.” is questioned. The Upper Ordovician glacial erosion surface, which is sometimes referred to as the Taconic unconformity, usually truncates Middle Ordovician strata in the Murzuq Basin but reaches significantly deeper stratigraphic levels in places that have been previously involved in the intra-Ordovician deformation event. In the Murizidié (southeastern Murzuq Basin), the infra-Tassilian surface, the intra-Ordovician unconformity, and the Upper Ordovician glacial erosion surface amalgamate together. Here, an estimate of the glacial erosion depth cannot be derived from the stratigraphic hiatus beneath the glacial incision, the main part of which relate to the intra-Ordovician tectonic event. The Upper Ordovician climate-related glacial erosion surface is not a valid unconformity for a sequence hierarchy framework of the Lower Palaeozoic, although it presents most of the physical attributes of tectonic-driven unconformities.

  • Lower Palaeozoic unconformities in an intracratonic platform setting: glacial erosion versus tectonics in the eastern Murzuq Basin (southern Libya)
    International Journal of Earth Sciences, 2013
    Co-Authors: Jean-françois Ghienne, Lionel Degermann, Julien Moreau, Jean-loup Rubino
    Abstract:

    The stratigraphic record of the eastern Murzuq Basin has been importantly influenced by deformation resulting in angular and/or deeply erosional unconformities, though the overall context is intracratonic. Major transgressive events and the Ordovician glaciation are nevertheless documented, allowing the delineation of tectonic-, eustasy- or climate-driven unconformities. Lower Palaeozoic key events and related unconformities that characterize the North Gondwana platform have therefore a signature in the eastern Murzuq Basin. The basement/cover unconformity, also known as the infra-Tassilian surface, truncates all the deformed and metamorphosed Lower Cambrian and older rocks. Above is a ?Middle Cambrian to Lower Ordovician megasequence (Murizidié and Hasawnah Fms.), which is in turn truncated by an intra-Ordovician, angular unconformity. This megasequence is unconformably overlain by a Middle Ordovician (Hawaz Fm.) to Silurian (Tanzzuft and Akakus Fms) megasequence, which includes the Upper Ordovician glaciogenic unit (Mamuniyat Fm.), bounded at the base by a polygenic glacial erosion surface showing corrugated glacial lineations, tillites, and glaciotectonic structures. The Middle Ordovician to Silurian megasequence is finally truncated by a base-Devonian, angular unconformity overlain by fluvial sandstones. Regarding the possibility that those fluvial deposits may be as younger as Late Devonian in the eastern Murzuq Basin based on palaeoflora, the so-called Caledonian unconformity might be here a much younger (mid-Eifelian?) surface, and the occurrence of the Lower Devonian “Tadrart Fm.” is questioned. The Upper Ordovician glacial erosion surface, which is sometimes referred to as the Taconic unconformity, usually truncates Middle Ordovician strata in the Murzuq Basin but reaches significantly deeper stratigraphic levels in places that have been previously involved in the intra-Ordovician deformation event. In the Murizidié (southeastern Murzuq Basin), the infra-Tassilian surface, the intra-Ordovician unconformity, and the Upper Ordovician glacial erosion surface amalgamate together. Here, an estimate of the glacial erosion depth cannot be derived from the stratigraphic hiatus beneath the glacial incision, the main part of which relate to the intra-Ordovician tectonic event. The Upper Ordovician climate-related glacial erosion surface is not a valid unconformity for a sequence hierarchy framework of the Lower Palaeozoic, although it presents most of the physical attributes of tectonic-driven unconformities.

Ian S Williams - One of the best experts on this subject based on the ideXlab platform.

  • comparative lower middle Ordovician conodont oxygen isotope palaeothermometry of the argentine precordillera and laurentian margins
    Palaeogeography Palaeoclimatology Palaeoecology, 2020
    Co-Authors: Guillermo L Albanesi, Ian S Williams, Christopher R. Barnes, Julie Trotter, Stig M Bergstrom
    Abstract:

    Abstract Stratigraphic, palaeontologic, and palaeomagnetic data support a hypothesis that argues for the Argentine Precordillera rifting from the southwestern margin of Laurentia in low latitudes during the Cambrian, migrating across the Iapetus Ocean, colliding with the Gondwanan margin in the late Middle Ordovician, and receiving glaciogenic sediments in the Late Ordovician. An alternative model proposes that the Precordillera originated as a low-latitude segment of Gondwana, migrated southward through major transform faulting toward high latitudes in the late Middle Ordovician, to reach its present position in the Devonian. New conodont oxygen isotope compositions (δ18Ophos) have been determined by ion microprobe SHRIMP II using samples from both the Precordillera and Laurentia (Marathon area of Texas, Wilcox Pass in Alberta, and western Newfoundland). Significantly, the δ18O values of conodonts from all four widely separated areas show a consistent pattern of a cyclic but overall increasing trend in δ18O (ca. 16 to 18‰) hence ocean cooling through the Early and Middle Ordovician. An apparent change occurs at the basal Late Ordovician, where δ18O values obtained from conodonts in the uppermost sample from the Precordillera are significantly higher (+1.5‰) than those from Laurentia. Albeit from a single sample, this higher value implies significantly cooler conditions, as would be anticipated with a southerly (poleward) migration of the Precordillera (irrespective of either hypothesis). The virtual absence of conodont-bearing carbonates in most of the Precordilleran Upper Ordovician precluded analysis of younger samples. When combined with existing macrofaunal and palaeomagnetic data, the oxygen isotope data would tend to favour the model of a drift of the Precordillera from tropical to higher latitudes during the Ordovician; however, further studies are needed to determine unequivocally whether the Precordillera originated from southern Laurentia (Ouachita embayment). These new oxygen isotope values provide the best and regionally most consistent data through the Early-Middle Ordovician.

  • ediacaran to lower Ordovician age for rocks ascribed to the schist graywacke complex iberian massif spain evidence from detrital zircon shrimp u pb geochronology
    Gondwana Research, 2012
    Co-Authors: Cristina Talavera, Martinez D Poyatos, P Montero, Ian S Williams
    Abstract:

    Abstract New SHRIMP U–Pb ages of detrital zircon obtained from eight samples of Neoproterozoic to Lower Paleozoic graywackes, schists, microconglomerates and shales provide the maximum depositional age and a new zircon age pattern for the Schist–Graywacke Complex (SGC) from the Iberian Massif (SW Europe). The ages of the youngest zircon grains found in four samples provide a maximum depositional age of latest Ediacaran–Lower Cambrian for the complex. Lower-Middle Cambrian fossiliferous formations on top of the lithologies correctly attributed to the SGC constrain its minimum depositional age. Unexpectedly, two samples attributed to the SGC yielded Cambro-Ordovician zircon populations. These must belong to younger Lower Ordovician sedimentary successions that, up to now, have not been differentiated from those of the SGC. The new age patterns are mainly composed of Neoproterozoic (73%) and Paleoproterozoic (15%) ages, with minor Neoarchean (7%), Mesoarchean (2%), Mesoproterozoic (3%) and Cambrian (1%) ages for the latest Ediacaran–Lower Cambrian successions, and Neoproterozoic (46%) and Cambro-Ordovician (46%) ages, with minor Neoarchean (1%), Mesoarchean (0.5%), Paleoproterozoic (6%), Mesoproterozoic (0.5%) and Carboniferous (1%) ages for the Lower Ordovician successions. The presence of Mesoproterozoic zircon points to the Saharan Metacraton as a contributing source for these sediments. Cadomian granitoids could have been a local Neoproterozoic source. The Cambro-Ordovician zircons may also indicate that Cambro-Ordovician magmatism contributed as a source. Cambro-Ordovician volcanism, the most probable source of the Cambro-Ordovician zircons, would have been coeval with the deposition of the Lower Ordovician successions.

  • did cooling oceans trigger Ordovician biodiversification evidence from conodont thermometry
    Science, 2008
    Co-Authors: Ian S Williams, Christopher R. Barnes, Julie Trotter, Christophe Lecuyer, Robert S Nicoll
    Abstract:

    The Ordovician Period, long considered a supergreenhouse state, saw one of the greatest radiations of life in Earth's history. Previous temperature estimates of up to approximately 70 degrees C have spawned controversial speculation that the oxygen isotopic composition of seawater must have evolved over geological time. We present a very different global climate record determined by ion microprobe oxygen isotope analyses of Early Ordovician-Silurian conodonts. This record shows a steady cooling trend through the Early Ordovician reaching modern equatorial temperatures that were sustained throughout the Middle and Late Ordovician. This favorable climate regime implies not only that the oxygen isotopic composition of Ordovician seawater was similar to that of today, but also that climate played an overarching role in promoting the unprecedented increases in biodiversity that characterized this period.