Pacifastacus

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 282 Experts worldwide ranked by ideXlab platform

Kenneth Soderhall - One of the best experts on this subject based on the ideXlab platform.

Irene Söderhäll - One of the best experts on this subject based on the ideXlab platform.

Eric Larson - One of the best experts on this subject based on the ideXlab platform.

  • Distribution, habitat associations, and conservation status updates for the pilose crayfish Pacifastacus gambelii (Girard, 1852) and Snake River pilose crayfish Pacifastacus connectens (Faxon, 1914) of the western United States.
    PeerJ, 2018
    Co-Authors: Rachel M. Egly, Eric Larson
    Abstract:

    Our study evaluates the distribution, habitat associations, and current conservation status of the Snake River pilose crayfish Pacifastacus connectens (Faxon, 1914) and pilose crayfish Pacifastacus gambelii (Girard, 1852), two little-studied and data-deficient species endemic to the western United States. We first developed a species distribution model (SDM) for the pilose crayfishes based on their historical occurrence records using boosted regression trees and freshwater GIS data layers. We then sampled 163 sites in the summers of 2016 and 2017 within the distribution of these crayfishes, including 50 where these species were observed historically. We next compared our field results to modeled predictions of suitable habitat from the SDM. Our SDM predicted 73 sites (45%) we sampled as suitable for the pilose crayfishes, with a moderate AUC value of 0.824. The pilose crayfishes were generally predicted to occur in larger streams and rivers with less extreme upstream temperature and precipitation seasonality. We found the pilose crayfishes at only 20 (12%) of the 163 total sites we sampled, 14 (20%) of the 73 sites predicted as suitable for them by our SDM, and 12 (24%) of 50 historical sites that we sampled. We found the invasive virile crayfish Faxonius virilis (Hagen, 1870) at 22 sites total and 12 (24%) historical sites for the pilose crayfishes, and we found the "native invader" signal crayfish Pacifastacus leniusculus (Dana, 1852) at 29 sites total and 6 (12%) historical sites for the pilose crayfishes. We subsequently used a single classification tree to identify factors associated with our high rate of false positives for contemporary pilose crayfish distributions relative to our SDM. This classification tree identified the presence of invasive crayfishes, impairment of the benthic community, and sampling method as some of the factors differentiating false positives relative to true positives for the pilose crayfishes. Our study identified the historical distribution and habitat associations for P. connectens and P. gambelii using an SDM and contrasted this prediction to results of contemporary field sampling. We found that the pilose crayfishes have seemingly experienced substantial range declines, attributable to apparent displacement by invasive crayfishes and impairment or change to stream communities and habitat. We recommend increased conservation and management attention to P. connectens and P. gambelii in response to these findings.

  • Distribution, habitat associations, and conservation status updates for the pilose crayfish Pacifastacus gambelii and Snake River pilose crayfish Pacifastacus connectens of the western United States
    2018
    Co-Authors: Rachel M. Egly, Eric Larson
    Abstract:

    Our study evaluates the distribution, habitat associations, and current conservation status of the pilose crayfishes Pacifastacus connectens and Pacifastacus gambelii, two little-studied and data-deficient species endemic to the western United States. We first developed a species distribution model (SDM) for the pilose crayfishes based on their historical occurrence records using boosted regression trees and freshwater GIS data layers. We then sampled 163 sites in the summers of 2016 and 2017 within the distribution of these crayfishes, including 50 where these species were observed historically. We next compared our field results to modeled predictions of suitable habitat from the SDM. Our SDM predicted 73 sites (45%) we sampled as suitable for the pilose crayfishes, with a moderate AUC value of 0.824. The pilose crayfishes were generally predicted to occur in larger streams and rivers with less extreme upstream temperature and precipitation seasonality. We found the pilose crayfishes at only 20 (12%) of the 163 total sites we sampled, 14 (20%) of the 73 sites predicted as suitable for them by our SDM, and 12 (24%) of 50 historical sites that we sampled. We found the invasive virile crayfish Faxonius virilis at 22 sites total and 12 (24%) historical sites for the pilose crayfishes, and the “native invader” signal crayfish Pacifastacus leniusculus at 29 sites total and 6 (12%) historical locations. We subsequently used a single classification tree to identify factors associated with our high rate of false positives for contemporary pilose crayfish distributions relative to our SDM. This classification tree identified the presence of invasive crayfishes, impairment of the benthic community, and sampling method as some of the factors differentiating false positives relative to true positives for the pilose crayfishes. Our study identified the historical distribution and habitat associations for P. connectens and P. gambelii using an SDM and contrasted this prediction to results of contemporary field sampling. We found that the pilose crayfishes have seemingly experienced substantial range declines, attributable to apparent displacement by invasive crayfishes and impairment or change to stream communities and habitat. We recommend increased conservation and management attention to P. connectens and P. gambelii in response to these findings.

  • Phylogenetic species delimitation for crayfishes of the genus Pacifastacus
    PeerJ, 2016
    Co-Authors: Eric Larson, Magalie Castelin, Bronwyn W. Williams, Julian D. Olden, Cathryn L. Abbott
    Abstract:

    Molecular genetic approaches are playing an increasing role in conservation science by identifying biodiversity that may not be evident by morphology-based taxonomy and systematics. So-called cryptic species are particularly prevalent in freshwater environments, where isolation of dispersal-limited species, such as crayfishes, within dendritic river networks often gives rise to high intra- and inter-specific genetic divergence. We apply here a multi-gene molecular approach to investigate relationships among extant species of the crayfish genus Pacifastacus, representing the first comprehensive phylogenetic study of this taxonomic group. Importantly, Pacifastacus includes both the widely invasive signal crayfish Pacifastacus leniusculus, as well as several species of conservation concern like the Shasta crayfish Pacifastacus fortis. Our analysis used 83 individuals sampled across the four extant Pacifastacus species (omitting the extinct Pacifastacus nigrescens), representing the known taxonomic diversity and geographic distributions within this genus as comprehensively as possible. We reconstructed phylogenetic trees from mitochondrial (16S, COI) and nuclear genes (GAPDH), both separately and using a combined or concatenated dataset, and performed several species delimitation analyses (PTP, ABGD, GMYC) on the COI phylogeny to propose Primary Species Hypotheses (PSHs) within the genus. All phylogenies recovered the genus Pacifastacus as monophyletic, within which we identified a range of six to 21 PSHs; more abundant PSHs delimitations from GMYC and ABGD were always nested within PSHs delimited by the more conservative PTP method. Pacifastacus leniusculus included the majority of PSHs and was not monophyletic relative to the other Pacifastacus species considered. Several of these highly distinct P. leniusculus PSHs likely require urgent conservation attention. Our results identify research needs and conservation priorities for Pacifastacus crayfishes in western North America, and may inform better understanding and management of P. leniusculus in regions where it is invasive, such as Europe and Japan.

  • the signal crayfish is not a single species cryptic diversity and invasions in the pacific northwest range of Pacifastacus leniusculus
    Freshwater Biology, 2012
    Co-Authors: Eric Larson, Nisikawa Usio, Cathryn L. Abbott, Noriko Azuma, Kimberly A Wood, Leifmatthias Herborg, Julian D. Olden
    Abstract:

    SUMMARY 1. We used historical sources, morphology-based taxonomy and mtDNA sequence data to address questions about the signal crayfish Pacifastacus leniusculus. These included evaluating unrecognised cryptic diversity and investigating the extent to which P. leniusculus may have been introduced within its presumed native range in the Pacific Northwest region of North America. Our study builds and expands on Pacific Northwest phylogeographic knowledge, particularly related to patterns of glacial refugia for freshwater species. 2. Extensive collections (824 specimens) from British Columbia (Canada), Idaho, Nevada, Oregon and Washington (United States) were used to characterise P. leniusculus at the mitochondrial 16S rRNA gene. Genetic groups within the species were elucidated by phylogenetics and AMOVA ; evolutionary relationships within the most common and diverse group were investigated using a statistical parsimony haplotype network, a nested AMOVA , and tests of isolation by distance. Morphological measurements were used to relate findings of molecular analyses to three historically recognised P. leniusculus subspecies and characterise cryptic diversity by morphology. 3. We found substantial cryptic diversity, with three groups highly distinct from P. leniusculus in discrete geographic regions: the Chehalis River glacial refugium, Central Oregon and the Okanagan Plateau. Disjunct distributions of P. leniusculus relative to these cryptic groups and known patterns of Pleistocene glaciation and landscape evolution cast doubt on whether P. leniusculus is native to some areas such as coastal drainages of northern Washington and southern British Columbia. Morphological traits previously used to characterise P. leniusculus subspecies still persist but may be incapable of distinguishing P. leniusculus from newly discovered cryptic groups. 4. Cryptic diversity found within P. leniusculus highlights the pressing need for a thorough investigation of the genus Pacifastacus using data based on more extensive gene and taxon sampling. It also warrants conservation attention, as introductions of P. leniusculus within the Pacific Northwest may carry risks of hybridisation and introgression for cryptic groups. Owing to high genetic diversity and limited dispersal capacity relative to more vagile organisms like freshwater fish, crayfish of the genus Pacifastacus offer powerful potential insights into the geological history and phylogeography of the Pacific Northwest region. Finally, by shedding light

Pikul Jiravanichpaisal - One of the best experts on this subject based on the ideXlab platform.

Gül Gizem Korkut - One of the best experts on this subject based on the ideXlab platform.