Paramecium tetraurelia

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 177 Experts worldwide ranked by ideXlab platform

Robert D. Hinrichsen - One of the best experts on this subject based on the ideXlab platform.

  • A genetic dissection of the photophobic response of Paramecium tetraurelia.
    Protist, 2013
    Co-Authors: Robert D. Hinrichsen, Christian Peters
    Abstract:

    Paramecium tetraurelia displayed two behavioral responses upon the initiation of a light stimulus at 7 x 10(4) lux. The cells exhibited a photophobic response in the form of behavioral avoiding reactions, followed by an increase in forward swimming velocity that was significantly higher than prior to the light stimulus activation. It was determined that an intensity of approximately 6.5 x 10(3) lux was required to initiate a moderate avoidance behavioral response. Following the avoiding response, a gradual increase in speed occurred as the intensity increased, indicating that increased swimming speeds are dependent on the light intensity. Two mutants, pawnA and Dancer, were utilized since they affect known Ca(2+)-currents of the cell. The use of pawnA cells, which lack voltage-dependent Ca(2+) channel activity, showed that the two responses to light could be genetically separated, in that the cells showed no avoiding reactions, but did increase their swimming speed. The Dancer cells, which display exaggerated Ca(2+) channel activity, exhibited similar initial avoiding responses as the wild type cells, however did not increase their swimming speed as the intensity of the light was increased. This phenotype as replicated in wildtype cells that had been placed in 25 μM 8-Br-cGMP. These data demonstrate that the photophobic light response of Paramecium tetraurelia can be genetically dissected as a means of elucidating the molecular mechanisms of the light response.

  • A circadian clock regulates sensitivity to cadmium in Paramecium tetraurelia
    Cell biology and toxicology, 2010
    Co-Authors: Robert D. Hinrichsen, Joseph R. Tran
    Abstract:

    The heavy metal cadmium is a dangerous environmental toxicant that can be lethal to humans and other organisms. This paper demonstrates that cadmium is lethal to the ciliated protozoan Paramecium tetraurelia and that a circadian clock modulates the sensitivity of the cells to cadmium. Various concentrations of cadmium were shown to increase the number of behavioral responses, decrease the swimming speed of cells, and generate large vacuole formation in cells prior to death. Cells were grown in either 12-h light/12-h dark or constant dark conditions exhibited a toxic response to 500 μM CdCl2; the sensitivity of the response was found to vary with a 24-h periodicity. Cells were most sensitive to cadmium at circadian time 0 (CT0), while they were least sensitive in the early evening (CT12). This rhythm persisted even when the cells were grown in constant dark. The oscillation in cadmium sensitivity was shown to be temperature-compensated; cells grown at 18°C and 28°C had a similar 24-h oscillation. Finally, phase shifting experiments demonstrated a phase-dependent response to light. These data establish the criteria required for a circadian clock and demonstrate that P. tetraurelia possesses a circadian-influenced regulatory component of the cadmium toxic response. The Paramecium system is shown to be an excellent model system for the study of the effects of biological rhythms on heavy metal toxicity.

  • Extremely short 20–33 nucleotide introns are the standard length in Paramecium tetraurelia
    Nucleic acids research, 1994
    Co-Authors: Chris B. Russell, Dean Fraga, Robert D. Hinrichsen
    Abstract:

    Paramecium tetraurelia has the shortest known introns as its standard intron length. Sequenced introns vary between 20 and 33 nucleotides in length. The intron sequences were discovered in genomic sequences coding for a variety of different proteins, including phosphatases, kinases, and low-molecular weight GTP-binding proteins. All intron sequences begin with the conserved dinucleotide GT and end with the conserved dinucleotide AG. The sequences are more AT rich than the Paramecium coding sequences. The identified sequences were confirmed as introns by sequencing several cDNA fragments. We report here analysis of the characteristics of 50 separate introns, including size, base composition, and a consensus sequence.

  • extremely short 20 33 nucleotide introns are the standard length in Paramecium tetraurelia
    Nucleic Acids Research, 1994
    Co-Authors: Chris B. Russell, Dean Fraga, Robert D. Hinrichsen
    Abstract:

    Paramecium tetraurelia has the shortest known introns as its standard intron length. Sequenced introns vary between 20 and 33 nucleotides in length. The intron sequences were discovered in genomic sequences coding for a variety of different proteins, including phosphatases, kinases, and low-molecular weight GTP-binding proteins. All intron sequences begin with the conserved dinucleotide GT and end with the conserved dinucleotide AG. The sequences are more AT rich than the Paramecium coding sequences. The identified sequences were confirmed as introns by sequencing several cDNA fragments. We report here analysis of the characteristics of 50 separate introns, including size, base composition, and a consensus sequence.

Eric Meyer - One of the best experts on this subject based on the ideXlab platform.

  • Gene expression in a paleopolyploid: a transcriptome resource for the ciliate Paramecium tetraurelia
    BMC genomics, 2010
    Co-Authors: Olivier Arnaiz, Jean-françois Gout, Mireille Bétermier, Khaled Bouhouche, Jean Cohen, Laurent Duret, Aurélie Kapusta, Eric Meyer, Linda Sperling
    Abstract:

    The genome of Paramecium tetraurelia, a unicellular model that belongs to the ciliate phylum, has been shaped by at least 3 successive whole genome duplications (WGD). These dramatic events, which have also been documented in plants, animals and fungi, are resolved over evolutionary time by the loss of one duplicate for the majority of genes. Thanks to a low rate of large scale genome rearrangement in Paramecium, an unprecedented large number of gene duplicates of different ages have been identified, making this organism an outstanding model to investigate the evolutionary consequences of polyploidization. The most recent WGD, with 51% of pre-duplication genes still in 2 copies, provides a snapshot of a phase of rapid gene loss that is not accessible in more ancient polyploids such as yeast. We designed a custom oligonucleotide microarray platform for P. tetraurelia genome-wide expression profiling and used the platform to measure gene expression during 1) the sexual cycle of autogamy, 2) growth of new cilia in response to deciliation and 3) biogenesis of secretory granules after massive exocytosis. Genes that are differentially expressed during these time course experiments have expression patterns consistent with a very low rate of subfunctionalization (partition of ancestral functions between duplicated genes) in particular since the most recent polyploidization event. A public transcriptome resource is now available for Paramecium tetraurelia. The resource has been integrated into the ParameciumDB model organism database, providing searchable access to the data. The microarray platform, freely available through NimbleGen Systems, provides a robust, cost-effective approach for genome-wide expression profiling in P. tetraurelia. The expression data support previous studies showing that at short evolutionary times after a whole genome duplication, gene dosage balance constraints and not functional change are the major determinants of gene retention.

  • Gene expression in a paleopolyploid: a transcriptome resource for the ciliate Paramecium tetraurelia.
    BMC Genomics, 2010
    Co-Authors: Olivier Arnaiz, Jean-françois Gout, Mireille Bétermier, Khaled Bouhouche, Jean Cohen, Laurent Duret, Aurélie Kapusta, Eric Meyer, Linda Sperling
    Abstract:

    BACKGROUND: The genome of Paramecium tetraurelia, a unicellular model that belongs to the ciliate phylum, has been shaped by at least 3 successive whole genome duplications (WGD). These dramatic events, which have also been documented in plants, animals and fungi, are resolved over evolutionary time by the loss of one duplicate for the majority of genes. Thanks to a low rate of large scale genome rearrangement in Paramecium, an unprecedented large number of gene duplicates of different ages have been identified, making this organism an outstanding model to investigate the evolutionary consequences of polyploidization. The most recent WGD, with 51% of pre-duplication genes still in 2 copies, provides a snapshot of a phase of rapid gene loss that is not accessible in more ancient polyploids such as yeast. RESULTS: We designed a custom oligonucleotide microarray platform for P. tetraurelia genome-wide expression profiling and used the platform to measure gene expression during 1) the sexual cycle of autogamy, 2) growth of new cilia in response to deciliation and 3) biogenesis of secretory granules after massive exocytosis. Genes that are differentially expressed during these time course experiments have expression patterns consistent with a very low rate of subfunctionalization (partition of ancestral functions between duplicated genes) in particular since the most recent polyploidization event. CONCLUSIONS: A public transcriptome resource is now available for Paramecium tetraurelia. The resource has been integrated into the ParameciumDB model organism database, providing searchable access to the data. The microarray platform, freely available through NimbleGen Systems, provides a robust, cost-effective approach for genome-wide expression profiling in P. tetraurelia. The expression data support previous studies showing that at short evolutionary times after a whole genome duplication, gene dosage balance constraints and not functional change are the major determinants of gene retention.

  • PiggyMac, a domesticated piggyBac transposase involved in programmed genome rearrangements in the ciliate Paramecium tetraurelia
    Genes & development, 2009
    Co-Authors: Céline Baudry, Aurélie Kapusta, Eric Meyer, Sophie Malinsky, Matthieu Restituito, Sarah Rosa, Mireille Bétermier
    Abstract:

    Programmed genome rearrangements drive functional gene assembly in ciliates during the development of the somatic macronucleus. The elimination of germline sequences is directed by noncoding RNAs and is initiated by DNA double-strand breaks, but the enzymes responsible for DNA cleavage have not been identified. We show here that PiggyMac (Pgm), a domesticated piggyBac transposase, is required for these rearrangements in Paramecium tetraurelia. A GFP-Pgm fusion localizes in developing macronuclei, where rearrangements take place, and RNAi-mediated silencing of PGM abolishes DNA cleavage. This is the first in vivo evidence suggesting an essential endonucleolytic function of a domesticated piggyBac transposase.

  • silencing associated and meiosis specific small rna pathways in Paramecium tetraurelia
    Nucleic Acids Research, 2009
    Co-Authors: Gersende Lepere, Mariusz Nowacki, Jean-françois Gout, Sandra Duharcourt, Vincent Serrano, Gerard Guglielmi, Eric Meyer
    Abstract:

    Distinct small RNA pathways are involved in the two types of homology-dependent effects described in Paramecium tetraurelia, as shown by a functional analysis of Dicer and Dicer-like genes and by the sequencing of small RNAs. The siRNAs that mediate post-transcriptional gene silencing when cells are fed with double-stranded RNA (dsRNA) were found to comprise two subclasses. DCR1-dependent cleavage of the inducing dsRNA generates ∼23-nt primary siRNAs from both strands, while a different subclass of ∼24-nt RNAs, characterized by a short untemplated poly-A tail, is strictly antisense to the targeted mRNA, suggestive of secondary siRNAs that depend on an RNA-dependent RNA polymerase. An entirely distinct pathway is responsible for homology-dependent regulation of developmental genome rearrangements after sexual reproduction. During early meiosis, the DCL2 and DCL3 genes are required for the production of a highly complex population of ∼25-nt scnRNAs from all types of germline sequences, including both strands of exons, introns, intergenic regions, transposons and Internal Eliminated Sequences. A prominent 5′-UNG signature, and a minor fraction showing the complementary signature at positions 21–23, indicate that scnRNAs are cleaved from dsRNA precursors as duplexes with 2-nt 3′ overhangs at both ends, followed by preferential stabilization of the 5′-UNG strand.

  • isolation and expression of two genes encoding eukaryotic release factor 1 from Paramecium tetraurelia
    Journal of Eukaryotic Microbiology, 2002
    Co-Authors: Stephanie Kervestin, Eric Meyer, Olivier Garnier, Andrey L Karamyshev, Koichi Ito, Yoshikazu Nakamura, Olivier Jeanjean
    Abstract:

    Abstract Paramecium tetraurelia, like some other ciliate species, uses an alternative nuclear genetic code where UAA and UAG are translated as glutamine and UGA is the only stop codon. It has been postulated that the use of stop codons as sense codons is dependent on the presence of specific tRNAs and on modification of eukaryotic release factor one (eRF1), a factor involved in stop codon recognition during translation termination. We describe here the isolation and characterisation of two genes, eRF1-a and eRF1-b, coding for eRF1 in P. tetraurelia. The two genes are very similar, both in genomic organization and in sequence, and might result from a recent duplication event. The two coding sequences are 1,314 nucleotides long, and encode two putative proteins of 437 amino acids with 98.5% identity. Interestingly, when compared with the eRF1 sequences either of ciliates having the same variant genetic code, or of other eukaryotes, the eRF1 of P. tetraurelia exhibits significant differences in the N-termina...

Chris B. Russell - One of the best experts on this subject based on the ideXlab platform.

  • Extremely short 20–33 nucleotide introns are the standard length in Paramecium tetraurelia
    Nucleic acids research, 1994
    Co-Authors: Chris B. Russell, Dean Fraga, Robert D. Hinrichsen
    Abstract:

    Paramecium tetraurelia has the shortest known introns as its standard intron length. Sequenced introns vary between 20 and 33 nucleotides in length. The intron sequences were discovered in genomic sequences coding for a variety of different proteins, including phosphatases, kinases, and low-molecular weight GTP-binding proteins. All intron sequences begin with the conserved dinucleotide GT and end with the conserved dinucleotide AG. The sequences are more AT rich than the Paramecium coding sequences. The identified sequences were confirmed as introns by sequencing several cDNA fragments. We report here analysis of the characteristics of 50 separate introns, including size, base composition, and a consensus sequence.

  • extremely short 20 33 nucleotide introns are the standard length in Paramecium tetraurelia
    Nucleic Acids Research, 1994
    Co-Authors: Chris B. Russell, Dean Fraga, Robert D. Hinrichsen
    Abstract:

    Paramecium tetraurelia has the shortest known introns as its standard intron length. Sequenced introns vary between 20 and 33 nucleotides in length. The intron sequences were discovered in genomic sequences coding for a variety of different proteins, including phosphatases, kinases, and low-molecular weight GTP-binding proteins. All intron sequences begin with the conserved dinucleotide GT and end with the conserved dinucleotide AG. The sequences are more AT rich than the Paramecium coding sequences. The identified sequences were confirmed as introns by sequencing several cDNA fragments. We report here analysis of the characteristics of 50 separate introns, including size, base composition, and a consensus sequence.

Linda Sperling - One of the best experts on this subject based on the ideXlab platform.

  • Gene expression in a paleopolyploid: a transcriptome resource for the ciliate Paramecium tetraurelia
    BMC genomics, 2010
    Co-Authors: Olivier Arnaiz, Jean-françois Gout, Mireille Bétermier, Khaled Bouhouche, Jean Cohen, Laurent Duret, Aurélie Kapusta, Eric Meyer, Linda Sperling
    Abstract:

    The genome of Paramecium tetraurelia, a unicellular model that belongs to the ciliate phylum, has been shaped by at least 3 successive whole genome duplications (WGD). These dramatic events, which have also been documented in plants, animals and fungi, are resolved over evolutionary time by the loss of one duplicate for the majority of genes. Thanks to a low rate of large scale genome rearrangement in Paramecium, an unprecedented large number of gene duplicates of different ages have been identified, making this organism an outstanding model to investigate the evolutionary consequences of polyploidization. The most recent WGD, with 51% of pre-duplication genes still in 2 copies, provides a snapshot of a phase of rapid gene loss that is not accessible in more ancient polyploids such as yeast. We designed a custom oligonucleotide microarray platform for P. tetraurelia genome-wide expression profiling and used the platform to measure gene expression during 1) the sexual cycle of autogamy, 2) growth of new cilia in response to deciliation and 3) biogenesis of secretory granules after massive exocytosis. Genes that are differentially expressed during these time course experiments have expression patterns consistent with a very low rate of subfunctionalization (partition of ancestral functions between duplicated genes) in particular since the most recent polyploidization event. A public transcriptome resource is now available for Paramecium tetraurelia. The resource has been integrated into the ParameciumDB model organism database, providing searchable access to the data. The microarray platform, freely available through NimbleGen Systems, provides a robust, cost-effective approach for genome-wide expression profiling in P. tetraurelia. The expression data support previous studies showing that at short evolutionary times after a whole genome duplication, gene dosage balance constraints and not functional change are the major determinants of gene retention.

  • Gene expression in a paleopolyploid: a transcriptome resource for the ciliate Paramecium tetraurelia.
    BMC Genomics, 2010
    Co-Authors: Olivier Arnaiz, Jean-françois Gout, Mireille Bétermier, Khaled Bouhouche, Jean Cohen, Laurent Duret, Aurélie Kapusta, Eric Meyer, Linda Sperling
    Abstract:

    BACKGROUND: The genome of Paramecium tetraurelia, a unicellular model that belongs to the ciliate phylum, has been shaped by at least 3 successive whole genome duplications (WGD). These dramatic events, which have also been documented in plants, animals and fungi, are resolved over evolutionary time by the loss of one duplicate for the majority of genes. Thanks to a low rate of large scale genome rearrangement in Paramecium, an unprecedented large number of gene duplicates of different ages have been identified, making this organism an outstanding model to investigate the evolutionary consequences of polyploidization. The most recent WGD, with 51% of pre-duplication genes still in 2 copies, provides a snapshot of a phase of rapid gene loss that is not accessible in more ancient polyploids such as yeast. RESULTS: We designed a custom oligonucleotide microarray platform for P. tetraurelia genome-wide expression profiling and used the platform to measure gene expression during 1) the sexual cycle of autogamy, 2) growth of new cilia in response to deciliation and 3) biogenesis of secretory granules after massive exocytosis. Genes that are differentially expressed during these time course experiments have expression patterns consistent with a very low rate of subfunctionalization (partition of ancestral functions between duplicated genes) in particular since the most recent polyploidization event. CONCLUSIONS: A public transcriptome resource is now available for Paramecium tetraurelia. The resource has been integrated into the ParameciumDB model organism database, providing searchable access to the data. The microarray platform, freely available through NimbleGen Systems, provides a robust, cost-effective approach for genome-wide expression profiling in P. tetraurelia. The expression data support previous studies showing that at short evolutionary times after a whole genome duplication, gene dosage balance constraints and not functional change are the major determinants of gene retention.

  • ParameciumDB: a community resource that integrates the Paramecium tetraurelia genome sequence with genetic data
    Nucleic Acids Research, 2006
    Co-Authors: Olivier Arnaiz, Jean Cohen, Scott Cain, Linda Sperling
    Abstract:

    ParameciumDB (http://Paramecium.cgm.cnrs-gif.fr) is a new model organism database associated with the genome sequencing project of the unicellular eukaryote Paramecium tetraurelia. Built with the core components of the Generic Model Organism Database (GMOD) project, ParameciumDB currently contains the genome sequence and annotations, linked to available genetic data including the Gif Paramecium stock collection. It is thus possible to navigate between sequences and stocks via the genes and alleles. Phenotypes, of mutant strains and of knockdowns obtained by RNA interference, are captured using controlled vocabularies according to the Entity-Attribute-Value model. ParameciumDB currently supports browsing of phenotypes, alleles and stocks as well as querying of sequence features (genes, UniProt matches, InterPro domains, Gene Ontology terms) and of genetic data (phenotypes, stocks, RNA interference experiments). Forms allow submission of RNA interference data and some bioinformatics services are available. Future ParameciumDB development plans include coordination of human curation of the near 40 000 gene models by members of the research community.

Daniel P Romero - One of the best experts on this subject based on the ideXlab platform.

  • A unique pause pattern during telomere addition by the error-prone telomerase from the ciliate Paramecium tetraurelia.
    Gene, 2002
    Co-Authors: Daniel P Romero
    Abstract:

    Telomeric DNA - the short, tandemly repeated sequences at the ends of chromosomes - is synthesized by telomerase, a ribonucleoprotein enzyme that copies a specific template sequence within its integral RNA moiety. The error-prone telomerase from the ciliate Paramecium tetraurelia stereotypically misincorporates TTP at telomerase RNA templating nucleotide C52, accounting for the 30% TTTGGG repeats randomly distributed in wild-type telomeres. Paramecium tetraurelia telomerase has been isolated from macronuclear extracts and characterized with respect to the extension of telomeric primers in vitro. Unlike telomerase activities from other species, the predominant pause during telomeric repeat synthesis by P. tetraurelia telomerase does not occur at the 5' end of the templating domain (templating nucleotide C49). Instead, the pause by P. tetraurelia telomerase is at templating nucleotide C53, immediately prior to incorporation of dGTP (or TTP) at C52. The configuration of the catalytic site at this template position during telomere synthesis is most likely responsible for the high incidence of misincorporation of TTP at C52. The gene for the P. tetraurelia telomerase catalytic subunit, telomerase reverse transcriptase (TERT), has been cloned and sequenced. A comparative analysis of the P. tetraurelia TERT with homologs from other species, including that from another Paramecium species that does not make a high percentage of misincorporation errors, has been initiated. This study may delineate those TERT structural elements that contribute to telomerase fidelity.

  • Variable telomeric repeat synthesis in Paramecium tetraurelia is consistent with misincorporation by telomerase.
    The EMBO journal, 1997
    Co-Authors: Monica Mccormick-graham, W. John Haynes, Daniel P Romero
    Abstract:

    Telomeric DNA at the ends of chromosomes consist of short, tandem repeat sequences. The telomeres of Paramecium tetraurelia are made up of variable repeats, whereas Paramecium caudatum telomeric repeats are largely invariant. To investigate variable repeat synthesis in P. tetraurelia, mutated telomerase RNA genes were expressed in vivo. We demonstrate that the P. caudatum telomerase RNA can participate in telomere synthesis when expressed in the P. tetraurelia macronucleus, despite 24% primary sequence divergence of the RNAs between the two species. De novo telomeric repeats from transformants indicate that P. tetraurelia telomerase fidelity is dramatically affected by template substitutions and that misincorporation at a single templating position is likely to account for the majority of P. tetraurelia telomeric DNA variability. Furthermore, we show that fidelity is not solely a function of the RNA moiety, as the P. caudatum telomerase RNA does not impart high fidelity to the chimeric enzyme.