PERT

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 11130 Experts worldwide ranked by ideXlab platform

Hitoshi Okamura - One of the best experts on this subject based on the ideXlab platform.

  • real time recording of circadian per1 and per2 expression in the suprachiasmatic nucleus of freely moving rats
    Journal of Biological Rhythms, 2016
    Co-Authors: Yoshiaki Yamaguchi, Yasufumi Shigeyoshi, Masao Doi, Kazuki Okada, Takanobu Mizuno, Takumi Ota, Hiroyuki Yamada, Masaki Kobayashi, Hajime Tei, Hitoshi Okamura
    Abstract:

    Measuring real-time gene activity in the brains of freely moving animals presents a challenging issue in neuroscience research. Circadian gene expression in neurons of the suprachiasmatic nucleus (SCN), a small nucleus in the hypothalamus, is reflected in behavioral rhythmicity. Cellular oscillatory gene expression is generated by a transcription-translation feedback loop of clock genes including 2 oscillatory genes, Per1 and Per2. Here we have succeeded in real-time monitoring of Per1 and Per2 transcription separately by detecting the bioluminescence of luciferase (luc) reporters using a plastic optical fiber inserted into the SCN of freely moving rats. Per1-luc and Per2-luc rhythms peaked in the middle and late subjective day, respectively, which was confirmed by quantitative PCR-based measurements of SCN tissue samples. Studies of in vivo transcriptional states of clock genes in freely moving animals should improve our understanding of how clock gene expression is reflected in behavior.

  • Gradients in the circadian expression of Per1 and Per2 genes in the rat suprachiasmatic nucleus.
    The European journal of neuroscience, 2002
    Co-Authors: Lily Yan, Hitoshi Okamura
    Abstract:

    The suprachiasmatic nucleus (SCN) is the mammalian circadian pacemaker, which consists of thousands of oscillator cells. It is believed that the circadian oscillation in each cell is generated by the transcription/(post)-translation feedback loop of a set of clock genes. However, little is known about how these oscillator cells are organized to produce the robust circadian rhythms in the SCN. In the present study, we examined the expression of the clock genes Per1 and Per2 paying particular attention to the topographic compartmentalization of the SCN. In the rat SCN, the dorsomedial (SCNDM) and ventrolateral (SCNVL) compartments are clearly delineated by chemical characteristics of neurons and neuronal afferents. In the SCNDM, Per1 mRNA was initially expressed at the most dorsomedial region along the third ventricle (SCNDMPV, periventricular part of the dorsomedial compartment of the SCN) at CT0, and then spread laterally to the central dorsomedial region (SCNDMCe, central part of the dorsomedial compartment of the SCN), reaching peaks at subjective day and troughs at subjective night. In contrast, in the SCNVL, Per1 expression showed a weak, two-peak pattern in one circadian cycle. Per2 expression was also robust in the SCN, showing very similar circadian profiles among these three subdivisions with a slightly earlier phase in SCNDMPV than that in SCNDMCe. We also investigated the Per1 and Per2 expression in response to a light exposure at early subjective night. The light pulse induced both Per1 and Per2 expression, which was restricted in the SCNVL neurons. The present findings suggest that the phase and amplitude of the circadian expression of clock genes are not uniform, and there are topographic neuron groups that have different proPERTies in the SCN.

  • Phase-dependent responses of Per1 and Per2 genes to a light-stimulus in the suprachiasmatic nucleus of the rat
    Neuroscience letters, 2000
    Co-Authors: Shigeru Miyake, Seiichi Takekida, Lily Yan, Yasuo Sumi, Tsuyoshi Fukuyama, Yoshiki Ishida, Shun Yamaguchi, Kazuhiro Yagita, Hitoshi Okamura
    Abstract:

    Single brief and discrete light treatments are sufficient to reset the overt mammalian rhythms of nocturnal rodents. In the present study, we examined the phase-dependent response of the mammalian clock genes, Per1 and Per2, to a brief strong light-stimulus (1000 lux) in the circadian oscillator center, the suprachiasmatic nucleus (SCN) of rats. Light-induced elevation of Per1 mRNA was observed through the subjective night (CT16, CT20 and CT0 (=CT24)) with a marked peak at the subjective dawn (CT0). However, the light influence was very limited for the induction of Per2; only weak elevation of Per2 mRNA was detected at CT16. The effect of light-stimulus on the Per1 gene was transient, and the effect was restricted to ventrolateral SCN neurons in both CT0 and CT16 after light exposure. Since it is known that these rats show a light-induced behavioral phase-shift throughout the subjective night with being strongest at subjective dawn, the present results suggest that the transient induction of Per1 in ventrolateral SCN neurons is a critical step in the resetting of the biological clock to environmental light–dark schedule.

  • nonphotic entrainment by 5 ht1a 7 receptor agonists accompanied by reduced per1 and per2 mrna levels in the suprachiasmatic nuclei
    The Journal of Neuroscience, 2000
    Co-Authors: Kazumasa Horikawa, Hitoshi Okamura, Takahiro Moriya, Masashi Akiyama, Shin Ichi Yokota, Kazuyuki Fuji, Shigenobu Shibata
    Abstract:

    In mammals, the environmental light/dark cycle strongly synchronizes the circadian clock within the suprachiasmatic nuclei (SCN) to 24 hr. It is well known that not only photic but also nonphotic stimuli can entrain the SCN clock. Actually, many studies have shown that a daytime injection of 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH DPAT), a serotonin 1A/7 receptor agonist, as a nonphotic stimulus induces phase advances in hamster behavioral circadian rhythms in vivo, as well as the neuron activity rhythm of the SCN in vitro. Recent reports suggest that mammalian homologs of the Drosophila clock gene, Period (Per), are involved in photic entrainment. Therefore, we examined whether phase advances elicited by 8-OH DPAT were associated with a change of Period mRNA levels in the SCN. In this experiment, we cloned partial cDNAs encoding hamster Per1, Per2, and Per3 and observed both circadian oscillation and the light responsiveness of Period. Furthermore, we found that the inhibitory effect of 8-OH DPAT on hamster Per1 and Per2 mRNA levels in the SCN occurred only during the hamster's mid-subjective day, but not during the early subjective day or subjective night. The present findings demonstrate that the acute and circadian time-dependent reduction of Per1 and/or Per2 mRNA in the hamster SCN by 8-OH DPAT is strongly correlated with the phase resetting in response to 8-OH DPAT.

  • per1 and per2 gene expression in the rat suprachiasmatic nucleus circadian profile and the compartment specific response to light
    Neuroscience, 1999
    Co-Authors: Seiichi Takekida, Yasufumi Shigeyoshi, Hitoshi Okamura
    Abstract:

    Abstract Expression profiles of rPer1 and rPer2 messenger RNAs, rat homologues of the Drosophila clock gene period, were examined in the rat suprachiasmatic nucleus, a main locus of circadian oscillation, with special reference to the topographical compartmentation of the suprachiasmatic nucleus. Quantitative in situ hybridization of rPer1 and rPer2 messenger RNAs showed a robust circadian rhythm in the suprachiasmatic nucleus, with a characteristic peak/trough profile in each gene: the peak of rPer1 messenger RNA was in the daytime and that of rPer2 messenger RNA was at the transition time of day to night in both light–dark and constant dark conditions. Light exposure at circadian time 16 increased both rPer1 and rPer2 messenger RNAs in the suprachiasmatic nucleus. In a detailed histological analysis, we found that light exposure at circadian time 16 induced the expression of rPer1 and rPer2 genes in neurons limited to the ventrolateral part of the suprachiasmatic nucleus, although the usual circadian rPer1 and rPer2 messenger RNA oscillation in light–dark and constant dark conditions occurred strongly in neurons in the dorsomedial part but weakly in neurons in the ventrolateral part of the suprachiasmatic nucleus. These rPer expression profiles indicate that the two major subpopulations of neurons in the suprachiasmatic nucleus play different roles in the generation of circadian rhythm: a strong autonomous expression ability with no light response in dorsomedial neurons and a strong light responsiveness with a weak autonomous expression in ventrolateral neurons.

Jan Fahrenkrug - One of the best experts on this subject based on the ideXlab platform.

  • Diurnal rhythmicity of the canonical clock genes Per1, Per2 and Bmal1 in the rat adrenal gland is unaltered after hypophysectomy.
    Journal of neuroendocrinology, 2008
    Co-Authors: Jan Fahrenkrug, Jens Hannibal, Birgitte Georg
    Abstract:

    Circadian rhythms are generated by endogenous clocks in the central brain oscillator, the suprachiasmatic nucleus (SCN), and peripheral tissues. The molecular basis for the circadian clock consists of a number of genes and proteins that form transcriptional/translational feedback loops. Rhythmic expression of clock genes in the adrenal glands has previously been reported. Since the central clock in the SCN communicates with the adrenal glands via circadian release of adrenocorticotrophic hormone, we quantified the mRNAs for the canonical clock genes, Per 1, Per2 and Bmal1 in the adrenal glands by real-time reverse transcription-polymerase chain reaction during a 24-h-cycle in normal and hypophysectomised rats. The mRNAs for all the three clock genes disclosed rhythmic oscillations with a period of 24 h and the phase did not differ between the hypophysectomised and intact rats. The expression pattern of Per1 and Bmal1 was in antiphase in both groups of animals. In situ hybridisation histochemistry using antisense RNA probes demonstrated that, at times of peak expression, mRNAs for all the three clock genes were expressed in the adrenal cortex with a particularly strong labelling in the zona reticularis. In accordance with the mRNA localisation, immunostaining for PER1 protein was visualised in cells of the adrenal cortex, being most intense in the inner zone. The immunostaining also demonstrated a translocation of PER1 protein from the cytoplasm to the nucleus during the daily cycle, supporting the existence of a core oscillator in the individual adrenal gland cells. Our findings support the existence of a circadian core oscillator in cells of the rat adrenal cortex and indicate that the activity of the oscillator is independent of SCN signalling via the pituitary gland. The adrenal cortical clock could be involved in rhythmic transcriptional activation of genes associated with hormonal biosynthesis, involved in gating of the response of the adrenal cortex to external cues or involved in apoptosis of adrenal cortical cells.

  • diurnal rhythmicity of the clock genes per1 and per2 in the rat ovary
    Endocrinology, 2006
    Co-Authors: Jan Fahrenkrug, Jens Hannibal, Birgitte Georg, Peter Hindersson, Soren Gras
    Abstract:

    Circadian rhythms are generated by endogenous clocks in the central brain oscillator, the suprachiasmatic nucleus, and peripheral tissues. The molecular basis for the circadian clock consists of a number of genes and proteins that form transcriptional/translational feedback loops. In the mammalian gonads, clock genes have been reported in the testes, but the expression pattern is developmental rather than circadian. Here we investigated the daily expression of the two core clock genes, Per1 and Per2, in the rat ovary using real-time RT-PCR, in situ hybridization histochemistry, and immunohistochemistry. Both Per1 and Per2 mRNA displayed a statistically significant rhythmic oscillation in the ovary with a period of 24 h in: 1) a group of rats during proestrus and estrus under 12-h light,12-h dark cycles; 2) a second group of rats representingamixtureofall4doftheestrouscycleunder12-h light,12-h dark conditions; and 3) a third group of rats representing a mixture of al l4do festrous cycle during continuous darkness. Per1 mRNA was low at Zeitgeber time 0–2 and peaked at Zeitgeber time 12–14, whereas Per2 mRNA was delayed by approximately 4 h relative to Per1 .B yin situ hybridization histochemistry, Per mRNAs were localized to steroidogenic cells in preantral, antral, and preovulatory follicles; corpora lutea; and interstitial glandular tissue. With newly developed antisera, we substantiated the expression of Per1 and Per2 in these cells by single/double immunohistochemistry. Furthermore, we visualized the temporal intracellular movements of PER1 and PER2 proteins. These findings suggest the existence of an ovarian circadian clock, which may play a role both locally and in the hypothalamo-pituitaryovarian axis. (Endocrinology 147: 3769–3776, 2006)

  • Diurnal Rhythmicity of the Clock Genes Per1 and Per2 in the Rat Ovary
    Endocrinology, 2006
    Co-Authors: Jan Fahrenkrug, Jens Hannibal, Birgitte Georg, Peter Hindersson, Soren Gras
    Abstract:

    Circadian rhythms are generated by endogenous clocks in the central brain oscillator, the suprachiasmatic nucleus, and peripheral tissues. The molecular basis for the circadian clock consists of a number of genes and proteins that form transcriptional/translational feedback loops. In the mammalian gonads, clock genes have been reported in the testes, but the expression pattern is developmental rather than circadian. Here we investigated the daily expression of the two core clock genes, Per1 and Per2, in the rat ovary using real-time RT-PCR, in situ hybridization histochemistry, and immunohistochemistry. Both Per1 and Per2 mRNA displayed a statistically significant rhythmic oscillation in the ovary with a period of 24 h in: 1) a group of rats during proestrus and estrus under 12-h light,12-h dark cycles; 2) a second group of rats representing a mixture of all 4 d of the estrous cycle under 12-h light,12-h dark conditions; and 3) a third group of rats representing a mixture of all 4 d of estrous cycle during continuous darkness. Per1 mRNA was low at Zeitgeber time 0-2 and peaked at Zeitgeber time 12-14, whereas Per2 mRNA was delayed by approximately 4 h relative to Per1. By in situ hybridization histochemistry, Per mRNAs were localized to steroidogenic cells in preantral, antral, and preovulatory follicles; corpora lutea; and interstitial glandular tissue. With newly developed antisera, we substantiated the expression of Per1 and Per2 in these cells by single/double immunohistochemistry. Furthermore, we visualized the temporal intracellular movements of PER1 and PER2 proteins. These findings suggest the existence of an ovarian circadian clock, which may play a role both locally and in the hypothalamo-pituitary-ovarian axis.

  • vasoactive intestinal polypeptide induces per1 and per2 gene expression in the rat suprachiasmatic nucleus late at night
    European Journal of Neuroscience, 2002
    Co-Authors: Henriette Svarre Nielsen, Jens Hannibal, Jan Fahrenkrug
    Abstract:

    Circadian rhythms in behaviour and physiology generated by the suprachiasmatic nucleus (SCN) are entrained to the environmental light/dark cycle via the retinohypothalamic tract. How light is able to adjust the endogenous rhythm is not fully understood, but induction of the two clock genes per1 and per2 in the SCN is believed to be important for the adjustment. Recently, it was shown that vasoactive intestinal polypeptide (VIP), a neurotransmitter found in light-responsive cells of the SCN, is able to phase shift the circadian rhythm similar to light. In the present study we show by means of an in vitro brain slice model and quantitative in situ hybridization histochemistry that VIP induces both per1 and per2 gene expression in the SCN during late subjective night (CT19). The signalling pathways responsible for the VIP signalling to the clock were investigated using inhibitors of protein kinase A and phospholipase C mediated signalling. Our results demonstrate that both pathways are involved in VIP induced per gene expression and suggest that VIP is important for light-induced phase shift late at night.

Shigenobu Shibata - One of the best experts on this subject based on the ideXlab platform.

  • effect of quetiapine on per1 per2 and bmal1 clock gene expression in the mouse amygdala and hippocampus
    Journal of Pharmacological Sciences, 2014
    Co-Authors: Shunpei Moriya, Yu Tahara, Hiroyuki Sasaki, Yutaro Hamaguchi, Daisuke Kuriki, Ryosuke Ishikawa, Jun Ishigooka, Shigenobu Shibata
    Abstract:

    Circadian rhythms are related to various psychiatric disorders. Recently, antipsychotics, including quetiapine (QTP), have been accepted as potential therapeutic agents for the treatment of depression, but its mechanism remains poorly understood. In this study, we examined clock gene fluctuation patterns in QTP-treated mice. QTP significantly increased Per2 mRNA at ZT12 and Per1 and Per2 expression at ZT18 in the amygdala. There were significant differences between the control and QTP groups in the cross-time effects of Per2 mRNA expression in the amygdala. Our findings suggest that QTP possibly acts on the circadian system, which then induces changes in mood symptoms.

  • time dependent inhibitory effect of lipopolysaccharide injection on per1 and per2 gene expression in the mouse heart and liver
    Chronobiology International, 2010
    Co-Authors: Yusuke Yamamura, Ichiro Yano, Takashi Kudo, Shigenobu Shibata
    Abstract:

    Lipopolysaccharide (LPS) is a pathogen-associated large molecule responsible for sepsis-related endotoxic shock, and the heart is one of the most common organs adversely affected. LPS is reported to increase serum TNFalpha levels and reduce Per1 and Per2 gene expression. Therefore, in this experiment, we determined the time-dependent effects of LPS on heart rate (HR) and circadian gene expression in the mouse heart and liver. HR of the LPS group was significantly elevated 2 and 8 h after injection compared to the control group. A significant percent increase in HR was observed at ZT6, 12, and 18. LPS increased Tnfalpha mRNA expression in the heart and liver at ZT6, 18, and 24. A time-dependent effect of LPS on reduction of Per1 and Per2 gene expression was also observed in the heart and liver. In order to examine the effect of LPS on cell damage, we examined apoptosis-related gene expression after LPS injection. Bax mRNA expression level of the LPS group was higher than that of the control group 8 and 26 h after injection. On the other hand, Bcl2 mRNA expression level of the LPS group was lower than that of the control group 2 and 26 h after injection. Dexamethasone strongly attenuated the LPS-induced increase of serum TNFalpha without significant change in Per1 and Per2 gene expression in the heart. In conclusion, the present results demonstrated that LPS exerts a time-dependent inhibitory effect on Per1 and Per2 gene expression in the heart and liver. The chronopharmacological lethal effect of LPS may be related to the time-dependent increase of serum TNFalpha level and simultaneously high level of Per2 gene expression in the heart and liver between ZT12-18. Taken together, chronopharmacological effect of LPS may be related to not only sickness behavior syndrome and mortality, but also circadian rhythm systems.

  • differential daily expression of per1 and per2 mrna in the suprachiasmatic nucleus of fetal and early postnatal mice
    European Journal of Neuroscience, 2001
    Co-Authors: Haruka Shimomura, Takahiro Moriya, Motoki Sudo, Hisanori Wakamatsu, Masashi Akiyama, Yoshiaki Miyake, Shigenobu Shibata
    Abstract:

    It is well known that there are circadian rhythms of 2-deoxyglucose uptake and neuronal firing in the rat suprachiasmatic nucleus (SCN) during fetal and early postnatal periods. A core clock mechanism in the mouse SCN appears to involve a transcriptional feedback loop in which CLOCK and BMAL1 function as positive regulators and three mPeriod (mPer) genes play a role in negative feedback. Per genes expression occurs not only in the adult SCN but also in the fetal SCN. However, the developmental change in these genes remains unclear. In this experiment, we examined the day--night pattern of expression of Per1 and Per2 mRNA in the mouse SCN and cerebral cortex on embryonic day 17, postnatal day 3, and in young adult mice under a light-dark cycle. Daily rhythms of mRNA content were observed in mPer1 but not mPer2 in the fetal SCN. Interestingly, the expression of mPer2 in the SCN was high throughout the entire day, and a significant daily rhythm of this gene was observed on postnatal day 6. The expression pattern of SCN mPer1 in constant darkness was similar to that seen in the light-dark cycle. The present results suggest that the daily oscillation of mPer1 but not of mPer2 in the SCN in fetal and early postnatal mice may be associated with the daily rhythms of 2-deoxyglucose uptake and neuronal firing.

  • inhibitory action of brotizolam on circadian and light induced per1 and per2 expression in the hamster suprachiasmatic nucleus
    British Journal of Pharmacology, 2000
    Co-Authors: Shin Ichi Yokota, Takahiro Moriya, Masashi Akiyama, Kazumasa Horikawa, Shizufumi Ebihara, Goyo Komuro, Tatsuro Ohta, Shigenobu Shibata
    Abstract:

    Triazolam reportedly causes phase advances in hamster wheel-running rhythm after injection during subjective daytime. However, it is unclear whether benzodiazepine affects the PER: gene expression accompanying a behavioural phase shift. Brotizolam (0.5 - 10 mg kg(-1)) induced large phase advances in hamster rhythm when injected during mid-subjective daytime (circadian time 6 or 9), but not at circadian time 0, 3 or 15. Brotizolam (5 mg kg(-1)) significantly reduced the expression of PER:1 and PER:2 in the suprachiasmatic nucleus 1 and 2 h after injection at circadian time 6, and slightly reduced them at circadian time 20. Injection of 8-OH-DPAT (5 mg kg(-1)) at subjective daytime induced similar phase advances with a reduction of PER:1 and PER:2 expression. Co-administration of brotizolam with 8-OH DPAT failed to potentiate the 8-OH DPAT-induced phase advances and reduced PER: expression. Both phase advance and rapid induction of PER:1 and PER:2 in the suprachiasmatic nucleus after light exposure (5 lux, 15 min) at circadian time 20 was strongly attenuated by co-treatment with brotizolam 5 mg kg(-1). The present results strongly suggest that reduction of PER:1 and/or PER:2 expression during subjective daytime by brotizolam may be an important step in causing a behavioural phase advance. The co-administration experiment suggests that common mechanism(s) are involved in brotizolam- or 8-OH DPAT-induced phase advances and the reduction of PER: gene expression. These results suggest that brotizolam is not only a good drug for insomnia but also a drug capable of facilitating re-entrainment like melatonin.

  • nonphotic entrainment by 5 ht1a 7 receptor agonists accompanied by reduced per1 and per2 mrna levels in the suprachiasmatic nuclei
    The Journal of Neuroscience, 2000
    Co-Authors: Kazumasa Horikawa, Hitoshi Okamura, Takahiro Moriya, Masashi Akiyama, Shin Ichi Yokota, Kazuyuki Fuji, Shigenobu Shibata
    Abstract:

    In mammals, the environmental light/dark cycle strongly synchronizes the circadian clock within the suprachiasmatic nuclei (SCN) to 24 hr. It is well known that not only photic but also nonphotic stimuli can entrain the SCN clock. Actually, many studies have shown that a daytime injection of 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH DPAT), a serotonin 1A/7 receptor agonist, as a nonphotic stimulus induces phase advances in hamster behavioral circadian rhythms in vivo, as well as the neuron activity rhythm of the SCN in vitro. Recent reports suggest that mammalian homologs of the Drosophila clock gene, Period (Per), are involved in photic entrainment. Therefore, we examined whether phase advances elicited by 8-OH DPAT were associated with a change of Period mRNA levels in the SCN. In this experiment, we cloned partial cDNAs encoding hamster Per1, Per2, and Per3 and observed both circadian oscillation and the light responsiveness of Period. Furthermore, we found that the inhibitory effect of 8-OH DPAT on hamster Per1 and Per2 mRNA levels in the SCN occurred only during the hamster's mid-subjective day, but not during the early subjective day or subjective night. The present findings demonstrate that the acute and circadian time-dependent reduction of Per1 and/or Per2 mRNA in the hamster SCN by 8-OH DPAT is strongly correlated with the phase resetting in response to 8-OH DPAT.

Jens Hannibal - One of the best experts on this subject based on the ideXlab platform.

  • Diurnal rhythmicity of the canonical clock genes Per1, Per2 and Bmal1 in the rat adrenal gland is unaltered after hypophysectomy.
    Journal of neuroendocrinology, 2008
    Co-Authors: Jan Fahrenkrug, Jens Hannibal, Birgitte Georg
    Abstract:

    Circadian rhythms are generated by endogenous clocks in the central brain oscillator, the suprachiasmatic nucleus (SCN), and peripheral tissues. The molecular basis for the circadian clock consists of a number of genes and proteins that form transcriptional/translational feedback loops. Rhythmic expression of clock genes in the adrenal glands has previously been reported. Since the central clock in the SCN communicates with the adrenal glands via circadian release of adrenocorticotrophic hormone, we quantified the mRNAs for the canonical clock genes, Per 1, Per2 and Bmal1 in the adrenal glands by real-time reverse transcription-polymerase chain reaction during a 24-h-cycle in normal and hypophysectomised rats. The mRNAs for all the three clock genes disclosed rhythmic oscillations with a period of 24 h and the phase did not differ between the hypophysectomised and intact rats. The expression pattern of Per1 and Bmal1 was in antiphase in both groups of animals. In situ hybridisation histochemistry using antisense RNA probes demonstrated that, at times of peak expression, mRNAs for all the three clock genes were expressed in the adrenal cortex with a particularly strong labelling in the zona reticularis. In accordance with the mRNA localisation, immunostaining for PER1 protein was visualised in cells of the adrenal cortex, being most intense in the inner zone. The immunostaining also demonstrated a translocation of PER1 protein from the cytoplasm to the nucleus during the daily cycle, supporting the existence of a core oscillator in the individual adrenal gland cells. Our findings support the existence of a circadian core oscillator in cells of the rat adrenal cortex and indicate that the activity of the oscillator is independent of SCN signalling via the pituitary gland. The adrenal cortical clock could be involved in rhythmic transcriptional activation of genes associated with hormonal biosynthesis, involved in gating of the response of the adrenal cortex to external cues or involved in apoptosis of adrenal cortical cells.

  • diurnal rhythmicity of the clock genes per1 and per2 in the rat ovary
    Endocrinology, 2006
    Co-Authors: Jan Fahrenkrug, Jens Hannibal, Birgitte Georg, Peter Hindersson, Soren Gras
    Abstract:

    Circadian rhythms are generated by endogenous clocks in the central brain oscillator, the suprachiasmatic nucleus, and peripheral tissues. The molecular basis for the circadian clock consists of a number of genes and proteins that form transcriptional/translational feedback loops. In the mammalian gonads, clock genes have been reported in the testes, but the expression pattern is developmental rather than circadian. Here we investigated the daily expression of the two core clock genes, Per1 and Per2, in the rat ovary using real-time RT-PCR, in situ hybridization histochemistry, and immunohistochemistry. Both Per1 and Per2 mRNA displayed a statistically significant rhythmic oscillation in the ovary with a period of 24 h in: 1) a group of rats during proestrus and estrus under 12-h light,12-h dark cycles; 2) a second group of rats representingamixtureofall4doftheestrouscycleunder12-h light,12-h dark conditions; and 3) a third group of rats representing a mixture of al l4do festrous cycle during continuous darkness. Per1 mRNA was low at Zeitgeber time 0–2 and peaked at Zeitgeber time 12–14, whereas Per2 mRNA was delayed by approximately 4 h relative to Per1 .B yin situ hybridization histochemistry, Per mRNAs were localized to steroidogenic cells in preantral, antral, and preovulatory follicles; corpora lutea; and interstitial glandular tissue. With newly developed antisera, we substantiated the expression of Per1 and Per2 in these cells by single/double immunohistochemistry. Furthermore, we visualized the temporal intracellular movements of PER1 and PER2 proteins. These findings suggest the existence of an ovarian circadian clock, which may play a role both locally and in the hypothalamo-pituitaryovarian axis. (Endocrinology 147: 3769–3776, 2006)

  • Diurnal Rhythmicity of the Clock Genes Per1 and Per2 in the Rat Ovary
    Endocrinology, 2006
    Co-Authors: Jan Fahrenkrug, Jens Hannibal, Birgitte Georg, Peter Hindersson, Soren Gras
    Abstract:

    Circadian rhythms are generated by endogenous clocks in the central brain oscillator, the suprachiasmatic nucleus, and peripheral tissues. The molecular basis for the circadian clock consists of a number of genes and proteins that form transcriptional/translational feedback loops. In the mammalian gonads, clock genes have been reported in the testes, but the expression pattern is developmental rather than circadian. Here we investigated the daily expression of the two core clock genes, Per1 and Per2, in the rat ovary using real-time RT-PCR, in situ hybridization histochemistry, and immunohistochemistry. Both Per1 and Per2 mRNA displayed a statistically significant rhythmic oscillation in the ovary with a period of 24 h in: 1) a group of rats during proestrus and estrus under 12-h light,12-h dark cycles; 2) a second group of rats representing a mixture of all 4 d of the estrous cycle under 12-h light,12-h dark conditions; and 3) a third group of rats representing a mixture of all 4 d of estrous cycle during continuous darkness. Per1 mRNA was low at Zeitgeber time 0-2 and peaked at Zeitgeber time 12-14, whereas Per2 mRNA was delayed by approximately 4 h relative to Per1. By in situ hybridization histochemistry, Per mRNAs were localized to steroidogenic cells in preantral, antral, and preovulatory follicles; corpora lutea; and interstitial glandular tissue. With newly developed antisera, we substantiated the expression of Per1 and Per2 in these cells by single/double immunohistochemistry. Furthermore, we visualized the temporal intracellular movements of PER1 and PER2 proteins. These findings suggest the existence of an ovarian circadian clock, which may play a role both locally and in the hypothalamo-pituitary-ovarian axis.

  • vasoactive intestinal polypeptide induces per1 and per2 gene expression in the rat suprachiasmatic nucleus late at night
    European Journal of Neuroscience, 2002
    Co-Authors: Henriette Svarre Nielsen, Jens Hannibal, Jan Fahrenkrug
    Abstract:

    Circadian rhythms in behaviour and physiology generated by the suprachiasmatic nucleus (SCN) are entrained to the environmental light/dark cycle via the retinohypothalamic tract. How light is able to adjust the endogenous rhythm is not fully understood, but induction of the two clock genes per1 and per2 in the SCN is believed to be important for the adjustment. Recently, it was shown that vasoactive intestinal polypeptide (VIP), a neurotransmitter found in light-responsive cells of the SCN, is able to phase shift the circadian rhythm similar to light. In the present study we show by means of an in vitro brain slice model and quantitative in situ hybridization histochemistry that VIP induces both per1 and per2 gene expression in the SCN during late subjective night (CT19). The signalling pathways responsible for the VIP signalling to the clock were investigated using inhibitors of protein kinase A and phospholipase C mediated signalling. Our results demonstrate that both pathways are involved in VIP induced per gene expression and suggest that VIP is important for light-induced phase shift late at night.

Soren Gras - One of the best experts on this subject based on the ideXlab platform.

  • diurnal rhythmicity of the clock genes per1 and per2 in the rat ovary
    Endocrinology, 2006
    Co-Authors: Jan Fahrenkrug, Jens Hannibal, Birgitte Georg, Peter Hindersson, Soren Gras
    Abstract:

    Circadian rhythms are generated by endogenous clocks in the central brain oscillator, the suprachiasmatic nucleus, and peripheral tissues. The molecular basis for the circadian clock consists of a number of genes and proteins that form transcriptional/translational feedback loops. In the mammalian gonads, clock genes have been reported in the testes, but the expression pattern is developmental rather than circadian. Here we investigated the daily expression of the two core clock genes, Per1 and Per2, in the rat ovary using real-time RT-PCR, in situ hybridization histochemistry, and immunohistochemistry. Both Per1 and Per2 mRNA displayed a statistically significant rhythmic oscillation in the ovary with a period of 24 h in: 1) a group of rats during proestrus and estrus under 12-h light,12-h dark cycles; 2) a second group of rats representingamixtureofall4doftheestrouscycleunder12-h light,12-h dark conditions; and 3) a third group of rats representing a mixture of al l4do festrous cycle during continuous darkness. Per1 mRNA was low at Zeitgeber time 0–2 and peaked at Zeitgeber time 12–14, whereas Per2 mRNA was delayed by approximately 4 h relative to Per1 .B yin situ hybridization histochemistry, Per mRNAs were localized to steroidogenic cells in preantral, antral, and preovulatory follicles; corpora lutea; and interstitial glandular tissue. With newly developed antisera, we substantiated the expression of Per1 and Per2 in these cells by single/double immunohistochemistry. Furthermore, we visualized the temporal intracellular movements of PER1 and PER2 proteins. These findings suggest the existence of an ovarian circadian clock, which may play a role both locally and in the hypothalamo-pituitaryovarian axis. (Endocrinology 147: 3769–3776, 2006)

  • Diurnal Rhythmicity of the Clock Genes Per1 and Per2 in the Rat Ovary
    Endocrinology, 2006
    Co-Authors: Jan Fahrenkrug, Jens Hannibal, Birgitte Georg, Peter Hindersson, Soren Gras
    Abstract:

    Circadian rhythms are generated by endogenous clocks in the central brain oscillator, the suprachiasmatic nucleus, and peripheral tissues. The molecular basis for the circadian clock consists of a number of genes and proteins that form transcriptional/translational feedback loops. In the mammalian gonads, clock genes have been reported in the testes, but the expression pattern is developmental rather than circadian. Here we investigated the daily expression of the two core clock genes, Per1 and Per2, in the rat ovary using real-time RT-PCR, in situ hybridization histochemistry, and immunohistochemistry. Both Per1 and Per2 mRNA displayed a statistically significant rhythmic oscillation in the ovary with a period of 24 h in: 1) a group of rats during proestrus and estrus under 12-h light,12-h dark cycles; 2) a second group of rats representing a mixture of all 4 d of the estrous cycle under 12-h light,12-h dark conditions; and 3) a third group of rats representing a mixture of all 4 d of estrous cycle during continuous darkness. Per1 mRNA was low at Zeitgeber time 0-2 and peaked at Zeitgeber time 12-14, whereas Per2 mRNA was delayed by approximately 4 h relative to Per1. By in situ hybridization histochemistry, Per mRNAs were localized to steroidogenic cells in preantral, antral, and preovulatory follicles; corpora lutea; and interstitial glandular tissue. With newly developed antisera, we substantiated the expression of Per1 and Per2 in these cells by single/double immunohistochemistry. Furthermore, we visualized the temporal intracellular movements of PER1 and PER2 proteins. These findings suggest the existence of an ovarian circadian clock, which may play a role both locally and in the hypothalamo-pituitary-ovarian axis.