Polyprotein

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 23160 Experts worldwide ranked by ideXlab platform

S Höglund - One of the best experts on this subject based on the ideXlab platform.

  • Basic Residues in Human Immunodeficiency Virus Type 1 Nucleocapsid Promote Virion Assembly via Interaction with RNA
    Journal of Virology, 2000
    Co-Authors: A. Cimarelli, S. Sandin, S Höglund, J. Luban
    Abstract:

    Retroviral Gag Polyproteins drive virion assembly by polymerizing to form a spherical shell that lines the inner membrane of nascent virions. Deletion of the nucleocapsid (NC) domain of the Gag Polyprotein disrupts assembly, presumably because NC is required for polymerization. Human immunodeficiency virus type 1 NC possesses two zinc finger motifs that are required for specific recognition and packaging of viral genomic RNA. Though essential, zinc fingers and genomic RNA are not required for virion assembly. NC promiscuously associates with cellular RNAs, many of which are incorporated into virions. It has been hypothesized that Gag polymerization and virion assembly are promoted by nonspecific interaction of NC with RNA. Consistent with this model, we found an inverse relationship between the number of NC basic residues replaced with alanine and NC's nonspecific RNA-binding activity, Gag's ability to polymerize in vitro and in vivo, and Gag's capacity to assemble virions. In contrast, mutation of NC's zinc fingers had only minor effects on these properties.

Barry Falgout - One of the best experts on this subject based on the ideXlab platform.

  • cleavage of the dengue virus Polyprotein at the ns3 ns4a and ns4b ns5 junctions is mediated by viral protease ns2b ns3 whereas ns4a ns4b may be processed by a cellular protease
    Journal of Virology, 1992
    Co-Authors: A Cahour, Barry Falgout
    Abstract:

    The cleavage mechanism utilized for processing of the NS3-NS4A-NS4B-NS5 domain of the dengue virus Polyprotein was studied by using the vaccinia virus expression system. Recombinant vaccinia viruses vNS2B-NS3-NS4A-NS4B-NS5, vNS3-NS4A-NS4B-NS5, vNS4A-NS4B-NS5, and vNS4B-NS5 were constructed. These recombinants were used to infect cells, and the labeled lysates were analyzed by immunoprecipitation. Recombinant vNS2B-NS3-NS4A-NS4B-NS5 expressed the authentic NS3 and NS5 proteins, but the other recombinants produced uncleaved Polyproteins. These findings indicate that NS2B is required for processing of the downstream nonstructural proteins, including the NS3/NS4A and NS4B/NS5 junctions, both of which contain a dibasic amino acid sequence preceding the cleavage site. The flavivirus NS4A/NS4B cleavage site follows a long hydrophobic sequence. The Polyprotein NS4A-NS4B-NS5 was cleaved at the NS4A/NS4B junction in the absence of other dengue virus functions. One interpretation for this finding is that NS4A/NS4B cleavage is mediated by a host protease, presumably a signal peptidase. Although vNS3-NS4A-NS4B-NS5 expressed only the Polyprotein, earlier results demonstrated that cleavage at the NS4A/NS4B junction occurred when an analogous recombinant, vNS3-NS4A-84%NS4B, was expressed. Thus, it appears that uncleaved NS3 plus NS5 inhibit NS4A/NS4B cleavage presumably because the putative signal sequence is not accessible for recognition by the responsible protease. Finally, recombinants that expressed an uncleaved NS4B-NS5 Polyprotein, such as vNS4A-NS4B-NS5 or vNS4B-NS5, produced NS5 when complemented with vNS2B-30%NS3 or with vNS2B plus v30%NS3. These results indicate that cleavage at the NS4B/NS5 junction can be mediated by NS2B and NS3 in trans.

  • Cleavage of the dengue virus Polyprotein at the NS3/NS4A and NS4B/NS5 junctions is mediated by viral protease NS2B-NS3, whereas NS4A/NS4B may be processed by a cellular protease.
    Journal of Virology, 1992
    Co-Authors: A Cahour, Barry Falgout
    Abstract:

    Abstract The cleavage mechanism utilized for processing of the NS3-NS4A-NS4B-NS5 domain of the dengue virus Polyprotein was studied by using the vaccinia virus expression system. Recombinant vaccinia viruses vNS2B-NS3-NS4A-NS4B-NS5, vNS3-NS4A-NS4B-NS5, vNS4A-NS4B-NS5, and vNS4B-NS5 were constructed. These recombinants were used to infect cells, and the labeled lysates were analyzed by immunoprecipitation. Recombinant vNS2B-NS3-NS4A-NS4B-NS5 expressed the authentic NS3 and NS5 proteins, but the other recombinants produced uncleaved Polyproteins. These findings indicate that NS2B is required for processing of the downstream nonstructural proteins, including the NS3/NS4A and NS4B/NS5 junctions, both of which contain a dibasic amino acid sequence preceding the cleavage site. The flavivirus NS4A/NS4B cleavage site follows a long hydrophobic sequence. The Polyprotein NS4A-NS4B-NS5 was cleaved at the NS4A/NS4B junction in the absence of other dengue virus functions. One interpretation for this finding is that NS4A/NS4B cleavage is mediated by a host protease, presumably a signal peptidase. Although vNS3-NS4A-NS4B-NS5 expressed only the Polyprotein, earlier results demonstrated that cleavage at the NS4A/NS4B junction occurred when an analogous recombinant, vNS3-NS4A-84%NS4B, was expressed. Thus, it appears that uncleaved NS3 plus NS5 inhibit NS4A/NS4B cleavage presumably because the putative signal sequence is not accessible for recognition by the responsible protease. Finally, recombinants that expressed an uncleaved NS4B-NS5 Polyprotein, such as vNS4A-NS4B-NS5 or vNS4B-NS5, produced NS5 when complemented with vNS2B-30%NS3 or with vNS2B plus v30%NS3. These results indicate that cleavage at the NS4B/NS5 junction can be mediated by NS2B and NS3 in trans.

Charles M Rice - One of the best experts on this subject based on the ideXlab platform.

  • characterization of the hepatitis c virus encoded serine proteinase determination of proteinase dependent Polyprotein cleavage sites
    Journal of Virology, 1993
    Co-Authors: Arash Grakoui, Czeslaw Wychowski, Stephen M Feinstone, David W Mccourt, Charles M Rice
    Abstract:

    Processing of the hepatitis C virus (HCV) H strain Polyprotein yields at least nine distinct cleavage products: NH2-C-E1-E2-NS2-NS3-NS4A-NS4B-NS5A-NS5B-CO OH. As described in this report, site-directed mutagenesis and transient expression analyses were used to study the role of a putative serine proteinase domain, located in the N-terminal one-third of the NS3 protein, in proteolytic processing of HCV Polyproteins. All four cleavages which occur C terminal to the proteinase domain (3/4A, 4A/4B, 4B/5A, and 5A/5B) were abolished by substitution of alanine for either of two predicted residues (His-1083 and Ser-1165) in the proteinase catalytic triad. However, such substitutions have no observable effect on cleavages in the structural region or at the 2/3 site. Deletion analyses suggest that the structural and NS2 regions of the Polyprotein are not required for the HCV NS3 proteinase activity. NS3 proteinase-dependent cleavage sites were localized by N-terminal sequence analysis of NS4A, NS4B, NS5A, and NS5B. Sequence comparison of the residues flanking these cleavage sites for all sequenced HCV strains reveals conserved residues which may play a role in determining HCV NS3 proteinase substrate specificity. These features include an acidic residue (Asp or Glu) at the P6 position, a Cys or Thr residue at the P1 position, and a Ser or Ala residue at the P1' position.

  • expression and identification of hepatitis c virus Polyprotein cleavage products
    Journal of Virology, 1993
    Co-Authors: Arash Grakoui, Czeslaw Wychowski, Stephen M Feinstone, Charles M Rice
    Abstract:

    Abstract Hepatitis C virus (HCV) is the major cause of transfusion-acquired non-A, non-B hepatitis. HCV is an enveloped positive-sense RNA virus which has been classified as a new genus in the flavivirus family. Like the other two genera in this family, the flaviviruses and the pestiviruses, HCV polypeptides appear to be produced by translation of a long open reading frame and subsequent proteolytic processing of this Polyprotein. In this study, a cDNA clone encompassing the long open reading frame of the HCV H strain (3,011 amino acid residues) has been assembled and sequenced. This clone and various truncated derivatives were used in vaccinia virus transient-expression assays to map HCV-encoded polypeptides and to study HCV Polyprotein processing. HCV Polyproteins and cleavage products were identified by using convalescent human sera and a panel of region-specific polyclonal rabbit antisera. Similar results were obtained for several mammalian cell lines examined, including the human HepG2 hepatoma line. The data indicate that at least nine polypeptides are produced by cleavage of the HCV H strain Polyprotein. Putative structural proteins, located in the N-terminal one-fourth of the Polyprotein, include the capsid protein C (21 kDa) followed by two possible virion envelope proteins, E1 (31 kDa) and E2 (70 kDa), which are heavily modified by N-linked glycosylation. The remainder of the Polyprotein probably encodes nonstructural proteins including NS2 (23 kDa), NS3 (70 kDa), NS4A (8 kDa), NS4B (27 kDa), NS5A (58 kDa), and NS5B (68 kDa). An 82- to 88-kDa glycoprotein which reacted with both E2 and NS2-specific HCV antisera was also identified (called E2-NS2). Preliminary results suggest that a fraction of E1 is associated with E2 and E2-NS2 via disulfide linkages.

  • processing of the yellow fever virus nonstructural Polyprotein a catalytically active ns3 proteinase domain and ns2b are required for cleavages at dibasic sites
    Journal of Virology, 1991
    Co-Authors: T J Chambers, Arash Grakoui, Charles M Rice
    Abstract:

    The vaccinia virus-T7 transient expression system was used to further examine the role of the NS3 proteinase in processing of the yellow fever (YF) virus nonstructural Polyprotein in BHK cells. YF virus-specific Polyproteins and cleavage products were identified by immunoprecipitation with region-specific antisera, by size, and by comparison with authentic YF virus polypeptides. A YF virus Polyprotein initiating with a signal sequence derived from the E protein fused to the N terminus of NS2A and extending through the N-terminal 356 amino acids of NS5 exhibited processing at the 2A-2B, 2B-3, 3-4A, 4A-4B, and 4B-5 cleavage sites. Similar results were obtained with Polyproteins whose N termini began within NS2A (position 110) or with NS2B. When the NS3 proteinase domain was inactivated by replacing the proposed catalytic Ser-138 with Ala, processing at all sites was abolished. The results suggest that an active NS3 proteinase domain is necessary for cleavage at the diabasic nonstructural cleavage sites and that cleavage at the proposed 4A-4B signalase site requires prior cleavage at the 4B-5 site. Cleavages were not observed with a Polyprotein whose N terminus began with NS3, but cleavage at the 4B-5 site could be restored by supplying the the NS2B protein in trans. Several experimental results suggested that trans cleavage at the 4B-5 site requires association of NS2B and the NS3 proteinase domain. Coexpression of different proteinases and catalytically inactive Polyprotein substrates revealed that trans cleavage at the 2B-3 and 4B-5 sites was relatively efficient when compared with trans cleavage at the 2A-2B and 3-4A sites.

Hans-georg Kräusslich - One of the best experts on this subject based on the ideXlab platform.

  • Transport of the Intracisternal A-Type Particle Gag Polyprotein to the Endoplasmic Reticulum Is Mediated by the Signal Recognition Particle
    Journal of Virology, 2003
    Co-Authors: Frauke Fehrmann, Martin Jung, Richard Zimmermann, Hans-georg Kräusslich
    Abstract:

    Intracisternal A-type particles (IAP) are defective endogenous retroviruses that accumulate in the endoplasmic reticulum (ER) of rodent cells. The enveloped particles are produced by assembly and budding of IAP Gag Polyproteins at the ER membrane. In this study, we analyzed the specific ER transport of the Gag Polyprotein of the IAP element MIA14. To this end, we performed in vitro translation of Gag in the presence of microsomal membranes or synthetic proteoliposomes followed by membrane sedimentation or flotation. ER binding of IAP Gag occurred mostly cotranslationally, and Gag Polyproteins interacted specifically with proteoliposomes containing only signal recognition particle (SRP) receptor and the Sec61p complex, which form the minimal ER translocation apparatus. The direct participation of SRP in ER targeting of IAP Gag was demonstrated in cross-linking and immunoprecipitation experiments. The IAP Polyprotein was not translocated into the ER; it was found to be tightly associated with the cytoplasmic side of the ER membrane but did not behave as an integral membrane protein. Substituting the functional signal peptide of preprolactin for the hydrophobic sequence at the N terminus of IAP Gag also did not result in translocation of the chimeric protein into the ER lumen, and grafting the IAP hydrophobic sequence onto preprolactin failed to yield luminal transport as well. These results suggest that the N-terminal hydrophobic region of the IAP Gag Polyprotein functions as a transport signal which mediates SRP-dependent ER targeting, but Polyprotein translocation or integration into the membrane is prevented by the signal sequence itself and by additional regions of Gag.

  • the murine endogenous retrovirus mia14 encodes an active aspartic proteinase that is functionally similar to proteinases from d type retroviruses
    Archives of Biochemistry and Biophysics, 2002
    Co-Authors: Kvido Střisovský, Frauke Fehrmann, Hans-georg Kräusslich, Daniel Smrž, Jan Konvalinka
    Abstract:

    Abstract Murine intracisternal A-type particles (IAPs) are endogenous retroviruses showing sequence homologies to B/D- and avian C-type retroviruses and a gene expression strategy similar to that of D-type retroviruses. These viruses form immature particles in the endoplasmic reticulum and do not release extracellular virions, but are competent for retrotransposition within the virus-producing cell. It had been assumed that lack of Polyprotein processing and maturation is due to a defect in the viral proteinase (PR), but recent experiments have shown that Polyprotein processing occurs when assembly of the mouse IAP MIA14 is artificially directed to the plasma membrane. We have expressed and purified recombinant MIA14 PR and show that it undergoes N- and C-terminal autoprocessing at defined sites. Using peptide cleavage and inhibition assays and in vitro cleavage of recombinant HIV-1 and MIA14 Gag Polyproteins, we show that MIA14 PR is a catalytically competent enzyme comparable in its efficiency to PRs from type D exogenous retroviruses. MIA14 PR is related to the PR of Mason–Pfizer monkey virus both functionally and with respect to its expression strategy, and is distinct from HIV-1 PR with respect to substrate specificity and catalytic efficiency. These findings reveal a functional and possibly evolutionary relationship between MIA14 and D-type retroviruses and imply that a functional PR may be relevant for intracellular retrotransposition even in the case of an endogenous retrovirus that does not produce extracellular virus.

  • the spacer peptide between human immunodeficiency virus capsid and nucleocapsid proteins is essential for ordered assembly and viral infectivity
    Journal of Virology, 1995
    Co-Authors: Hans-georg Kräusslich, Jan Konvalinka, Anke-mareil Heuser, M Facke, H Zentgraf
    Abstract:

    Morphogenesis of retroviruses involves ordered assembly of the structural Gag- and Gag-Pol Polyproteins, with subsequent budding from the plasma membrane and proteolytic cleavage by the viral proteinase (PR). Two cleavage sites exist between the capsid (CA) and nucleocapsid (NC) domains of the human immunodeficiency virus (HIV) type 1 Gag Polyprotein which are separated by a 14-amino-acid spacer peptide of unknown function. To analyze the role of the two cleavage sites and the spacer peptide, both sites were individually mutated and a deletion mutation that precisely removes the spacer peptide was constructed. Following transfection of proviral DNA carrying the point mutations, mutant Polyproteins were synthesized and assembled like wild-type Polyprotein, and release of particles was not significantly altered. Both mutations abolished cleavage at the respective site and reduced or abolished viral infectivity. Deletion of the spacer peptide severely affected ordered assembly and reduced particle release. The extracellular particles that were released exhibited normal density but were heterogeneous in size. Electron micrographs revealed large electron-dense plaques underneath the plasma membrane of transfected cells which appeared like confluent ribonucleoprotein complexes arrested early in the budding process. Extracellular particles exhibited very aberrant and heterogeneous morphology and were incapable of inducing viral spread. These particles may correspond to membrane vesicles sequestered by the rigid structures underneath the cell membrane and not released by a regular budding process.

  • Proteolytic processing of particle-associated retroviral Polyproteins by homologous and heterologous viral proteinases
    European Journal of Biochemistry, 1995
    Co-Authors: Jan Konvalinka, Anke-mareil Heuser, Olga Hrušková-heidingsfeldová, Volker M. Vogt, Juraj Sedláček, Petr Štrop, Hans-georg Kräusslich
    Abstract:

    Retroviral proteinase(PR)-catalyzed cleavage of the viral Gag and Gag-Pol Polyproteins within the nascent virus particle is required for productive viral infection. Kinetic characterization and specificity analyses have been reported for several retroviral PR using oligopeptide substrates. In this study, we performed a comparative analysis of PR from avian, bovine, simian and human retroviruses using Polyproteins of human immunodeficiency virus (HIV) type 1 or avian leukosis virus as substrates. Polyproteins were derived from immature virus-like particles purified from culture medium of transfected or recombinant baculovirus-infected cells. Specific cleavage to the correct size intermediate and end products occurred in the presence of detergent and homologous PR. HIV-1 PR cleaved its Gag precursor to completion at a concentration of approximately 25 nM but cleaved the Gag-Pol precursor incompletely even at fourfold higher PR concentration. In contrast to the requirement for high ionic strength for peptide cleavage reported previously, we found that Gag protein cleavage by HIV-1 PR proceeded best at low ionic strength, for both of the protein substrates tested. HIV-2 PR was approximately sixfold less active than HIV-1 PR. PR from avian myeloblastosis-associated virus (MAV) yielded efficient cleavage of the HIV-1 Polyprotein only at concentrations above 1 μM. Both enzymes were stimulated by high salt and their cleavage products were identical or very similar to those of HIV-1 PR. A mutant of MAV PR engineered to cleave HIV-1 peptide substrates did not cleave the HIV-1 Polyprotein at a concentration of 0.4 μM. The PR of Mason Pfizer monkey virus cleaved this Polyprotein very poorly, whereas PR of bovine leukemia virus cleaved it, albeit at different sites.

Helmut Jacobsen - One of the best experts on this subject based on the ideXlab platform.

  • Kinetic and structural analyses of hepatitis C virus Polyprotein processing.
    Journal of Virology, 1994
    Co-Authors: Ralf Bartenschlager, L Ahlborn-laake, Jan Mous, Helmut Jacobsen
    Abstract:

    Recombinant vaccinia viruses were used to study the processing of hepatitis C virus (HCV) nonstructural Polyprotein precursor. HCV-specific proteins and cleavage products were identified by size and by immunoprecipitation with region-specific antisera. A Polyprotein beginning with 20 amino acids derived from the carboxy terminus of NS2 and ending with the NS5B stop codon (amino acids 1007 to 3011) was cleaved at the NS3/4A, NS4A/4B, NS4B/5A, and NS5A/5B sites, whereas a Polyprotein in which the putative active site serine residue was replaced by an alanine remained unprocessed, demonstrating that the NS3-encoded serine-type proteinase is essential for cleavage at these sites. Processing of the NS3'-5B Polyprotein was complex and occurred rapidly. Discrete polypeptide species corresponding to various processing intermediates were detected. With the exception of NS4AB-5A/NS5A, no clear precursor-product relationships were detected. Using double infection of cells with vaccinia virus recombinants expressing either a proteolytically inactive NS3'-5B Polyprotein or an active NS3 proteinase, we found that cleavage at the NS4A/4B, NS4B/5A, and NS5A/5B sites could be mediated in trans. Absence of trans cleavage at the NS3/4A junction together with the finding that processing at this site was insensitive to dilution of the enzyme suggested that cleavage at this site is an intramolecular reaction. The trans-cleavage assay was also used to show that (i) the first 211 amino acids of NS3 were sufficient for processing at all trans sites and (ii) small deletions from the amino terminus of NS3 selectively affected cleavage at the NS4B/5A site, whereas more extensive deletions also decreased processing efficiencies at the other sites. Using a series of amino-terminally truncated substrate Polyproteins in the trans-cleavage assay, we found that NS4A is essential for cleavage at the NS4B/5A site and that processing at this site could be restored by NS4A provided in cis (i.e., together with the substrate) or in trans (i.e., together with the proteinase). These results suggest that in addition to the NS3 proteinase, NS4A sequences play an important role in HCV Polyprotein processing.

  • nonstructural protein 3 of the hepatitis c virus encodes a serine type proteinase required for cleavage at the ns3 4 and ns4 5 junctions
    Journal of Virology, 1993
    Co-Authors: Ralf Bartenschlager, L Ahlbornlaake, J Mous, Helmut Jacobsen
    Abstract:

    Abstract We have studied processing of the nonstructural (NS) Polyprotein of the hepatitis C virus. A series of cDNAs corresponding to predicted NS2/3/4 or NS3/4 regions were constructed, and processing of the Polyproteins was studied in an in vitro transcription-translation system. We report that a catalytically active serine-type proteinase is encoded by the NS3 region. Substitution of the serine residue of the putative catalytic triad (H, D, and S) by alanine blocked cleavage at the NS3/4 junction, while processing between NS2 and NS3 was not affected. Thus, cleavage at the NS2/3 junction is mediated either by cellular enzymes or by an NS-2 inherent proteinase activity. Deletion analysis of an NS3/4 cDNA construct mapped the amino terminus of the enzymatically active proteinase between amino acids 1049 and 1065 of the Polyprotein. As internal deletions of variable segments of the presumed helicase domain prevented processing at the NS314 junction, a continuous NS3 region appears to be required for processing at this site. To analyze hepatitis C virus Polyprotein cleavage in vivo, recombinant vaccinia viruses expressing NS2/3/4 or NS3/4/5 proteins were generated. In agreement with the in vitro data, cleavage between NS2 and NS3 was independent of a catalytically active NS3 proteinase, whereas substitution of the active-site serine residue by the amino acid alanine completely blocked processing at the NS3/4 and NS4/5 junctions. These results demonstrate that NS3 encodes the viral proteinase essential for generating the amino termini of NS4 and NS5.

  • Nonstructural protein 3 of the hepatitis C virus encodes a serine-type proteinase required for cleavage at the NS3/4 and NS4/5 junctions.
    Journal of Virology, 1993
    Co-Authors: Ralf Bartenschlager, L Ahlborn-laake, Jan Mous, Helmut Jacobsen
    Abstract:

    Abstract We have studied processing of the nonstructural (NS) Polyprotein of the hepatitis C virus. A series of cDNAs corresponding to predicted NS2/3/4 or NS3/4 regions were constructed, and processing of the Polyproteins was studied in an in vitro transcription-translation system. We report that a catalytically active serine-type proteinase is encoded by the NS3 region. Substitution of the serine residue of the putative catalytic triad (H, D, and S) by alanine blocked cleavage at the NS3/4 junction, while processing between NS2 and NS3 was not affected. Thus, cleavage at the NS2/3 junction is mediated either by cellular enzymes or by an NS-2 inherent proteinase activity. Deletion analysis of an NS3/4 cDNA construct mapped the amino terminus of the enzymatically active proteinase between amino acids 1049 and 1065 of the Polyprotein. As internal deletions of variable segments of the presumed helicase domain prevented processing at the NS314 junction, a continuous NS3 region appears to be required for processing at this site. To analyze hepatitis C virus Polyprotein cleavage in vivo, recombinant vaccinia viruses expressing NS2/3/4 or NS3/4/5 proteins were generated. In agreement with the in vitro data, cleavage between NS2 and NS3 was independent of a catalytically active NS3 proteinase, whereas substitution of the active-site serine residue by the amino acid alanine completely blocked processing at the NS3/4 and NS4/5 junctions. These results demonstrate that NS3 encodes the viral proteinase essential for generating the amino termini of NS4 and NS5.