Predator-Prey

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 299556 Experts worldwide ranked by ideXlab platform

Christopher N. Templeton - One of the best experts on this subject based on the ideXlab platform.

  • sparrowhawk movement calling and presence of dead conspecifics differentially impact blue tit cyanistes caeruleus vocal and behavioral mobbing responses
    Behavioral Ecology and Sociobiology, 2017
    Co-Authors: Nora V. Carlson, Helen M. Pargeter, Christopher N. Templeton
    Abstract:

    Many animals alter their anti-predator behavior in accordance to the threat level of a predator. While much research has examined variation in mobbing responses to different predators, few studies have investigated how anti-predator behavior is affected by changes in a predator’s own state or behavior. We examined the effect of sparrowhawk (Accipiter nisus) behavior on the mobbing response of wild blue tits (Cyanistes caeruleus) using robotic taxidermy sparrowhawks. We manipulated whether the simulated predator moved its head, produced vocalizations, or held a taxidermy blue tit in its talons. When any sparrowhawk model was present, blue tits decreased foraging and increased anti-predator behavior and vocalizations. Additionally, each manipulation of the model predator’s state (moving, vocalizing, or the presence of a dead conspecific) impacted different types of blue tit anti-predator behavior and vocalizations. These results indicate that different components of mobbing vary according to the specific state of a given predator—beyond its presence or absence—and suggest that each might play a different role in the overall mobbing response. Last, our results indicate that using more life-like predator stimuli—those featuring simple head movements and audio playback of vocalizations—changes how prey respond to the predator; these ‘robo-raptor’ models provide a powerful tool to provide increased realism in simulated predator encounters without sacrificing experimental control. Anti-predatory behavior is often modulated by the threat level posed by a particular predator. While much research has tested how different types of predators change prey behavior, few experiments have examined how predator behavior affects anti-predatory responses of prey. By experimentally manipulating robotic predators, we show that blue tits not only respond to the presence of a sparrowhawk, by decreasing feeding and increasing anti-predator behavior and vocalizations, but that they vary specific anti-predator behaviors when encountering differently behaving predators (moving, vocalizing, or those with captured prey), suggesting that prey pay attention to their predators’ state and behavior.

  • Sparrowhawk movement, calling, and presence of dead conspecifics differentially impact blue tit (Cyanistes caeruleus) vocal and behavioral mobbing responses
    Behavioral Ecology and Sociobiology, 2017
    Co-Authors: Nora V. Carlson, Helen M. Pargeter, Christopher N. Templeton
    Abstract:

    Many animals alter their anti-predator behavior in accordance to the threat level of a predator. While much research has examined variation in mobbing responses to different predators, few studies have investigated how anti-predator behavior is affected by changes in a predator’s own state or behavior. We examined the effect of sparrowhawk ( Accipiter nisus ) behavior on the mobbing response of wild blue tits ( Cyanistes caeruleus ) using robotic taxidermy sparrowhawks. We manipulated whether the simulated predator moved its head, produced vocalizations, or held a taxidermy blue tit in its talons. When any sparrowhawk model was present, blue tits decreased foraging and increased anti-predator behavior and vocalizations. Additionally, each manipulation of the model predator’s state (moving, vocalizing, or the presence of a dead conspecific) impacted different types of blue tit anti-predator behavior and vocalizations. These results indicate that different components of mobbing vary according to the specific state of a given predator—beyond its presence or absence—and suggest that each might play a different role in the overall mobbing response. Last, our results indicate that using more life-like predator stimuli—those featuring simple head movements and audio playback of vocalizations—changes how prey respond to the predator; these ‘robo-raptor’ models provide a powerful tool to provide increased realism in simulated predator encounters without sacrificing experimental control. Significance statement Anti-predatory behavior is often modulated by the threat level posed by a particular predator. While much research has tested how different types of predators change prey behavior, few experiments have examined how predator behavior affects anti-predatory responses of prey. By experimentally manipulating robotic predators, we show that blue tits not only respond to the presence of a sparrowhawk, by decreasing feeding and increasing anti-predator behavior and vocalizations, but that they vary specific anti-predator behaviors when encountering differently behaving predators (moving, vocalizing, or those with captured prey), suggesting that prey pay attention to their predators’ state and behavior.

Helen M. Pargeter - One of the best experts on this subject based on the ideXlab platform.

  • sparrowhawk movement calling and presence of dead conspecifics differentially impact blue tit cyanistes caeruleus vocal and behavioral mobbing responses
    Behavioral Ecology and Sociobiology, 2017
    Co-Authors: Nora V. Carlson, Helen M. Pargeter, Christopher N. Templeton
    Abstract:

    Many animals alter their anti-predator behavior in accordance to the threat level of a predator. While much research has examined variation in mobbing responses to different predators, few studies have investigated how anti-predator behavior is affected by changes in a predator’s own state or behavior. We examined the effect of sparrowhawk (Accipiter nisus) behavior on the mobbing response of wild blue tits (Cyanistes caeruleus) using robotic taxidermy sparrowhawks. We manipulated whether the simulated predator moved its head, produced vocalizations, or held a taxidermy blue tit in its talons. When any sparrowhawk model was present, blue tits decreased foraging and increased anti-predator behavior and vocalizations. Additionally, each manipulation of the model predator’s state (moving, vocalizing, or the presence of a dead conspecific) impacted different types of blue tit anti-predator behavior and vocalizations. These results indicate that different components of mobbing vary according to the specific state of a given predator—beyond its presence or absence—and suggest that each might play a different role in the overall mobbing response. Last, our results indicate that using more life-like predator stimuli—those featuring simple head movements and audio playback of vocalizations—changes how prey respond to the predator; these ‘robo-raptor’ models provide a powerful tool to provide increased realism in simulated predator encounters without sacrificing experimental control. Anti-predatory behavior is often modulated by the threat level posed by a particular predator. While much research has tested how different types of predators change prey behavior, few experiments have examined how predator behavior affects anti-predatory responses of prey. By experimentally manipulating robotic predators, we show that blue tits not only respond to the presence of a sparrowhawk, by decreasing feeding and increasing anti-predator behavior and vocalizations, but that they vary specific anti-predator behaviors when encountering differently behaving predators (moving, vocalizing, or those with captured prey), suggesting that prey pay attention to their predators’ state and behavior.

  • Sparrowhawk movement, calling, and presence of dead conspecifics differentially impact blue tit (Cyanistes caeruleus) vocal and behavioral mobbing responses
    Behavioral Ecology and Sociobiology, 2017
    Co-Authors: Nora V. Carlson, Helen M. Pargeter, Christopher N. Templeton
    Abstract:

    Many animals alter their anti-predator behavior in accordance to the threat level of a predator. While much research has examined variation in mobbing responses to different predators, few studies have investigated how anti-predator behavior is affected by changes in a predator’s own state or behavior. We examined the effect of sparrowhawk ( Accipiter nisus ) behavior on the mobbing response of wild blue tits ( Cyanistes caeruleus ) using robotic taxidermy sparrowhawks. We manipulated whether the simulated predator moved its head, produced vocalizations, or held a taxidermy blue tit in its talons. When any sparrowhawk model was present, blue tits decreased foraging and increased anti-predator behavior and vocalizations. Additionally, each manipulation of the model predator’s state (moving, vocalizing, or the presence of a dead conspecific) impacted different types of blue tit anti-predator behavior and vocalizations. These results indicate that different components of mobbing vary according to the specific state of a given predator—beyond its presence or absence—and suggest that each might play a different role in the overall mobbing response. Last, our results indicate that using more life-like predator stimuli—those featuring simple head movements and audio playback of vocalizations—changes how prey respond to the predator; these ‘robo-raptor’ models provide a powerful tool to provide increased realism in simulated predator encounters without sacrificing experimental control. Significance statement Anti-predatory behavior is often modulated by the threat level posed by a particular predator. While much research has tested how different types of predators change prey behavior, few experiments have examined how predator behavior affects anti-predatory responses of prey. By experimentally manipulating robotic predators, we show that blue tits not only respond to the presence of a sparrowhawk, by decreasing feeding and increasing anti-predator behavior and vocalizations, but that they vary specific anti-predator behaviors when encountering differently behaving predators (moving, vocalizing, or those with captured prey), suggesting that prey pay attention to their predators’ state and behavior.

Nora V. Carlson - One of the best experts on this subject based on the ideXlab platform.

  • sparrowhawk movement calling and presence of dead conspecifics differentially impact blue tit cyanistes caeruleus vocal and behavioral mobbing responses
    Behavioral Ecology and Sociobiology, 2017
    Co-Authors: Nora V. Carlson, Helen M. Pargeter, Christopher N. Templeton
    Abstract:

    Many animals alter their anti-predator behavior in accordance to the threat level of a predator. While much research has examined variation in mobbing responses to different predators, few studies have investigated how anti-predator behavior is affected by changes in a predator’s own state or behavior. We examined the effect of sparrowhawk (Accipiter nisus) behavior on the mobbing response of wild blue tits (Cyanistes caeruleus) using robotic taxidermy sparrowhawks. We manipulated whether the simulated predator moved its head, produced vocalizations, or held a taxidermy blue tit in its talons. When any sparrowhawk model was present, blue tits decreased foraging and increased anti-predator behavior and vocalizations. Additionally, each manipulation of the model predator’s state (moving, vocalizing, or the presence of a dead conspecific) impacted different types of blue tit anti-predator behavior and vocalizations. These results indicate that different components of mobbing vary according to the specific state of a given predator—beyond its presence or absence—and suggest that each might play a different role in the overall mobbing response. Last, our results indicate that using more life-like predator stimuli—those featuring simple head movements and audio playback of vocalizations—changes how prey respond to the predator; these ‘robo-raptor’ models provide a powerful tool to provide increased realism in simulated predator encounters without sacrificing experimental control. Anti-predatory behavior is often modulated by the threat level posed by a particular predator. While much research has tested how different types of predators change prey behavior, few experiments have examined how predator behavior affects anti-predatory responses of prey. By experimentally manipulating robotic predators, we show that blue tits not only respond to the presence of a sparrowhawk, by decreasing feeding and increasing anti-predator behavior and vocalizations, but that they vary specific anti-predator behaviors when encountering differently behaving predators (moving, vocalizing, or those with captured prey), suggesting that prey pay attention to their predators’ state and behavior.

  • Sparrowhawk movement, calling, and presence of dead conspecifics differentially impact blue tit (Cyanistes caeruleus) vocal and behavioral mobbing responses
    Behavioral Ecology and Sociobiology, 2017
    Co-Authors: Nora V. Carlson, Helen M. Pargeter, Christopher N. Templeton
    Abstract:

    Many animals alter their anti-predator behavior in accordance to the threat level of a predator. While much research has examined variation in mobbing responses to different predators, few studies have investigated how anti-predator behavior is affected by changes in a predator’s own state or behavior. We examined the effect of sparrowhawk ( Accipiter nisus ) behavior on the mobbing response of wild blue tits ( Cyanistes caeruleus ) using robotic taxidermy sparrowhawks. We manipulated whether the simulated predator moved its head, produced vocalizations, or held a taxidermy blue tit in its talons. When any sparrowhawk model was present, blue tits decreased foraging and increased anti-predator behavior and vocalizations. Additionally, each manipulation of the model predator’s state (moving, vocalizing, or the presence of a dead conspecific) impacted different types of blue tit anti-predator behavior and vocalizations. These results indicate that different components of mobbing vary according to the specific state of a given predator—beyond its presence or absence—and suggest that each might play a different role in the overall mobbing response. Last, our results indicate that using more life-like predator stimuli—those featuring simple head movements and audio playback of vocalizations—changes how prey respond to the predator; these ‘robo-raptor’ models provide a powerful tool to provide increased realism in simulated predator encounters without sacrificing experimental control. Significance statement Anti-predatory behavior is often modulated by the threat level posed by a particular predator. While much research has tested how different types of predators change prey behavior, few experiments have examined how predator behavior affects anti-predatory responses of prey. By experimentally manipulating robotic predators, we show that blue tits not only respond to the presence of a sparrowhawk, by decreasing feeding and increasing anti-predator behavior and vocalizations, but that they vary specific anti-predator behaviors when encountering differently behaving predators (moving, vocalizing, or those with captured prey), suggesting that prey pay attention to their predators’ state and behavior.

José Martín - One of the best experts on this subject based on the ideXlab platform.

  • Conspecific alarm cues, but not predator cues alone, determine antipredator behavior of larval southern marbled newts, Triturus pygmaeus
    acta ethologica, 2012
    Co-Authors: Adega Gonzalo, Pilar López, Carlos Cabido, José Martín
    Abstract:

    Predation imposes selection on the ability of prey to recognize and respond to potential threats. Many prey species detect predators via chemoreception, particularly in aquatic environments. Also, chemical cues from injured prey are often perceived as an indication of predation risk. However, because antipredatory behavior can be costly, prey responses should depend on the current level of risk that each predator poses, which may depend on the type of chemical cues detected. We exposed larval newts, Triturus pygmaeus , to chemical cues from predator larval beetles or to alarm cues from conspecific larval newts and examined the behavioral changes of larval newts. Results showed that larval newts reduced activity levels when conspecific alarm cues were present but not when the predator cues alone were present. These results might suggest that larval newts are unable to recognize predator chemicals. To avoid costs of unnecessary antipredatory behaviors, larval newts may benefit by avoiding only predators that represent a current high level of threat, showing only antipredatory responses when they detect conspecific alarm cues indicating that an actual predatory attack has occurred.

  • Learning, memorizing and apparent forgetting of chemical cues from new predators by Iberian green frog tadpoles
    Animal Cognition, 2009
    Co-Authors: Adega Gonzalo, Pilar López, José Martín
    Abstract:

    Many antipredator adaptations are induced by the prey’s ability to recognize chemical cues from predators. However, predator recognition often requires learning by prey individuals. Iberian green frog tadpoles ( Pelophylax perezi ) have the ability to learn new potential predators. Here, we tested the memory capabilities of Iberian green frog tadpoles. We conditioned tadpoles with chemicals cues from a non-predatory fish in conjunction with conspecific alarm cues, and examined whether tadpoles retained their conditioned response (reduction of activity level). We found that conditioned tadpoles reduced their activity levels in subsequent exposures to the non-predatory fish cues alone. Tadpoles were able to remember this association and reduced movement rate at least for 9 days after. The ability to learn and memorize potential predators may be especially important for the survivorship of prey species that are likely to find a high variety of predators. However, after those 9 days, there was a lack of response to the non-predatory fish cues alone in the absence of reinforcement. This could be explained if tadpoles behave according to the threat-sensitive predator avoidance hypothesis, and the perceived risk to the learning cue diminished over time, or it could be due to an apparent forgetting process to avoid non-adaptative responses to chemical cues of non-dangerous species that were randomly paired with alarm cues. Thus, this study demonstrates that green frog tadpoles in the absence of reinforcement remember the chemical cues of a learned predator only for a limited time that may be adaptative in a threat-sensitive context.

  • iberian green frog tadpoles may learn to recognize novel predators from chemical alarm cues of conspecifics
    Animal Behaviour, 2007
    Co-Authors: Adega Gonzalo, Pilar López, José Martín
    Abstract:

    Many antipredator adaptations are induced by the prey's ability to recognize chemical cues from predators and to act according to the threat level posed by that predator. However, predator recognition often requires learning by prey individuals. We tested the ability of Iberian green frog, Rana perezi, tadpoles to assess the magnitude of predation risk and adjust their behaviour by using perceived cues from a predatory snake, when this stimulus was found alone or associated with chemical alarm cues from conspecific tadpoles. Tadpoles exposed to alarm cues and the predatory snake scent together reduced their movement rates to a greater extent than when the snake scent was found alone, and reduced movement even more in the subsequent exposure to the predator snake scent alone. We also tested whether tadpoles were able to associate novel chemical cues (i.e. from an exotic nonpredatory fish) with predation risk after a simultaneous exposure with conspecific alarm cues. Tadpoles exposed to nonpredatory fish cues and alarm cues together reduced their activity levels, and reduced activity in the subsequent exposure to the fish cue alone, in a similar way as they reduced movement in the presence of predatory snake cues. Therefore, tadpoles learnt to perceive the fish cues as risky when these were previously associated with alarm cues. Predator recognition learning ability may be particularly advantageous for organisms whose environment may have a wide range of types of predators, even new exotic introduced species of predators that can affect the survival of prey.

Barbara L Peckarsky - One of the best experts on this subject based on the ideXlab platform.

  • origin and specificity of predatory fish cues detected by baetis larvae ephemeroptera insecta
    Animal Behaviour, 2014
    Co-Authors: Maruxa Alvarez, Barbara L Peckarsky, Andrea Landeiradabarca
    Abstract:

    Some prey respond to predator cues by altering their behaviour, but the response may depend on predator diet and identity. There are few data on how predator feeding status and diet affect the behaviour of aquatic insects and on the specificity of the response of these prey to different predators. We present the results of four bioassays conducted in microcosms to evaluate the relationship between predator fish diet, predator identity and the predator avoidance behaviour of mayfly prey of the genus Baetis to elucidate the origin and specificity of the antipredator response. Results from the first bioassay indicated that the response of Baetis to predatory trout is independent of diet, which enabled us to rule out the following potential origins of the signal: alarm cues emitted by wounded Baetis conspecifics, salivary enzymes released by feeding fish and excretion products that may contain Baetis and conspecific odours. Thus, we focused further experiments on fish cutaneous mucus as the potential origin of cues that cause Baetis to reduce its activity. In two bioassays, we observed that North American Baetis bicaudatus did not distinguish between five freshwater fish species that co-inhabit the same drainage, despite differences in their relative risk of predation (four predatory salmonid species and one omnivorous sucker species). However, in another bioassay, we observed that European Baetis rhodani larvae did not respond to cutaneous mucus of novel predators (carp, seawater turbot or frog), indicating that Baetis do not show a general response to all mucus donor organisms. Our bioassays identified mucus as the potential origin of the cue eliciting antipredator behaviour in Baetis, providing much needed insight into the specificity of fish-associated chemical cues that cause some prey to respond. Experimental approaches similar to the one used in this study may increase our understanding of the role of chemical cues in aquatic ecosystems.

  • Microhabitat and activity periodicity of predatory stoneflies and their mayfly prey in a western Colorado stream
    Oikos, 1995
    Co-Authors: Barbara L Peckarsky, Cathy A Cowan
    Abstract:

    Experiments were conducted to determine whether overlap between microhabitat preferences and activity periodicities of four mayfly species and their stonefly predators could explain species-specific differences in Predator-Prey encounter frequencies. Preferences for rock type (slate or granite), flow microhabitat (high or low), rock surface (top, bottom, upstream or downstream sides), and periodicity of drift and the use of rock tops were measured in a stream-side system of flow-through circular Plexiglas chambers receiving natural stream water and light levels. These parameters were compared among the predatory stoneflies, Megarcys signata or Kogotus modestus, and four species of mayflies that vary in their encounter rates with the stoneflies. Based on Predator-Prey encounter rates previously observed in similar chambers, we expected greater overlap between Megarcys and Ephemerella infrequens and the overwintering generation of the bivoltine mayfly, Baetis bicaudatus than with Cinygmula sp. Likewise, we expected Kogotus microhabitat use to overlap more strongly with that of summer generation Baetis than with later instars of Cinygmula and Epeorus deceptivus. Results ran counter to our predictions, indicating that microhabitats of the prey species with high predator encounter rates did not overlap more strongly with the stoneflies than did mayflies with low predator encounter rates. Most mayflies and stoneflies preferred the bottom surfaces of granite rocks, and showed few flow preferences. Most were nocturnal in their use of top rock surfaces, in drift and feeding activity periodicity. Therefore, nocturnal activity periodicities of both mayflies and stoneflies confirm that mayflies have not evolved feeding periodicity to avoid encounters with foraging stonefly predators. We conclude therefore, that neither temporal nor spatial microhabitat overlap is a reasonable explanation of differential encounter rates between predatory stoneflies and their mayfly prey. Alternative explanations for differential encounter rates are that more abundant or more mobile mayflies have higher encounter rates with predators, and effective pre-contact predator avoidance responses of other mayflies reduce their encounter rates with stoneflies.

  • sublethal consequences of stream dwelling predatory stoneflies on mayfly growth and fecundity
    Ecology, 1993
    Co-Authors: Barbara L Peckarsky, Cathy A Cowan, Marjory A Penton, Chester R Anderson
    Abstract:

    Predators can have consequences on prey populations and communities that extend well beyond direct predator-induced mortality. Predator-Prey interactions often affect prey feeding rates, growth rates, or fecundities, thereby significantly affecting repro- ductive success of prey adults. Thus, investigation of the sublethal fitness consequences of behavioral responses of prey to predators is essential to our understanding of the total impact of predators on prey populations and communities. Feeding (algal grazing) rates, growth rates, and fecundities of Baetis bicaudatus (Baetidae) larvae were measured in replicated circular flow-through stream channels to determine the sublethal consequences on fitness correlates of the presence of predatory stoneflies (Perlodidae). Gut fullness of 24-h starved Baetis larvae was measured using fluorometry after 24 h (short-term exper- iments) in four treatments: (1) ambient resource rocks and no predators, (2) low resource rocks and no predators, (3) ambient resource rocks and one female perlodid stonefly (Me- garcys signata), or (4) Kogotus modestus whose mouthparts were glued to prevent lethal effects of predation. Mid-instar male and female Baetis larvae were reared for 3 wk until wing pad maturation (long-term experiments) and subjected to all but the Kogotus treat- ment. Predator avoidance significantly reduced levels of Baetis gut fullness, over the short term, to levels intermediate between the high and low resource treatments. Longer term residence with predatory stoneflies caused larvae of both male and female Baetis to mature at significantly smaller sizes than in the treatment with ambient food but no predators. Mayflies with predators matured at sizes similar to those held with low food levels over the long term. Interestingly, both starved larvae and those avoiding predators did not grow during the experimental period in contrast to about a 50% growth rate of larvae experiencing ambient food levels, but no predators. Similarly, egg biomass per mature female larva was significantly reduced in both starved and predator treatments. The proportion of total body mass allocated to eggs was only reduced in starved mayflies indicating that the females avoiding predators accrued less total mass, but allocated a similar proportion to eggs as did well-fed Baetis. These data convincingly demonstrate that predator avoidance can have dramatic consequences on mayfly fitness. The mechanism explaining those fitness conse- quences is probably a disruptive drift/swim response by Baetis to encounters with stoneflies, which reduces Baetis' feeding rates. If we accept the assumption that natural selection has shaped the foraging behavior of organisms to maximize fitness, foragers need to make decisions that maximize both survivorship (minimizing risk of predation) and fecundity. In mayflies fecundity is entirely a function of resource acquisition by the larvae, which makes them particularly vulnerable to such sublethal effects of predation. Nonetheless, we suspect that the types of sublethal costs of predator avoidance documented by this and other recent studies are nearly universal consequences of organisms foraging under pre- dation risk.