Proof-of-Concept

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 214998 Experts worldwide ranked by ideXlab platform

Reiner Anderl - One of the best experts on this subject based on the ideXlab platform.

  • digital twin proof of concept
    Manufacturing letters, 2018
    Co-Authors: Sebastian Haag, Reiner Anderl
    Abstract:

    Abstract Miniaturization and price decline enable the integration of information, communication and sensor technologies into virtually any product. Products become able to sense their own state as well as the state of their environment. Paired with the ability to process and communicate this data allows for the creation of digital twins. The digital twin is a comprehensive digital representation of an individual product that will play an integral role in a fully digitalized product life cycle. To prove the digital twin concept a cyber-physical bending beam test bench was developed at DiK research lab.

  • Digital twin – Proof of concept
    Manufacturing Letters, 2018
    Co-Authors: Sebastian Haag, Reiner Anderl
    Abstract:

    Miniaturization and price decline enable the integration of information, communication and sensor technologies into virtually any product. Products become able to sense their own state as well as the state of their environment. Paired with the ability to process and communicate this data allows for the creation of digital twins. The digital twin is a comprehensive digital representation of an individual product that will play an integral role in a fully digitalized product life cycle. To prove the digital twin concept a cyber-physical bending beam test bench was developed at DiK research lab.

Sebastian Haag - One of the best experts on this subject based on the ideXlab platform.

  • digital twin proof of concept
    Manufacturing letters, 2018
    Co-Authors: Sebastian Haag, Reiner Anderl
    Abstract:

    Abstract Miniaturization and price decline enable the integration of information, communication and sensor technologies into virtually any product. Products become able to sense their own state as well as the state of their environment. Paired with the ability to process and communicate this data allows for the creation of digital twins. The digital twin is a comprehensive digital representation of an individual product that will play an integral role in a fully digitalized product life cycle. To prove the digital twin concept a cyber-physical bending beam test bench was developed at DiK research lab.

  • Digital twin – Proof of concept
    Manufacturing Letters, 2018
    Co-Authors: Sebastian Haag, Reiner Anderl
    Abstract:

    Miniaturization and price decline enable the integration of information, communication and sensor technologies into virtually any product. Products become able to sense their own state as well as the state of their environment. Paired with the ability to process and communicate this data allows for the creation of digital twins. The digital twin is a comprehensive digital representation of an individual product that will play an integral role in a fully digitalized product life cycle. To prove the digital twin concept a cyber-physical bending beam test bench was developed at DiK research lab.

Jessica C. Snyder - One of the best experts on this subject based on the ideXlab platform.

  • High Altitude Venus Operational Concept (HAVOC): Proofs of Concept
    AIAA SPACE 2015 Conference and Exposition, 2015
    Co-Authors: Christopher A Jones, Dale Arney, George Z. Bassett, Anthony I. Hennig, James R. Clark, Jessica C. Snyder
    Abstract:

    The atmosphere of Venus is an exciting destination for both further scientific study and future human exploration. A recent internal NASA study of a High Altitude Venus Operational Concept (HAVOC) led to the development of an evolutionary program for the exploration of Venus, with focus on the mission architecture and vehicle concept for a 30-day crewed mission into Venus’s atmosphere at 50 km. Key technical challenges for the mission include performing the aerocapture maneuvers at Venus and Earth, inserting and inflating the airship at Venus during the entry sequence, and protecting the solar panels and structure from the sulfuric acid in the atmosphere. Two proofs of concept were identified that would aid in addressing some of the key technical challenges. To mitigate the threat posed by the sulfuric acid ambient in the atmosphere of Venus, a material was needed that could protect the systems while being lightweight and not inhibiting the performance of the solar panels. The first proof of concept identified candidate materials and evaluated them, finding FEPteflon to maintain 90% transmittance to relevant spectra even after 30 days of immersion in concentrated sulfuric acid. The second proof of concept developed and verified a packaging algorithm for the airship envelope to inform the entry, descent, and inflation analysis.

  • High Altitude Venus Operational Concept (HAVOC): Proofs of Concept
    AIAA SPACE 2015 Conference and Exposition, 2015
    Co-Authors: Christopher A Jones, Dale Arney, George Z. Bassett, Anthony I. Hennig, James R. Clark, Jessica C. Snyder
    Abstract:

    The atmosphere of Venus is an exciting destination for both further scientific study and future human exploration. A recent internal NASA study of a High Altitude Venus Operational Concept (HAVOC) led to the development of an evolutionary program for the exploration of Venus, with focus on the mission architecture and vehicle concept for a 30-day crewed mission into Venus's atmosphere at 50 kilometers. Key technical challenges for the mission include performing the aerocapture maneuvers at Venus and Earth, inserting and inflating the airship at Venus during the entry sequence, and protecting the solar panels and structure from the sulfuric acid in the atmosphere. Two proofs of concept were identified that would aid in addressing some of the key technical challenges. To mitigate the threat posed by the sulfuric acid ambient in the atmosphere of Venus, a material was needed that could protect the systems while being lightweight and not inhibiting the performance of the solar panels. The first proof of concept identified candidate materials and evaluated them, finding FEP-Teflon (Fluorinated Ethylene Propylene-Teflon) to maintain 90 percent transmittance to relevant spectra even after 30 days of immersion in concentrated sulfuric acid. The second proof of concept developed and verified a packaging algorithm for the airship envelope to inform the entry, descent, and inflation analysis.

Christopher A Jones - One of the best experts on this subject based on the ideXlab platform.

  • High Altitude Venus Operational Concept (HAVOC): Proofs of Concept
    AIAA SPACE 2015 Conference and Exposition, 2015
    Co-Authors: Christopher A Jones, Dale Arney, George Z. Bassett, Anthony I. Hennig, James R. Clark, Jessica C. Snyder
    Abstract:

    The atmosphere of Venus is an exciting destination for both further scientific study and future human exploration. A recent internal NASA study of a High Altitude Venus Operational Concept (HAVOC) led to the development of an evolutionary program for the exploration of Venus, with focus on the mission architecture and vehicle concept for a 30-day crewed mission into Venus’s atmosphere at 50 km. Key technical challenges for the mission include performing the aerocapture maneuvers at Venus and Earth, inserting and inflating the airship at Venus during the entry sequence, and protecting the solar panels and structure from the sulfuric acid in the atmosphere. Two proofs of concept were identified that would aid in addressing some of the key technical challenges. To mitigate the threat posed by the sulfuric acid ambient in the atmosphere of Venus, a material was needed that could protect the systems while being lightweight and not inhibiting the performance of the solar panels. The first proof of concept identified candidate materials and evaluated them, finding FEPteflon to maintain 90% transmittance to relevant spectra even after 30 days of immersion in concentrated sulfuric acid. The second proof of concept developed and verified a packaging algorithm for the airship envelope to inform the entry, descent, and inflation analysis.

  • High Altitude Venus Operational Concept (HAVOC): Proofs of Concept
    AIAA SPACE 2015 Conference and Exposition, 2015
    Co-Authors: Christopher A Jones, Dale Arney, George Z. Bassett, Anthony I. Hennig, James R. Clark, Jessica C. Snyder
    Abstract:

    The atmosphere of Venus is an exciting destination for both further scientific study and future human exploration. A recent internal NASA study of a High Altitude Venus Operational Concept (HAVOC) led to the development of an evolutionary program for the exploration of Venus, with focus on the mission architecture and vehicle concept for a 30-day crewed mission into Venus's atmosphere at 50 kilometers. Key technical challenges for the mission include performing the aerocapture maneuvers at Venus and Earth, inserting and inflating the airship at Venus during the entry sequence, and protecting the solar panels and structure from the sulfuric acid in the atmosphere. Two proofs of concept were identified that would aid in addressing some of the key technical challenges. To mitigate the threat posed by the sulfuric acid ambient in the atmosphere of Venus, a material was needed that could protect the systems while being lightweight and not inhibiting the performance of the solar panels. The first proof of concept identified candidate materials and evaluated them, finding FEP-Teflon (Fluorinated Ethylene Propylene-Teflon) to maintain 90 percent transmittance to relevant spectra even after 30 days of immersion in concentrated sulfuric acid. The second proof of concept developed and verified a packaging algorithm for the airship envelope to inform the entry, descent, and inflation analysis.

Alberto Trombetta - One of the best experts on this subject based on the ideXlab platform.

  • CRITIS - Scada Malware, a Proof of Concept
    Lecture Notes in Computer Science, 2009
    Co-Authors: Andrea Carcano, Marcelo Masera, Igor Nai Fovino, Alberto Trombetta
    Abstract:

    Critical Infrastructures are nowadays exposed to new kind of threats. The cause of such threats is related to the large number of new vulnerabilities and architectural weaknesses introduced by the extensive use of ICT and Network technologies into such complex critical systems. Of particular interest are the set of vulnerabilities related to the class of communication protocols normally known as "SCADA" protocols, under which fall all the communication protocols used to remotely control the RTU devices of an industrial system. In this paper we present a proof of concept of the potential effects of a set of computer malware specifically designed and created in order to impact, by taking advantage of some vulnerabilities of the ModBUS protocol, on a typical Supervisory Control and Data Acquisition system.

  • Scada malware, a Proof of concept
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2009
    Co-Authors: Andrea Carcano, Marcelo Masera, Igor Nai Fovino, Alberto Trombetta
    Abstract:

    Critical Infrastructures are nowadays exposed to new kind of threats. The cause of such threats is related to the large number of new vulnerabilities and architectural weaknesses introduced by the extensive use of ICT and Network technologies into such complex critical systems. Of particular interest are the set of vulnerabilities related to the class of communication protocols normally known as "SCADA" protocols, under which fall all the communication protocols used to remotely control the RTU devices of an industrial system. In this paper we present a proof of concept of the potential effects of a set of computer malware specifically designed and created in order to impact, by taking advantage of some vulnerabilities of the ModBUS protocol, on a typical Supervisory Control and Data Acquisition system.