Prostaglandin A2

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 174 Experts worldwide ranked by ideXlab platform

Myriam Gorospe - One of the best experts on this subject based on the ideXlab platform.

  • Prostaglandin A2-mediated stabilization of p21 mRNA through an ERK-dependent pathway requiring the RNA-binding protein HuR.
    The Journal of biological chemistry, 2004
    Co-Authors: Xiaoling Yang, Wengong Wang, Jinshui Fan, Ashish Lal, Dongmei Yang, Heping Cheng, Myriam Gorospe
    Abstract:

    Treatment with the stress agent Prostaglandin A2 (PGA2) induces expression of the cyclin-dependent kinase inhibitor p21. Here, we present evidence that p21 expression increases through PGA2-triggered stabilization of the p21 mRNA and further show that these events require the mitogen-activated protein (MAP) kinase ERK. Binding experiments using either endogenous p21 mRNA or in vitro-labeled p21 transcripts revealed a specific PGA2-dependent association of the p21 mRNA with the RNA-binding protein HuR. Interestingly, although inhibition of the ERK pathway did not prevent the PGA2-triggered increase in cytoplasmic HuR, it did impair the formation of endogenous and in vitro [HuR-p21 mRNA] complexes and further prevented the PGA2-mediated stabilization of the p21 mRNA, suggesting that ERK-mediated events were required for binding HuR to the p21 mRNA and preventing its decay. RNA interference-based knockdown of HuR abundance further served to demonstrate the contribution of HuR-mediated p21 mRNA stabilization toward enhancing p21 expression after PGA2 treatment. Collectively, our results indicate that PGA2 stabilizes the p21 mRNA through an ERK-independent increase in cytoplasmic HuR levels and an ERK-dependent association of HuR with the p21 mRNA.

  • Down-Regulation of Cyclin D1 Expression by Prostaglandin A2 Is Mediated by Enhanced Cyclin D1 mRNA Turnover
    Molecular and cellular biology, 2000
    Co-Authors: Shankung Lin, Wengong Wang, Gerald M. Wilson, Xiaoling Yang, Gary Brewer, Nikki J. Holbrook, Myriam Gorospe
    Abstract:

    Prostaglandin A2 (PGA2), an experimental chemotherapeutic agent, causes growth arrest associated with decreased cyclin D1 expression in several cancer cell lines. Here, using human non-small-cell lung carcinoma H1299 cells, we investigated the mechanisms whereby PGA2 down-regulates cyclin D1 expression. Transcription rates of the cyclin D1 gene, studied using a cyclin D1 promoter-luciferase construct and nuclear run-on assays, were not affected by PGA2 treatment. Instead, the cyclin D1 mRNA was rendered unstable after exposure to PGA2. Since the stability of labile mRNA is modulated through binding of proteins to specific mRNA sequences, we sought to identify protein(s) recognizing the cyclin D1 mRNA. In electrophoretic mobility-shift assays using radiolabeled RNA probes derived from different regions of cyclin D1 mRNA, we observed that (i) lysates prepared from PGA2-treated cells exhibited enhanced protein-cyclin D1 RNA complex formation; (ii) the kinetics of complex formation correlated closely with that of cyclin D1 mRNA loss; and (iii) binding occurred within a 390-base cyclin D1 3* untranslated region (UTR) (K12). This binding activity could be cross-linked, revealing proteins ranging from 30 to 47 kDa. The RNA-binding protein AUF1, previously associated with the degradation of target mRNAs, bound cyclin D1 mRNA, because anti-AUF1 antibodies were capable of supershifting or immunoprecipitating cyclin D1 mRNA-protein complexes. Finally, insertion of K12 in the 3*UTR of reporter genes markedly reduced the expression and half-life of the resulting chimeric mRNAs in transfected, PGA2-treated cells. Our data demonstrate that PGA2 down-regulates cyclin D1 expression by decreasing cyclin D1 mRNA stability and implicates a 390-base element in the 3*UTR in this regulation.

  • Protective role of p21(Waf1/Cip1) against Prostaglandin A2-mediated apoptosis of human colorectal carcinoma cells.
    Molecular and cellular biology, 1996
    Co-Authors: Myriam Gorospe, Xiao Yang Wang, Kathryn Z. Guyton, Nikki J. Holbrook
    Abstract:

    Prostaglandin A2 (PGA2) suppresses tumor growth in vivo, is potently antiproliferative in vitro, and is a model drug for the study of the mammalian stress response. Our previous studies using breast carcinoma MCF-7 cells suggested that p21(Waf1/Cip1) induction enabled cells to survive PGA2 exposure. Indeed, the marked sensitivity of human colorectal carcinoma RKO cells to the cytotoxicity of PGA2 is known to be associated with a lack of a PGA2-mediated increase in p21(Waf1/Cip1) expression, inhibition of cyclin-dependent kinase activity, and growth arrest. To determine if cell death following exposure to PGA2 could be prevented by forcing the expression of p21(Waf1/Cip1) in RKO cells, we utilized an adenoviral vector-based expression system. We demonstrate that ectopic expression of p21(Waf1/Cip1) largely rescued RKO cells from PGA2-induced apoptotic cell death, directly implicating p21(Waf1/Cip1) as a determinant of the cellular outcome (survival versus death) following exposure to PGA2. To discern whether p21(Waf1/Cip1)-mediated protection operates through the implementation of cellular growth arrest, other growth-inhibitory treatments were studied for the ability to attenuate PGA2-induced cell death. Neither serum depletion nor suramin (a growth factor receptor antagonist) protected RKO cells against PGA2 cytotoxicity, and neither induced p21(Waf1/Cip1) expression. Mimosine, however, enhanced p21(Waf1/Cip1) expression, completely inhibited RKO cell proliferation, and exerted marked protection against a subsequent PGA2 challenge. Taken together, our results directly demonstrate a protective role for p21(Waf1/Cip1) during PGA2 cellular stress and provide strong evidence that the implementation of cellular growth arrest contributes to this protective influence.

  • protective role of p21 waf1 cip1 against Prostaglandin A2 mediated apoptosis of human colorectal carcinoma cells
    Molecular and Cellular Biology, 1996
    Co-Authors: Myriam Gorospe, Xiao Yang Wang, Kathryn Z. Guyton, Nikki J. Holbrook
    Abstract:

    Prostaglandin A2 (PGA2) suppresses tumor growth in vivo, is potently antiproliferative in vitro, and is a model drug for the study of the mammalian stress response. Our previous studies using breast carcinoma MCF-7 cells suggested that p21(Waf1/Cip1) induction enabled cells to survive PGA2 exposure. Indeed, the marked sensitivity of human colorectal carcinoma RKO cells to the cytotoxicity of PGA2 is known to be associated with a lack of a PGA2-mediated increase in p21(Waf1/Cip1) expression, inhibition of cyclin-dependent kinase activity, and growth arrest. To determine if cell death following exposure to PGA2 could be prevented by forcing the expression of p21(Waf1/Cip1) in RKO cells, we utilized an adenoviral vector-based expression system. We demonstrate that ectopic expression of p21(Waf1/Cip1) largely rescued RKO cells from PGA2-induced apoptotic cell death, directly implicating p21(Waf1/Cip1) as a determinant of the cellular outcome (survival versus death) following exposure to PGA2. To discern whether p21(Waf1/Cip1)-mediated protection operates through the implementation of cellular growth arrest, other growth-inhibitory treatments were studied for the ability to attenuate PGA2-induced cell death. Neither serum depletion nor suramin (a growth factor receptor antagonist) protected RKO cells against PGA2 cytotoxicity, and neither induced p21(Waf1/Cip1) expression. Mimosine, however, enhanced p21(Waf1/Cip1) expression, completely inhibited RKO cell proliferation, and exerted marked protection against a subsequent PGA2 challenge. Taken together, our results directly demonstrate a protective role for p21(Waf1/Cip1) during PGA2 cellular stress and provide strong evidence that the implementation of cellular growth arrest contributes to this protective influence.

  • Inhibition of G1 cyclin-dependent kinase activity during growth arrest of human breast carcinoma cells by Prostaglandin A2.
    Molecular and cellular biology, 1996
    Co-Authors: Myriam Gorospe, Yusen Liu, Francis J. Chrest, Nikki J. Holbrook
    Abstract:

    Prostaglandin A2 (PGA2) potently inhibits cell proliferation and suppresses tumor growth in vivo, but little is known regarding the molecular mechanisms mediating these effects. Here we demonstrate that treatment of breast carcinoma MCF-7 cells with PGA2 leads to G1 arrest associated with a dramatic decrease in the levels of cyclin D1 and cyclin-dependent kinase 4 (cdk4) and accompanied by an increase in the expression of p21. We further show that these effects occur independent of cellular p53 status. The decline in cyclin D and cdk4 protein levels is correlated with loss in cdk4 kinase activity, cdk2 activity is also significantly inhibited in PGA2-treated cells, an effect closely associated with the upregulation of p21. Immunoprecipitation experiments verified that p21 was indeed complexed with cdk2 in PGA2-treated cells. Additional experiments with synchronized MCF-7 cultures stimulated with serum revealed that treatment with PGA2 prevents the progression of cells from G1 to S. Accordingly, the kinase activity associated with cdk4, cyclin E, and cdk2 immunocomplexes, which normally increases following serum addition, was unchanged in PGA2-treated cells. Furthermore, the retinoblastoma protein (Rb), a substrate of cdk4 and cdk2 whose phosphorylation is necessary for cell cycle progression, remains underphosphorylated in PGA2-treated serum-stimulated cells. These findings indicate that PGA2 exerts its growth-inhibitory effects through modulation of the expression and/or activity of several key G1 regulatory proteins. Our results highlight the chemotherapeutic potential of PGA2, particularly for suppressing growth of tumors lacking p53 function.

Nikki J. Holbrook - One of the best experts on this subject based on the ideXlab platform.

  • Down-Regulation of Cyclin D1 Expression by Prostaglandin A2 Is Mediated by Enhanced Cyclin D1 mRNA Turnover
    Molecular and cellular biology, 2000
    Co-Authors: Shankung Lin, Wengong Wang, Gerald M. Wilson, Xiaoling Yang, Gary Brewer, Nikki J. Holbrook, Myriam Gorospe
    Abstract:

    Prostaglandin A2 (PGA2), an experimental chemotherapeutic agent, causes growth arrest associated with decreased cyclin D1 expression in several cancer cell lines. Here, using human non-small-cell lung carcinoma H1299 cells, we investigated the mechanisms whereby PGA2 down-regulates cyclin D1 expression. Transcription rates of the cyclin D1 gene, studied using a cyclin D1 promoter-luciferase construct and nuclear run-on assays, were not affected by PGA2 treatment. Instead, the cyclin D1 mRNA was rendered unstable after exposure to PGA2. Since the stability of labile mRNA is modulated through binding of proteins to specific mRNA sequences, we sought to identify protein(s) recognizing the cyclin D1 mRNA. In electrophoretic mobility-shift assays using radiolabeled RNA probes derived from different regions of cyclin D1 mRNA, we observed that (i) lysates prepared from PGA2-treated cells exhibited enhanced protein-cyclin D1 RNA complex formation; (ii) the kinetics of complex formation correlated closely with that of cyclin D1 mRNA loss; and (iii) binding occurred within a 390-base cyclin D1 3* untranslated region (UTR) (K12). This binding activity could be cross-linked, revealing proteins ranging from 30 to 47 kDa. The RNA-binding protein AUF1, previously associated with the degradation of target mRNAs, bound cyclin D1 mRNA, because anti-AUF1 antibodies were capable of supershifting or immunoprecipitating cyclin D1 mRNA-protein complexes. Finally, insertion of K12 in the 3*UTR of reporter genes markedly reduced the expression and half-life of the resulting chimeric mRNAs in transfected, PGA2-treated cells. Our data demonstrate that PGA2 down-regulates cyclin D1 expression by decreasing cyclin D1 mRNA stability and implicates a 390-base element in the 3*UTR in this regulation.

  • Protective role of p21(Waf1/Cip1) against Prostaglandin A2-mediated apoptosis of human colorectal carcinoma cells.
    Molecular and cellular biology, 1996
    Co-Authors: Myriam Gorospe, Xiao Yang Wang, Kathryn Z. Guyton, Nikki J. Holbrook
    Abstract:

    Prostaglandin A2 (PGA2) suppresses tumor growth in vivo, is potently antiproliferative in vitro, and is a model drug for the study of the mammalian stress response. Our previous studies using breast carcinoma MCF-7 cells suggested that p21(Waf1/Cip1) induction enabled cells to survive PGA2 exposure. Indeed, the marked sensitivity of human colorectal carcinoma RKO cells to the cytotoxicity of PGA2 is known to be associated with a lack of a PGA2-mediated increase in p21(Waf1/Cip1) expression, inhibition of cyclin-dependent kinase activity, and growth arrest. To determine if cell death following exposure to PGA2 could be prevented by forcing the expression of p21(Waf1/Cip1) in RKO cells, we utilized an adenoviral vector-based expression system. We demonstrate that ectopic expression of p21(Waf1/Cip1) largely rescued RKO cells from PGA2-induced apoptotic cell death, directly implicating p21(Waf1/Cip1) as a determinant of the cellular outcome (survival versus death) following exposure to PGA2. To discern whether p21(Waf1/Cip1)-mediated protection operates through the implementation of cellular growth arrest, other growth-inhibitory treatments were studied for the ability to attenuate PGA2-induced cell death. Neither serum depletion nor suramin (a growth factor receptor antagonist) protected RKO cells against PGA2 cytotoxicity, and neither induced p21(Waf1/Cip1) expression. Mimosine, however, enhanced p21(Waf1/Cip1) expression, completely inhibited RKO cell proliferation, and exerted marked protection against a subsequent PGA2 challenge. Taken together, our results directly demonstrate a protective role for p21(Waf1/Cip1) during PGA2 cellular stress and provide strong evidence that the implementation of cellular growth arrest contributes to this protective influence.

  • protective role of p21 waf1 cip1 against Prostaglandin A2 mediated apoptosis of human colorectal carcinoma cells
    Molecular and Cellular Biology, 1996
    Co-Authors: Myriam Gorospe, Xiao Yang Wang, Kathryn Z. Guyton, Nikki J. Holbrook
    Abstract:

    Prostaglandin A2 (PGA2) suppresses tumor growth in vivo, is potently antiproliferative in vitro, and is a model drug for the study of the mammalian stress response. Our previous studies using breast carcinoma MCF-7 cells suggested that p21(Waf1/Cip1) induction enabled cells to survive PGA2 exposure. Indeed, the marked sensitivity of human colorectal carcinoma RKO cells to the cytotoxicity of PGA2 is known to be associated with a lack of a PGA2-mediated increase in p21(Waf1/Cip1) expression, inhibition of cyclin-dependent kinase activity, and growth arrest. To determine if cell death following exposure to PGA2 could be prevented by forcing the expression of p21(Waf1/Cip1) in RKO cells, we utilized an adenoviral vector-based expression system. We demonstrate that ectopic expression of p21(Waf1/Cip1) largely rescued RKO cells from PGA2-induced apoptotic cell death, directly implicating p21(Waf1/Cip1) as a determinant of the cellular outcome (survival versus death) following exposure to PGA2. To discern whether p21(Waf1/Cip1)-mediated protection operates through the implementation of cellular growth arrest, other growth-inhibitory treatments were studied for the ability to attenuate PGA2-induced cell death. Neither serum depletion nor suramin (a growth factor receptor antagonist) protected RKO cells against PGA2 cytotoxicity, and neither induced p21(Waf1/Cip1) expression. Mimosine, however, enhanced p21(Waf1/Cip1) expression, completely inhibited RKO cell proliferation, and exerted marked protection against a subsequent PGA2 challenge. Taken together, our results directly demonstrate a protective role for p21(Waf1/Cip1) during PGA2 cellular stress and provide strong evidence that the implementation of cellular growth arrest contributes to this protective influence.

  • Inhibition of G1 cyclin-dependent kinase activity during growth arrest of human breast carcinoma cells by Prostaglandin A2.
    Molecular and cellular biology, 1996
    Co-Authors: Myriam Gorospe, Yusen Liu, Francis J. Chrest, Nikki J. Holbrook
    Abstract:

    Prostaglandin A2 (PGA2) potently inhibits cell proliferation and suppresses tumor growth in vivo, but little is known regarding the molecular mechanisms mediating these effects. Here we demonstrate that treatment of breast carcinoma MCF-7 cells with PGA2 leads to G1 arrest associated with a dramatic decrease in the levels of cyclin D1 and cyclin-dependent kinase 4 (cdk4) and accompanied by an increase in the expression of p21. We further show that these effects occur independent of cellular p53 status. The decline in cyclin D and cdk4 protein levels is correlated with loss in cdk4 kinase activity, cdk2 activity is also significantly inhibited in PGA2-treated cells, an effect closely associated with the upregulation of p21. Immunoprecipitation experiments verified that p21 was indeed complexed with cdk2 in PGA2-treated cells. Additional experiments with synchronized MCF-7 cultures stimulated with serum revealed that treatment with PGA2 prevents the progression of cells from G1 to S. Accordingly, the kinase activity associated with cdk4, cyclin E, and cdk2 immunocomplexes, which normally increases following serum addition, was unchanged in PGA2-treated cells. Furthermore, the retinoblastoma protein (Rb), a substrate of cdk4 and cdk2 whose phosphorylation is necessary for cell cycle progression, remains underphosphorylated in PGA2-treated serum-stimulated cells. These findings indicate that PGA2 exerts its growth-inhibitory effects through modulation of the expression and/or activity of several key G1 regulatory proteins. Our results highlight the chemotherapeutic potential of PGA2, particularly for suppressing growth of tumors lacking p53 function.

  • Role of p21 in Prostaglandin A2-mediated Cellular Arrest and Death
    Cancer research, 1996
    Co-Authors: Myriam Gorospe, Nikki J. Holbrook
    Abstract:

    Prostaglandin A2 (PGA2) treatment induces growth arrest of most cells, and we have recently shown that, for breast carcinoma MCF-7 cells, this is correlated with an induction of the cyclin-dependent kinase inhibitor p21 and reduced cyclin-dependent kinase 2 activity. In this study, we demonstrate that, in RKO cells, PGA2 treatment fails to induce growth arrest, but rather results in significant cell death. These effects are correlated with lack of p21 induction and enhanced cyclin-dependent kinase 2 activity. Reduction of endogenous p21 expression in MCF-7 cells through expression of antisense p21 resulted in a response pattern approaching that seen in RKO cells, characterized by diminished growth arrest and increased death. These findings support a role for p21 in PGA2-mediated growth arrest, which we propose serves to prevent cell death caused by inappropriate cell cycle progression.

P.j. Van Bladeren - One of the best experts on this subject based on the ideXlab platform.

  • Interactions of Prostaglandin A2 with the glutathione-mediated biotransformation system
    Biochemical pharmacology, 1999
    Co-Authors: M.l.p.s. Van Iersel, Nicole H.p. Cnubben, N. Smink, J.h. Koeman, P.j. Van Bladeren
    Abstract:

    The cyclopentenone Prostaglandin A2 (PGA2) is known to inhibit cell proliferation, and metabolism of this compound thus might be important in controlling its ultimate function. The glutathione-related metabolism of PGA2 was therefore investigated both with purified glutathione S-transferase P1-1 (GSTP1-1) and with IGR-39 human melanoma cells. Firstly, the irreversible inhibition of human GSTP1-1 and its mutants C47S, C101S, and C47S/C101S was studied. PGA2 appeared to inhibit GSTP1-1 mainly by binding to the cysteine 47 moiety of the enzyme. This binding was reversed by a molar excess of GSH, indicating that retro-Michael cleavage occurs. Secondly, after exposing IGR-39 human melanoma cells to PGA2, both diastereoisomers of the PGA2-glutathione conjugate are excreted into the medium, although with a clear excess of the S-form, due to its preferential formation by the GSTP1-1 present in the cells. Thirdly, the effect of PGA2 on intracellular GST activity was determined by quantification of the excreted glutathione conjugate S-(2,4-dinitrophenyl)glutathione (DNPSG) after exposure to 1-chloro-2,4-dinitrobenzene. DNPSG excretion was inhibited after incubation with 10 or 20 μM PGA2 for 1 or 4 hr, as a result of glutathione depletion, reversible GST inhibition, and covalent modification of intracellular GST. Furthermore, PGA2 also inhibited transport of DNPSG by the multidrug resistance-associated protein, an effect that was reversible and competitive. In conclusion, PGA2 modulates all three aspects of the glutathione-mediated biotransformation system, i.e. GSH levels, GSTP1-1 activity, and transport of GSH conjugates. A role for GSTP1-1 as a specific transport protein inside the cell is indicated. Copyright (C) 1999 Elsevier Science Inc.

  • Stereoselective Conjugation of Prostaglandin A2 and Prostaglandin J2 with Glutathione, Catalyzed by the Human Glutathione S-Transferases A1-1, A2-2, M1a-1a, and P1-1
    Chemical research in toxicology, 1997
    Co-Authors: J.j.p. Bogaards, J.c. Venekamp, P.j. Van Bladeren
    Abstract:

    Prostaglandins containing an alpha,beta-unsaturated keto group, such as Prostaglandin A2 (PGA2) and Prostaglandin J2 (PGJ2), inhibit cell proliferation. These cyclopentenone Prostaglandins may be conjugated with GSH chemically or enzymatically via glutathione S-transferases, and this has been suggested to result in inhibition of the antiproliferative mode of action. In the present study, the role of the major human GSTs in the conjugation of PGA2 and PGJ2 with GSH was investigated with purified enzymes, i.e., the Alpha-class enzymes GST A1-1 and GST A2-2, the Mu-class enzyme GST M1a-1a, and the Pi-class enzyme GST P1-1. The GSH conjugates were separated from the parent compound by HPLC and identified by fast atom bombardment mass spectrometry and 1H-NMR. Two GSH conjugates were found for both PGA2 and PGJ2, the R- and S-GSH conjugates of both Prostaglandins. Incubation experiments with PGA2 and PGJ2 (70-600 microM) clearly showed the role of individual GSTs in the conjugation of PGA2 and PGJ2. Compared to the chemical reaction, enzyme activities towards PGA2 were up to 5.4 times as high (GSTA1-1) at the lowest concentration (70 microM), while at the highest concentration (600 microM) enzyme activities were up to 3.0 times as high (GST P1-1). For PGJ2, enzyme activities were up to 4.3 (GSTM1a-1a, 70 microM) and up to 3.1 (GSTM1a-1a, 600 microM) times as high. As expected, similar amounts of the R- and S-conjugates of both Prostaglandins were found in the chemical reaction. Striking stereoselectivities in conjugating activities were observed for GST A1-1 and GST P1-1. GST A1-1 favors the formation of the R-GSH conjugates of both Prostaglandins. GST P1-1 showed a clear selectivity with regard to the formation of the S-GSH conjugate of PGA2. However, this selectivity was not found for the formation of the S-GSH conjugate of PGJ2. GSTM1a-1a showed no stereoselectivity with regard to the GSH conjugation of both PGA2 and PGJ2. GSTA2-2 only showed some minor formation of the R-GSH conjugate of PGJ2. The possible implications of the observed stereoselectivity on the effects of PGA2 and PGJ2 are discussed.

Samit Chattopadhyay - One of the best experts on this subject based on the ideXlab platform.

Kathryn Z. Guyton - One of the best experts on this subject based on the ideXlab platform.

  • Protective role of p21(Waf1/Cip1) against Prostaglandin A2-mediated apoptosis of human colorectal carcinoma cells.
    Molecular and cellular biology, 1996
    Co-Authors: Myriam Gorospe, Xiao Yang Wang, Kathryn Z. Guyton, Nikki J. Holbrook
    Abstract:

    Prostaglandin A2 (PGA2) suppresses tumor growth in vivo, is potently antiproliferative in vitro, and is a model drug for the study of the mammalian stress response. Our previous studies using breast carcinoma MCF-7 cells suggested that p21(Waf1/Cip1) induction enabled cells to survive PGA2 exposure. Indeed, the marked sensitivity of human colorectal carcinoma RKO cells to the cytotoxicity of PGA2 is known to be associated with a lack of a PGA2-mediated increase in p21(Waf1/Cip1) expression, inhibition of cyclin-dependent kinase activity, and growth arrest. To determine if cell death following exposure to PGA2 could be prevented by forcing the expression of p21(Waf1/Cip1) in RKO cells, we utilized an adenoviral vector-based expression system. We demonstrate that ectopic expression of p21(Waf1/Cip1) largely rescued RKO cells from PGA2-induced apoptotic cell death, directly implicating p21(Waf1/Cip1) as a determinant of the cellular outcome (survival versus death) following exposure to PGA2. To discern whether p21(Waf1/Cip1)-mediated protection operates through the implementation of cellular growth arrest, other growth-inhibitory treatments were studied for the ability to attenuate PGA2-induced cell death. Neither serum depletion nor suramin (a growth factor receptor antagonist) protected RKO cells against PGA2 cytotoxicity, and neither induced p21(Waf1/Cip1) expression. Mimosine, however, enhanced p21(Waf1/Cip1) expression, completely inhibited RKO cell proliferation, and exerted marked protection against a subsequent PGA2 challenge. Taken together, our results directly demonstrate a protective role for p21(Waf1/Cip1) during PGA2 cellular stress and provide strong evidence that the implementation of cellular growth arrest contributes to this protective influence.

  • protective role of p21 waf1 cip1 against Prostaglandin A2 mediated apoptosis of human colorectal carcinoma cells
    Molecular and Cellular Biology, 1996
    Co-Authors: Myriam Gorospe, Xiao Yang Wang, Kathryn Z. Guyton, Nikki J. Holbrook
    Abstract:

    Prostaglandin A2 (PGA2) suppresses tumor growth in vivo, is potently antiproliferative in vitro, and is a model drug for the study of the mammalian stress response. Our previous studies using breast carcinoma MCF-7 cells suggested that p21(Waf1/Cip1) induction enabled cells to survive PGA2 exposure. Indeed, the marked sensitivity of human colorectal carcinoma RKO cells to the cytotoxicity of PGA2 is known to be associated with a lack of a PGA2-mediated increase in p21(Waf1/Cip1) expression, inhibition of cyclin-dependent kinase activity, and growth arrest. To determine if cell death following exposure to PGA2 could be prevented by forcing the expression of p21(Waf1/Cip1) in RKO cells, we utilized an adenoviral vector-based expression system. We demonstrate that ectopic expression of p21(Waf1/Cip1) largely rescued RKO cells from PGA2-induced apoptotic cell death, directly implicating p21(Waf1/Cip1) as a determinant of the cellular outcome (survival versus death) following exposure to PGA2. To discern whether p21(Waf1/Cip1)-mediated protection operates through the implementation of cellular growth arrest, other growth-inhibitory treatments were studied for the ability to attenuate PGA2-induced cell death. Neither serum depletion nor suramin (a growth factor receptor antagonist) protected RKO cells against PGA2 cytotoxicity, and neither induced p21(Waf1/Cip1) expression. Mimosine, however, enhanced p21(Waf1/Cip1) expression, completely inhibited RKO cell proliferation, and exerted marked protection against a subsequent PGA2 challenge. Taken together, our results directly demonstrate a protective role for p21(Waf1/Cip1) during PGA2 cellular stress and provide strong evidence that the implementation of cellular growth arrest contributes to this protective influence.