Quantitative Metric

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 19500 Experts worldwide ranked by ideXlab platform

Paulette Clancy - One of the best experts on this subject based on the ideXlab platform.

  • a Quantitative Metric for the design of selective supercritical co2 extraction of lithium from geothermal brine
    Chemsuschem, 2019
    Co-Authors: Andrew W. Ruttinger, Arna Pálsdóttir, Jefferson W Tester, Paulette Clancy
    Abstract:

    As demand grows for lithium, its recovery from geothermal brines provides an attractive alternative to slow mining. One promising extraction method uses crown ethers as extractants in supercritical carbon dioxide with cation exchangers to facilitate extraction from brine. Molecular dynamics modeling is used to understand the mechanism of binding between lithium (or sodium) and combinations of 14-crown-4 ethers and cation exchangers, and the predictive capability of computational modeling to test lithium selectivity is established for four combinations of crown ethers [methylene-14-crown-4 (M14C4) and a fluorinated 14-crown-4 (F14C4)] and cation exchangers [di(2-ethyl-hexyl)phosphoric acid (HDEHP) and tetraethylammonium perfluoro-1-octanesulfonate (TPFOS)]. Binding free energies (given in kcal mol-1 ) of lithium and sodium, respectively, to crown ether-cation exchangers are 85 and 71 for M14C4-HDEHP, 90 and 71 for F14C4-HDEHP, 93 and 80 for M14C4-TPFOS, and 104 and 93 for F14C4-TPFOS. Good agreement is found between computational predictions and supercritical carbon dioxide extraction experiments at 60 °C and 250 bar. Binding free energy gives a suitable Metric to describe extraction efficiency. Differences in the binding free energies of sodium and lithium to crown ethers determine the extraction selectivity. Fluorine groups are found to exert a positive influence to optimize extraction efficiency. Of the systems studied, F14C4 with TPFOS offers the most selective and efficient extraction system.

  • A new Quantitative Metric for the design of selective supercritical CO2 extractions of lithium from geothermal brine
    Chemsuschem, 2019
    Co-Authors: Andrew W. Ruttinger, Arna Pálsdóttir, Jefferson W Tester, Paulette Clancy
    Abstract:

    As demand grows for lithium, its recovery from geothermal brines provides an attractive alternative to slow mining. One promising extraction method uses crown ethers as extractants in supercritical carbon dioxide with cation exchangers to facilitate extraction from brine. Molecular dynamics modeling is used to understand the mechanism of binding between lithium (or sodium) and combinations of 14-crown-4 ethers and cation exchangers, and the predictive capability of computational modeling to test lithium selectivity is established for four combinations of crown ethers [methylene-14-crown-4 (M14C4) and a fluorinated 14-crown-4 (F14C4)] and cation exchangers [di(2-ethyl-hexyl)phosphoric acid (HDEHP) and tetraethylammonium perfluoro-1-octanesulfonate (TPFOS)]. Binding free energies (given in kcal mol-1 ) of lithium and sodium, respectively, to crown ether-cation exchangers are 85 and 71 for M14C4-HDEHP, 90 and 71 for F14C4-HDEHP, 93 and 80 for M14C4-TPFOS, and 104 and 93 for F14C4-TPFOS. Good agreement is found between computational predictions and supercritical carbon dioxide extraction experiments at 60 °C and 250 bar. Binding free energy gives a suitable Metric to describe extraction efficiency. Differences in the binding free energies of sodium and lithium to crown ethers determine the extraction selectivity. Fluorine groups are found to exert a positive influence to optimize extraction efficiency. Of the systems studied, F14C4 with TPFOS offers the most selective and efficient extraction system.

Andrew W. Ruttinger - One of the best experts on this subject based on the ideXlab platform.

  • a Quantitative Metric for the design of selective supercritical co2 extraction of lithium from geothermal brine
    Chemsuschem, 2019
    Co-Authors: Andrew W. Ruttinger, Arna Pálsdóttir, Jefferson W Tester, Paulette Clancy
    Abstract:

    As demand grows for lithium, its recovery from geothermal brines provides an attractive alternative to slow mining. One promising extraction method uses crown ethers as extractants in supercritical carbon dioxide with cation exchangers to facilitate extraction from brine. Molecular dynamics modeling is used to understand the mechanism of binding between lithium (or sodium) and combinations of 14-crown-4 ethers and cation exchangers, and the predictive capability of computational modeling to test lithium selectivity is established for four combinations of crown ethers [methylene-14-crown-4 (M14C4) and a fluorinated 14-crown-4 (F14C4)] and cation exchangers [di(2-ethyl-hexyl)phosphoric acid (HDEHP) and tetraethylammonium perfluoro-1-octanesulfonate (TPFOS)]. Binding free energies (given in kcal mol-1 ) of lithium and sodium, respectively, to crown ether-cation exchangers are 85 and 71 for M14C4-HDEHP, 90 and 71 for F14C4-HDEHP, 93 and 80 for M14C4-TPFOS, and 104 and 93 for F14C4-TPFOS. Good agreement is found between computational predictions and supercritical carbon dioxide extraction experiments at 60 °C and 250 bar. Binding free energy gives a suitable Metric to describe extraction efficiency. Differences in the binding free energies of sodium and lithium to crown ethers determine the extraction selectivity. Fluorine groups are found to exert a positive influence to optimize extraction efficiency. Of the systems studied, F14C4 with TPFOS offers the most selective and efficient extraction system.

  • A new Quantitative Metric for the design of selective supercritical CO2 extractions of lithium from geothermal brine
    Chemsuschem, 2019
    Co-Authors: Andrew W. Ruttinger, Arna Pálsdóttir, Jefferson W Tester, Paulette Clancy
    Abstract:

    As demand grows for lithium, its recovery from geothermal brines provides an attractive alternative to slow mining. One promising extraction method uses crown ethers as extractants in supercritical carbon dioxide with cation exchangers to facilitate extraction from brine. Molecular dynamics modeling is used to understand the mechanism of binding between lithium (or sodium) and combinations of 14-crown-4 ethers and cation exchangers, and the predictive capability of computational modeling to test lithium selectivity is established for four combinations of crown ethers [methylene-14-crown-4 (M14C4) and a fluorinated 14-crown-4 (F14C4)] and cation exchangers [di(2-ethyl-hexyl)phosphoric acid (HDEHP) and tetraethylammonium perfluoro-1-octanesulfonate (TPFOS)]. Binding free energies (given in kcal mol-1 ) of lithium and sodium, respectively, to crown ether-cation exchangers are 85 and 71 for M14C4-HDEHP, 90 and 71 for F14C4-HDEHP, 93 and 80 for M14C4-TPFOS, and 104 and 93 for F14C4-TPFOS. Good agreement is found between computational predictions and supercritical carbon dioxide extraction experiments at 60 °C and 250 bar. Binding free energy gives a suitable Metric to describe extraction efficiency. Differences in the binding free energies of sodium and lithium to crown ethers determine the extraction selectivity. Fluorine groups are found to exert a positive influence to optimize extraction efficiency. Of the systems studied, F14C4 with TPFOS offers the most selective and efficient extraction system.

Ma. Del Carmen Suarez - One of the best experts on this subject based on the ideXlab platform.

  • WAB*: A Quantitative Metric Based on WAB
    Lecture Notes in Computer Science, 2009
    Co-Authors: Ana Belén Martínez, Aquilino A. Juan, Darío Álvarez, Ma. Del Carmen Suarez
    Abstract:

    Web accessibility Metrics are crucial for the Quantitative evaluation of web sites. We present a new automatic Metric called WAB, based on the WAB Metric with extensions inspired from the UWEM Metric. The first results are encouraging as we have obtained better precision when calculation the accessibility level measured for a site.

Jefferson W Tester - One of the best experts on this subject based on the ideXlab platform.

  • a Quantitative Metric for the design of selective supercritical co2 extraction of lithium from geothermal brine
    Chemsuschem, 2019
    Co-Authors: Andrew W. Ruttinger, Arna Pálsdóttir, Jefferson W Tester, Paulette Clancy
    Abstract:

    As demand grows for lithium, its recovery from geothermal brines provides an attractive alternative to slow mining. One promising extraction method uses crown ethers as extractants in supercritical carbon dioxide with cation exchangers to facilitate extraction from brine. Molecular dynamics modeling is used to understand the mechanism of binding between lithium (or sodium) and combinations of 14-crown-4 ethers and cation exchangers, and the predictive capability of computational modeling to test lithium selectivity is established for four combinations of crown ethers [methylene-14-crown-4 (M14C4) and a fluorinated 14-crown-4 (F14C4)] and cation exchangers [di(2-ethyl-hexyl)phosphoric acid (HDEHP) and tetraethylammonium perfluoro-1-octanesulfonate (TPFOS)]. Binding free energies (given in kcal mol-1 ) of lithium and sodium, respectively, to crown ether-cation exchangers are 85 and 71 for M14C4-HDEHP, 90 and 71 for F14C4-HDEHP, 93 and 80 for M14C4-TPFOS, and 104 and 93 for F14C4-TPFOS. Good agreement is found between computational predictions and supercritical carbon dioxide extraction experiments at 60 °C and 250 bar. Binding free energy gives a suitable Metric to describe extraction efficiency. Differences in the binding free energies of sodium and lithium to crown ethers determine the extraction selectivity. Fluorine groups are found to exert a positive influence to optimize extraction efficiency. Of the systems studied, F14C4 with TPFOS offers the most selective and efficient extraction system.

  • A new Quantitative Metric for the design of selective supercritical CO2 extractions of lithium from geothermal brine
    Chemsuschem, 2019
    Co-Authors: Andrew W. Ruttinger, Arna Pálsdóttir, Jefferson W Tester, Paulette Clancy
    Abstract:

    As demand grows for lithium, its recovery from geothermal brines provides an attractive alternative to slow mining. One promising extraction method uses crown ethers as extractants in supercritical carbon dioxide with cation exchangers to facilitate extraction from brine. Molecular dynamics modeling is used to understand the mechanism of binding between lithium (or sodium) and combinations of 14-crown-4 ethers and cation exchangers, and the predictive capability of computational modeling to test lithium selectivity is established for four combinations of crown ethers [methylene-14-crown-4 (M14C4) and a fluorinated 14-crown-4 (F14C4)] and cation exchangers [di(2-ethyl-hexyl)phosphoric acid (HDEHP) and tetraethylammonium perfluoro-1-octanesulfonate (TPFOS)]. Binding free energies (given in kcal mol-1 ) of lithium and sodium, respectively, to crown ether-cation exchangers are 85 and 71 for M14C4-HDEHP, 90 and 71 for F14C4-HDEHP, 93 and 80 for M14C4-TPFOS, and 104 and 93 for F14C4-TPFOS. Good agreement is found between computational predictions and supercritical carbon dioxide extraction experiments at 60 °C and 250 bar. Binding free energy gives a suitable Metric to describe extraction efficiency. Differences in the binding free energies of sodium and lithium to crown ethers determine the extraction selectivity. Fluorine groups are found to exert a positive influence to optimize extraction efficiency. Of the systems studied, F14C4 with TPFOS offers the most selective and efficient extraction system.

Arna Pálsdóttir - One of the best experts on this subject based on the ideXlab platform.

  • a Quantitative Metric for the design of selective supercritical co2 extraction of lithium from geothermal brine
    Chemsuschem, 2019
    Co-Authors: Andrew W. Ruttinger, Arna Pálsdóttir, Jefferson W Tester, Paulette Clancy
    Abstract:

    As demand grows for lithium, its recovery from geothermal brines provides an attractive alternative to slow mining. One promising extraction method uses crown ethers as extractants in supercritical carbon dioxide with cation exchangers to facilitate extraction from brine. Molecular dynamics modeling is used to understand the mechanism of binding between lithium (or sodium) and combinations of 14-crown-4 ethers and cation exchangers, and the predictive capability of computational modeling to test lithium selectivity is established for four combinations of crown ethers [methylene-14-crown-4 (M14C4) and a fluorinated 14-crown-4 (F14C4)] and cation exchangers [di(2-ethyl-hexyl)phosphoric acid (HDEHP) and tetraethylammonium perfluoro-1-octanesulfonate (TPFOS)]. Binding free energies (given in kcal mol-1 ) of lithium and sodium, respectively, to crown ether-cation exchangers are 85 and 71 for M14C4-HDEHP, 90 and 71 for F14C4-HDEHP, 93 and 80 for M14C4-TPFOS, and 104 and 93 for F14C4-TPFOS. Good agreement is found between computational predictions and supercritical carbon dioxide extraction experiments at 60 °C and 250 bar. Binding free energy gives a suitable Metric to describe extraction efficiency. Differences in the binding free energies of sodium and lithium to crown ethers determine the extraction selectivity. Fluorine groups are found to exert a positive influence to optimize extraction efficiency. Of the systems studied, F14C4 with TPFOS offers the most selective and efficient extraction system.

  • A new Quantitative Metric for the design of selective supercritical CO2 extractions of lithium from geothermal brine
    Chemsuschem, 2019
    Co-Authors: Andrew W. Ruttinger, Arna Pálsdóttir, Jefferson W Tester, Paulette Clancy
    Abstract:

    As demand grows for lithium, its recovery from geothermal brines provides an attractive alternative to slow mining. One promising extraction method uses crown ethers as extractants in supercritical carbon dioxide with cation exchangers to facilitate extraction from brine. Molecular dynamics modeling is used to understand the mechanism of binding between lithium (or sodium) and combinations of 14-crown-4 ethers and cation exchangers, and the predictive capability of computational modeling to test lithium selectivity is established for four combinations of crown ethers [methylene-14-crown-4 (M14C4) and a fluorinated 14-crown-4 (F14C4)] and cation exchangers [di(2-ethyl-hexyl)phosphoric acid (HDEHP) and tetraethylammonium perfluoro-1-octanesulfonate (TPFOS)]. Binding free energies (given in kcal mol-1 ) of lithium and sodium, respectively, to crown ether-cation exchangers are 85 and 71 for M14C4-HDEHP, 90 and 71 for F14C4-HDEHP, 93 and 80 for M14C4-TPFOS, and 104 and 93 for F14C4-TPFOS. Good agreement is found between computational predictions and supercritical carbon dioxide extraction experiments at 60 °C and 250 bar. Binding free energy gives a suitable Metric to describe extraction efficiency. Differences in the binding free energies of sodium and lithium to crown ethers determine the extraction selectivity. Fluorine groups are found to exert a positive influence to optimize extraction efficiency. Of the systems studied, F14C4 with TPFOS offers the most selective and efficient extraction system.