Rarefied Environment

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 84 Experts worldwide ranked by ideXlab platform

Evan J Crawford - One of the best experts on this subject based on the ideXlab platform.

  • New optically identified supernova remnants in the Large Magellanic Cloud
    Monthly Notices of the Royal Astronomical Society, 2020
    Co-Authors: Miranda Yew, Miroslav Filipovic, Milorad Stupar, Sean D Points, Manami Sasaki, Pierre Maggi, Frank Haberl, Patrick J. Kavanagh, Quentin A. Parker, Evan J Crawford
    Abstract:

    We present a new optical sample of three Supernova Remnants and 16 Supernova Remnant (SNR) candidates in the Large Magellanic Cloud(LMC). These objects were originally selected using deep H$\alpha$, [SII] and [OIII] narrow-band imaging. Most of the newly found objects are located in less dense regions, near or around the edges of the LMC's main body. Together with previously suggested MCSNR J0541-6659, we confirm the SNR nature for two additional new objects: MCSNR J0522-6740 and MCSNRJ0542-7104. Spectroscopic follow-up observations for 12 of the LMC objects confirm high [SII]/H$\alpha$ a emission-line ratios ranging from 0.5 to 1.1. We consider the candidate J0509-6402 to be a special example of the remnant of a possible Type Ia Supernova which is situated some 2$^\circ$ ($\sim 1.75$kpc) north from the main body of the LMC. We also find that the SNR candidates in our sample are significantly larger in size than the currently known LMC SNRs by a factor of $\sim 2$. This could potentially imply that we are discovering a previously unknown but predicted, older class of large LMC SNRs that are only visible optically. Finally, we suggest that most of these LMC SNRs are residing in a very Rarefied Environment towards the end of their evolutionary span where they become less visible to radio and X-ray telescopes.

Olivier Mousis - One of the best experts on this subject based on the ideXlab platform.

  • KBO binaries: how numerous were they?
    Icarus, 2004
    Co-Authors: Jean-marc Petit, Olivier Mousis
    Abstract:

    Given the large orbital separation and high satellite-to-primary mass ratio of all known Kuiper Belt Object (KBO) binaries, it is important to reassess their stability as bound pairs with respect to several disruptive mechanisms. Beside the classical shattering and dispersing of the secondary due to a high-velocity impact, we consider the possibility that the secondary is kicked off its orbit by a direct collision of a small impactor, or that it is gravitationally perturbed due to the close approach of a somewhat larger TNO. Depending on the values for the size/mass/separation of the binaries that we used, 2 or 3 of the 9 pairs can be dispersed in a timescale shorter than the age of the Solar System in the current Rarefied Environment. A contemporary formation scenario could explain why we still observe these binaries, but no convincing mechanism has been proposed to date. The primordial formation scenarios, which seem to be the only viable ones, must be revised to increase the formation efficiency in order to account for this high dispersal rate. For the reference current KBO population, objects like the large-separation KBO binaries 1998 WW31 or 2001 QW322 must have been initially an order of magnitude more numerous. If the KBO binaries are indeed primordial, then we show that the mass depletion of the Kuiper belt cannot result from collisional grinding, but must rather be due to dynamical ejection.  2004 Elsevier Inc. All rights reserved.

  • KBO binaries: are they really primordial ?
    arXiv: Astrophysics, 2003
    Co-Authors: Jean-marc Petit, Olivier Mousis
    Abstract:

    Given the large orbital separation and high satellite-to-primary mass ratio of all known Kuiper Belt Object (KBO) binaries, it is important to reassess their stability as bound pairs with respect to several disruptive mechanisms. Besides the classical shattering and dispersing of the secondary due to a high-velocity impact, we considered the possibility that the secondary is kicked off its orbit by a direct collision of a small impactor, or that it is gravitationally perturbed due to the close approach of a somewhat larger TNO. Depending on the values for the size/mass/separation of the binaries that we used, 2 or 3 of the 8 pairs can be dispersed in a timescale shorter than the age of the solar system in the current Rarefied Environment. A contemporary formation scenario could explain why we still observe these binaries, but no convincing mechanism has been proposed to date. The primordial formation scenarios, which seem to be the only viable ones, must be revised to increase the formation efficiency in order to account for this high dispersal rate. Objects like the large-separatioKBO binary n2001 QW$_{322}$ must have been initially an order of magnitude more numerous. If the KBO binaries are indeed primordial, then we show that the mass depletion of the Kuiper belt cannot result from collisional grinding, but must rather be due to dynamical ejection.

Miranda Yew - One of the best experts on this subject based on the ideXlab platform.

  • New optically identified supernova remnants in the Large Magellanic Cloud
    Monthly Notices of the Royal Astronomical Society, 2020
    Co-Authors: Miranda Yew, Miroslav Filipovic, Milorad Stupar, Sean D Points, Manami Sasaki, Pierre Maggi, Frank Haberl, Patrick J. Kavanagh, Quentin A. Parker, Evan J Crawford
    Abstract:

    We present a new optical sample of three Supernova Remnants and 16 Supernova Remnant (SNR) candidates in the Large Magellanic Cloud(LMC). These objects were originally selected using deep H$\alpha$, [SII] and [OIII] narrow-band imaging. Most of the newly found objects are located in less dense regions, near or around the edges of the LMC's main body. Together with previously suggested MCSNR J0541-6659, we confirm the SNR nature for two additional new objects: MCSNR J0522-6740 and MCSNRJ0542-7104. Spectroscopic follow-up observations for 12 of the LMC objects confirm high [SII]/H$\alpha$ a emission-line ratios ranging from 0.5 to 1.1. We consider the candidate J0509-6402 to be a special example of the remnant of a possible Type Ia Supernova which is situated some 2$^\circ$ ($\sim 1.75$kpc) north from the main body of the LMC. We also find that the SNR candidates in our sample are significantly larger in size than the currently known LMC SNRs by a factor of $\sim 2$. This could potentially imply that we are discovering a previously unknown but predicted, older class of large LMC SNRs that are only visible optically. Finally, we suggest that most of these LMC SNRs are residing in a very Rarefied Environment towards the end of their evolutionary span where they become less visible to radio and X-ray telescopes.

Jean-marc Petit - One of the best experts on this subject based on the ideXlab platform.

  • KBO binaries: how numerous were they?
    Icarus, 2004
    Co-Authors: Jean-marc Petit, Olivier Mousis
    Abstract:

    Given the large orbital separation and high satellite-to-primary mass ratio of all known Kuiper Belt Object (KBO) binaries, it is important to reassess their stability as bound pairs with respect to several disruptive mechanisms. Beside the classical shattering and dispersing of the secondary due to a high-velocity impact, we consider the possibility that the secondary is kicked off its orbit by a direct collision of a small impactor, or that it is gravitationally perturbed due to the close approach of a somewhat larger TNO. Depending on the values for the size/mass/separation of the binaries that we used, 2 or 3 of the 9 pairs can be dispersed in a timescale shorter than the age of the Solar System in the current Rarefied Environment. A contemporary formation scenario could explain why we still observe these binaries, but no convincing mechanism has been proposed to date. The primordial formation scenarios, which seem to be the only viable ones, must be revised to increase the formation efficiency in order to account for this high dispersal rate. For the reference current KBO population, objects like the large-separation KBO binaries 1998 WW31 or 2001 QW322 must have been initially an order of magnitude more numerous. If the KBO binaries are indeed primordial, then we show that the mass depletion of the Kuiper belt cannot result from collisional grinding, but must rather be due to dynamical ejection.  2004 Elsevier Inc. All rights reserved.

  • KBO binaries: are they really primordial ?
    arXiv: Astrophysics, 2003
    Co-Authors: Jean-marc Petit, Olivier Mousis
    Abstract:

    Given the large orbital separation and high satellite-to-primary mass ratio of all known Kuiper Belt Object (KBO) binaries, it is important to reassess their stability as bound pairs with respect to several disruptive mechanisms. Besides the classical shattering and dispersing of the secondary due to a high-velocity impact, we considered the possibility that the secondary is kicked off its orbit by a direct collision of a small impactor, or that it is gravitationally perturbed due to the close approach of a somewhat larger TNO. Depending on the values for the size/mass/separation of the binaries that we used, 2 or 3 of the 8 pairs can be dispersed in a timescale shorter than the age of the solar system in the current Rarefied Environment. A contemporary formation scenario could explain why we still observe these binaries, but no convincing mechanism has been proposed to date. The primordial formation scenarios, which seem to be the only viable ones, must be revised to increase the formation efficiency in order to account for this high dispersal rate. Objects like the large-separatioKBO binary n2001 QW$_{322}$ must have been initially an order of magnitude more numerous. If the KBO binaries are indeed primordial, then we show that the mass depletion of the Kuiper belt cannot result from collisional grinding, but must rather be due to dynamical ejection.

Eric Keto - One of the best experts on this subject based on the ideXlab platform.

  • Accepted for publication in MNRAS The Dynamics of Ultracompact HII Regions
    2016
    Co-Authors: Nathaniel Roth, Steven W. Stahler, Eric Keto
    Abstract:

    Many ultracompact HII regions exhibit a cometary morphology in radio continuum emission. In such regions, a young massive star is probably ablating, through its ul-traviolet radiation, the molecular cloud clump that spawned it. On one side of the star, the radiation drives an ionization front that stalls in dense molecular gas. On the other side, ionized gas streams outward into the more Rarefied Environment. This wind is underpressured with respect to the neutral gas. The difference in pressure draws in more cloud material, feeding the wind until the densest molecular gas is dissipated. Recent, time-dependent simulations of massive stars turning on within molecular gas show the system evolving in a direction similar to that just described. Here, we explore a semi-analytic model in which the wind is axisymmetric and has already achieved a steady state. Adoption of this simplified picture allows us to study the dependence of both the wind and its bounding ionization front on the stellar luminosity, the peak molecular density, and the displacement of the star from the center of the clump. For typical parameter values, the wind accelerates transonically to a speed of about 15 km s−1, and transports mass outward at a rate of 10−4 M yr−1. Stellar radiation pressure acts to steepen the density gradient of the wind. Subject headings: ISM: HII regions, clouds, jets and outflows — stars: formation, early-typ

  • The dynamics of ultracompact H II regions
    Monthly Notices of the Royal Astronomical Society, 2013
    Co-Authors: Nathaniel Roth, Steven W. Stahler, Eric Keto
    Abstract:

    Many ultracompact H II regions exhibit a cometary morphology in radio continuum emission. In such regions, a young massive star is probably ablating, through its ultraviolet radiation, the molecular cloud clump that spawned it. On one side of the star, the radiation drives an ionization front that stalls in dense molecular gas. On the other side, ionized gas streams outwards into the more Rarefied Environment. This wind is underpressured with respect to the neutral gas. The difference in pressure draws in more cloud material, feeding the wind until the densest molecular gas is dissipated. Recent, time-dependent simulations of massive stars turning on within molecular gas show the system evolving in a direction similar to that just described. Here, we explore a semi-analytic model in which the wind is axisymmetric and has already achieved a steady state. Adoption of this simplified picture allows us to study the dependence of both the wind and its bounding ionization front on the stellar luminosity, the peak molecular density and the displacement of the star from the centre of the clump. For typical parameter values, the wind accelerates transonically to a speed of about 15 km s −1 , and