Rubivirus

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 246 Experts worldwide ranked by ideXlab platform

Teryl K. Frey - One of the best experts on this subject based on the ideXlab platform.

  • Do viruses require the cytoskeleton
    Virology journal, 2013
    Co-Authors: Jason D. Matthews, Rachel Morgan, Christie Sleigher, Teryl K. Frey
    Abstract:

    Background It is generally thought that viruses require the cytoskeleton during their replication cycle. However, recent experiments in our laboratory with rubella virus, a member of the family Togaviridae (genus Rubivirus), revealed that replication proceeded in the presence of drugs that inhibit microtubules. This study was done to expand on this observation.

  • Do viruses require the cytoskeleton?
    Virology Journal, 2013
    Co-Authors: Jason D. Matthews, Rachel Morgan, Christie Sleigher, Teryl K. Frey
    Abstract:

    Background It is generally thought that viruses require the cytoskeleton during their replication cycle. However, recent experiments in our laboratory with rubella virus, a member of the family Togaviridae (genus Rubivirus), revealed that replication proceeded in the presence of drugs that inhibit microtubules. This study was done to expand on this observation. Findings The replication of three diverse viruses, Sindbis virus (SINV; family Togaviridae family), vesicular stomatitis virus (VSV; family Rhabdoviridae), and Herpes simplex virus (family Herpesviridae), was quantified by the titer (plaque forming units/ml; pfu/ml) produced in cells treated with one of three anti-microtubule drugs (colchicine, noscapine, or paclitaxel) or the anti-actin filament drug, cytochalasin D. None of these drugs affected the replication these viruses. Specific steps in the SINV infection cycle were examined during drug treatment to determine if alterations in specific steps in the virus replication cycle in the absence of a functional cytoskeletal system could be detected, i.e. redistribution of viral proteins and replication complexes or increases/decreases in their abundance. These investigations revealed that the observable impacts were a colchicine-mediated fragmentation of the Golgi apparatus and concomitant intracellular redistribution of the virion structural proteins, along with a reduction in viral genome and sub-genome RNA levels, but not double-stranded RNA or protein levels. Conclusions The failure of poisons affecting the cytoskeleton to inhibit the replication of a diverse set of viruses strongly suggests that viruses do not require a functional cytoskeletal system for replication, either because they do not utilize it or are able to utilize alternate pathways when it is not available.

  • Cryo-Electron Tomography of Rubella Virus
    Journal of Virology, 2012
    Co-Authors: Anthony J. Battisti, Joshua D. Yoder, Pavel Plevka, Dennis C. Winkler, Vidya Mangala Prasad, Richard Kuhn, Teryl K. Frey, Alasdair C. Steven, Michael G. Rossmann
    Abstract:

    Rubella virus is the only member of the Rubivirus genus within the Togaviridae family and is the causative agent of the childhood disease known as rubella or German measles. Here, we report the use of cryo-electron tomography to examine the three-dimensional structure of rubella virions and compare their structure to that of Ross River virus, a togavirus belonging the genus Alphavirus. The ectodomains of the rubella virus glycoproteins, E1 and E2, are shown to be organized into extended rows of density, separated by 9 nm on the viral surface. We also show that the rubella virus nucleocapsid structure often forms a roughly spherical shell which lacks high density at its center. While many rubella virions are approximately spherical and have dimensions similar to that of the icosahedral Ross River virus, the present results indicate that rubella exhibits a large degree of pleomorphy. In addition, we used rotation function calculations and other analyses to show that approximately spherical rubella virions lack the icosahedral organization which characterizes Ross River and other alphaviruses. The present results indicate that the assembly mechanism of rubella virus, which has previously been shown to differ from that of the alphavirus assembly pathway, leads to an organization of the rubella virus structural proteins that is different from that of alphaviruses.

  • studied in cells with persisting replicons
    2007
    Co-Authors: Uwe G. Liebert, Claudia Claus, Wen-pin Tzeng, Teryl K. Frey
    Abstract:

    For the first time, homologous superinfection exclusion was documented for rubella virus (RUB) by using Vero cells harbouring persisting RUB replicons. Infection with wild-type RUB was reduced by tenfold, whereas Sindbis virus infection was unaffected. Replication following infection with packaged replicons and transfection with replicon transcripts was also restricted in these cells, indicating that restriction occurred after penetration and entry. Translation of such ‘supertransfecting ’ replicon transcripts was not impaired, but no accumulation of supertransfecting replicon RNA could be detected. We tested the hypothesis favoured in the related alphaviruses that superinfection exclusion is mediated by cleavage of the incoming non-structural precursor by the pre-existing non-structural (NS) protease, resulting in an inhibition of minus-strand RNA synthesis. However, cleavage of a precursor translated from a supertransfecting replicon transcript with an NS protease catalytic-site mutation was not detected and the event in the replication cycle at which superinfection exclusion is executed remains to be elucidated. Rubella virus (RUB) is a member of the genus Rubivirus within the family Togaviridae. RUB has a single-stranded

  • Mapping the rubella virus subgenomic promoter.
    Journal of virology, 2002
    Co-Authors: Wen-pin Tzeng, Teryl K. Frey
    Abstract:

    Rubella virus (RUB), the sole member of the Rubivirus genus in the Togaviridae family of positive-strand RNA viruses, synthesizes a single subgenomic (SG) RNA containing sequences from the 3' end of the genomic RNA including the open reading frame (ORF) that encodes the virion proteins. The synthesis of SG RNA is initiated internally on a negative-strand, genome-length template at a site known as the SG promoter (SGP). Mapping the RUB SGP was initiated by using an infectious cDNA vector, dsRobo402/GFP, in which the region containing the SGP was duplicated (K. V. Pugachev, W.-P. Tzeng, and T. K. Frey, J. Virol. 74:10811-10815, 2000). In dsRobo402/GFP, the 5'-proximal nonstructural protein ORF (NS-ORF) is followed by the first SGP (SGP-1), the green fluorescent protein (GFP) gene, the second SGP (SGP-2), and the structural protein ORF. The duplicated SGP, SGP-2, contained nucleotides (nt) -175 to +76 relative to the SG start site, including the 3' 127 nt of the NS-ORF and 47 nt between the NS-ORF and the SG start site. 5' Deletions of SGP-2 to nt -40 (9 nt beyond the 3' end of the NS-ORF) resulted in a wild-type (wt) phenotype in terms of virus replication and RNA synthesis. Deletions beyond this point impaired viability; however, the analysis was complicated by homologous recombination between SGP-1 and SGP-2 that resulted in deletion of the GFP gene and resurrection of viable virus with one SGP. Since the NS-ORF region was not necessary for SGP activity, subsequent mapping was done by using both replicon vectors, RUBrep/GFP and RUBrep/CAT, in which the SP-ORF is replaced with the reporter GFP and chloramphenical acetyltransferase genes, respectively, and the wt infectious clone, Robo402. In the replicon vectors, 5' deletions to nt -26 resulted in the synthesis of SG RNA. In the infectious clone, deletions through nt -28 gave rise to viable virus. A series of short internal deletions confirmed that the region between nt -28 and the SG start site was essential for viability and showed that the repeated UCA triplet at the 5' end of SG RNA was also required. Thus, the minimal SGP maps from nt -26 through the SG start site and appears to extend to at least nt +6, although a larger region is required for the generation of virus with a wt phenotype. Interestingly, while the positioning of the RUB SGP immediately adjacent the SG start site is thus similar to that of members of the genus Alphavirus, the other genus in the Togaviridae family, it does not include a region of nucleotide sequence homology with the alphavirus SGP that is located between nt -48 and nt -23 with respect to the SG start site in the RUB genome.

Michael A. Purdy - One of the best experts on this subject based on the ideXlab platform.

  • The Hepatitis E Virus Polyproline Region Is Involved in Viral Adaptation
    2013
    Co-Authors: Michael A. Purdy, James Lara, Yury E. Khudyakov
    Abstract:

    Genomes of hepatitis E virus (HEV), Rubivirus and cutthroat virus (CTV) contain a region of high proline density and low amino acid (aa) complexity, named the polyproline region (PPR). In HEV genotypes 1, 3 and 4, it is the only region within the non-structural open reading frame (ORF1) with positive selection (4–10 codons with dN/dS.1). This region has the highest density of sites with homoplasy values.0.5. Genotypes 3 and 4 show,3-fold increase in homoplastic density (HD) in the PPR compared to any other region in ORF1, genotype 1 does not exhibit significant HD (p,0.0001). PPR sequence divergence was found to be 2-fold greater for HEV genotypes 3 and 4 than for genotype 1. The data suggest the PPR plays an important role in host-range adaptation. Although the PPR appears to be hypervariable and homoplastic, it retains as much phylogenetic signal as any other similar sized region in the ORF1, indicating that convergent evolution operates within the major HEV phylogenetic lineages. Analyses of sequence-based secondary structure and the tertiary structure identify PPR as an intrinsically disordered region (IDR), implicating its role in regulation of replication. The identified propensity for the disorder-to-order state transitions indicates the PPR is involved in protein-protein interactions. Furthermore, the PPR of all four HEV genotypes contains seven putative linear binding motifs for ligands involved in the regulation of a wide number of cellular signaling processes. Structure-based analysis of possible molecular functions of these motifs showed the PPR is prone to bind a wide variety of ligands. Collectively, these data suggest a role for the PPR i

  • The hepatitis E virus polyproline region is involved in viral adaptation.
    PloS one, 2012
    Co-Authors: Michael A. Purdy, James Lara, Yury Khudyakov
    Abstract:

    Genomes of hepatitis E virus (HEV), Rubivirus and cutthroat virus (CTV) contain a region of high proline density and low amino acid (aa) complexity, named the polyproline region (PPR). In HEV genotypes 1, 3 and 4, it is the only region within the non-structural open reading frame (ORF1) with positive selection (4-10 codons with dN/dS>1). This region has the highest density of sites with homoplasy values >0.5. Genotypes 3 and 4 show ∼3-fold increase in homoplastic density (HD) in the PPR compared to any other region in ORF1, genotype 1 does not exhibit significant HD (p

  • the hepatitis e virus polyproline region is involved in viral adaptation
    PLOS ONE, 2012
    Co-Authors: Michael A. Purdy, James Lara, Yury Khudyakov
    Abstract:

    Genomes of hepatitis E virus (HEV), Rubivirus and cutthroat virus (CTV) contain a region of high proline density and low amino acid (aa) complexity, named the polyproline region (PPR). In HEV genotypes 1, 3 and 4, it is the only region within the non-structural open reading frame (ORF1) with positive selection (4-10 codons with dN/dS>1). This region has the highest density of sites with homoplasy values >0.5. Genotypes 3 and 4 show ∼3-fold increase in homoplastic density (HD) in the PPR compared to any other region in ORF1, genotype 1 does not exhibit significant HD (p<0.0001). PPR sequence divergence was found to be 2-fold greater for HEV genotypes 3 and 4 than for genotype 1. The data suggest the PPR plays an important role in host-range adaptation. Although the PPR appears to be hypervariable and homoplastic, it retains as much phylogenetic signal as any other similar sized region in the ORF1, indicating that convergent evolution operates within the major HEV phylogenetic lineages. Analyses of sequence-based secondary structure and the tertiary structure identify PPR as an intrinsically disordered region (IDR), implicating its role in regulation of replication. The identified propensity for the disorder-to-order state transitions indicates the PPR is involved in protein-protein interactions. Furthermore, the PPR of all four HEV genotypes contains seven putative linear binding motifs for ligands involved in the regulation of a wide number of cellular signaling processes. Structure-based analysis of possible molecular functions of these motifs showed the PPR is prone to bind a wide variety of ligands. Collectively, these data suggest a role for the PPR in HEV adaptation. Particularly as an IDR, the PPR likely contributes to fine tuning of viral replication through protein-protein interactions and should be considered as a target for development of novel anti-viral drugs.

  • Shannon entropy for alignments of rubi-like viruses.
    2012
    Co-Authors: Michael A. Purdy, James Lara, Yury E. Khudyakov
    Abstract:

    Data are shown as the average Shannon entropy in 30-aa acid windows with a one-residue step. Sequences are full-length with the three ORFs concatenated in head-to-tail fashion as ORF1, ORF2 and ORF3. Rubi (Rubivirus), DQ085338; g1 (genotype 1), M80581; g2 (genotype 2), M74506; g3 (genotype 3), AB369691; g4 (genotype 4), AB220972; avian, AY535004. Subtype 3f sequences have a 27-aa sequence duplication removed from the PPR to allow better alignment of sequences. The PPRs are located by the grey arrow (avian HEV) and the black arrow (Rubivirus and HEV genotypes 1, 3 and 4). The white arrow is immediately upstream from the Rubivirus endopeptidase (centered near residue 1010).

  • dN/dS values for Rubivirus and HEV.
    2012
    Co-Authors: Michael A. Purdy, James Lara, Yury E. Khudyakov
    Abstract:

    For genotypes 1, 3 and 4, and Rubivirus, results of analysis are shown across from aa positions 701 to 800, which includes the PPR IDR region. Values >1 represent positions under positive selection. Insert shows dN/dS values for the PPR IDR of avian HEV (528 to 614 aa). There are no dN/dS values ≥1 in ORF1 outside the regions shown.

David Prangishvili - One of the best experts on this subject based on the ideXlab platform.

  • New virus isolates from Italian hydrothermal environments underscore the biogeographic pattern in archaeal virus communities
    ISME Journal, 2020
    Co-Authors: Diana Baquero, David Prangishvili, Patrizia Contursi, Monica Piochi, Simonetta Bartolucci, Ying Liu, Virginija Cvirkaite-krupovic, M Krupovic
    Abstract:

    Viruses of hyperthermophilic archaea represent one of the least understood parts of the virosphere, showing little genomic and morphological similarity to viruses of bacteria or eukaryotes. Here, we investigated virus diversity in the active sulfurous fields of the Campi Flegrei volcano in Pozzuoli, Italy. Virus-like particles displaying eight different morphotypes, including lemon-shaped, droplet-shaped and bottle-shaped virions, were observed and five new archaeal viruses proposed to belong to families Rudiviridae, Globuloviridae and Tristromaviridae were isolated and characterized. Two of these viruses infect neutrophilic hyperthermophiles of the genus Pyrobaculum, whereas the remaining three have rod-shaped virions typical of the family Rudiviridae and infect acidophilic hyperthermophiles belonging to three different genera of the order Sulfolobales, namely, Saccharolobus, Acidianus, and Metallosphaera. Notably, Metallosphaera rod-shaped virus 1 is the first rudivirus isolated on Metallosphaera species. Phylogenomic analysis of the newly isolated and previously sequenced rudiviruses revealed a clear biogeographic pattern, with all Italian rudiviruses forming a monophyletic clade, suggesting geographical structuring of virus communities in extreme geothermal environments. Analysis of the CRISPR spacers suggests that isolated rudiviruses have experienced recent host switching across the genus boundary, potentially to escape the targeting by CRISPR-Cas immunity systems. Finally, we propose a revised classification of the Rudiviridae family, with the establishment of six new genera. Collectively, our results further show that high-temperature continental hydrothermal systems harbor a highly diverse virome and shed light on the evolution of archaeal viruses.

  • Characterization of Sulfolobus islandicus rod-shaped virus 2 gp19, a single-strand specific endonuclease
    Extremophiles, 2011
    Co-Authors: Andrew F. Gardner, David Prangishvili, William E. Jack
    Abstract:

    The hyperthermophilic Sulfolobus islandicus rod-shaped virus 2 (SIRV2) encodes a 25-kDa protein (SIRV2gp19) annotated as a hypothetical protein with sequence homology to the RecB nuclease superfamily. Even though SIRV2gp19 homologs are conserved throughout the rudivirus family and presumably play a role in the viral life cycle, SIRV2gp19 has not been functionally characterized. To define the minimal requirements for activity, SIRV2gp19 was purified and tested under varying conditions. SIRV2gp19 is a single-strand specific endonuclease that requires Mg^2+ for activity and is inactive on double-stranded DNA. A conserved aspartic acid in RecB nuclease superfamily Motif II (D89) is also essential for SIRV2gp19 activity and mutation to alanine (D89A) abolishes activity. Therefore, the SIRV2gp19 cleavage mechanism is similar to previously described RecB nucleases. Finally, SIRV2gp19 single-stranded DNA endonuclease activity could play a role in host chromosome degradation during SIRV2 lytic infection.

  • The Sulfolobus rod-shaped virus 2 encodes a prominent structural component of the unique virion release system in Archaea.
    Virology, 2010
    Co-Authors: Tessa E F Quax, Mart Krupovic, Soizick Lucas, Patrick Forterre, David Prangishvili
    Abstract:

    Recently a unique mechanism of virion release was discovered in Archaea, different from lysis and egress systems of bacterial and eukaryotic viruses. It involves formation of pyramidal structures on the host cell surface that rupture the S-layer and by opening outwards, create apertures through which mature virions escape the cell. Here we present results of a protein analysis of Sulfolobus islandicus cells infected with the rudivirus SIRV2, which enable us to postulate SIRV2-encoded protein P98 as the major constituent of these exceptional cellular ultrastructures.

  • A novel archaeal regulatory protein, Sta1, activates transcription from viral promoters.
    Nucleic Acids Research, 2006
    Co-Authors: Alexandra Kessler, Guennadi Sezonov, J. Inaki Guijarro, Nicole Desnoues, Thierry Rose, Muriel Delepierre, Stepphen D. Bell, David Prangishvili
    Abstract:

    While studying gene expression of the rudivirus SIRV1 in cells of its host, the hyperthermophilic crenarchaeon Sulfolobus, a novel archaeal transcriptional regulator was isolated. The 14 kDa protein, termed Sulfolobus transcription activator 1, Sta1, is encoded on the host chromosome. Its activating effect on transcription initiation from viral promoters was demonstrated in in vitro transcription experiments using a reconstituted host system containing the RNA polymerase, TATA-binding protein (TBP) and transcription factor B (TFB). Most pronounced activation was observed at low concentrations of either of the two transcription factors, TBP or TFB. Sta1 was able to bind viral promoters independently of any component of the host pre-initiation complex. Two binding sites were revealed by footprinting, one located in the core promoter region and the second approximately 30 bp upstream of it. Comparative modeling, NMR and circular dichroism of Sta1 indicated that the protein contained a winged helix-turn-helix motif, most probably involved in DNA binding. This strategy of the archaeal virus to co-opt a host cell regulator to promote transcription of its genes resembles eukaryal virus-host relationships.

  • Sequences and replication of genomes of the archaeal rudiviruses SIRV1 and SIRV2: relationships to the archaeal lipothrixvirus SIFV and some eukaryal viruses.
    Virology, 2001
    Co-Authors: Xu Peng, Roger A. Garrett, Kim Brügger, Helmut Blum, Qunxin She, S. Mallok, Wolfram Zillig, David Prangishvili
    Abstract:

    The double-stranded DNA genomes of the viruses SIRV1 and SIRV2, which infect the extremely thermophilic archaeon Sulfolobus and belong to the family Rudiviridae, were sequenced. They are linear, covalently closed at the ends, and 32,312 and 35,502 bp long, respectively, with an A+T content of 75%. The genomes of SIRV1 and SIRV2 carry inverted terminal repeats of 2029 and 1628 bp, respectively, which contain multiple direct repeats. SIRV1 and SIRV2 genomes contain 45 and 54 ORFs, respectively, of which 44 are homologous to one another. Their predicted functions include a DNA polymerase, a Holliday junction resolvase, and a dUTPase. The genomes consist of blocks with well-conserved sequences separated by nonconserved sequences. Recombination, gene duplication, horizontal gene transfer, and substitution of viral genes by homologous host genes have contributed to their evolution. The finding of head-to-head and tail-to-tail linked replicative intermediates suggests that the linear genomes replicate by the same mechanism as the similarly organized linear genomes of the eukaryal poxviruses, African swine fever virus and Chlorella viruses. SIRV1 and SIRV2 both contain motifs that resemble the binding sites for Holliday junction resolvases of eukaryal viruses and may use common mechanisms for resolution of replicative intermediates. The results suggest a common origin of the replication machineries of the archaeal rudiviruses and the above-mentioned eukaryal viruses. About 1/3 of the ORFs of each rudivirus have homologs in the Sulfolobus virus SIFV of the family Lipothrixviridae, indicating that the two viral families form a superfamily. The finding of inverted repeats of at least 0.8 kb at the termini of the linear genome of SIFV supports this inference.

Yury Khudyakov - One of the best experts on this subject based on the ideXlab platform.

  • The hepatitis E virus polyproline region is involved in viral adaptation.
    PloS one, 2012
    Co-Authors: Michael A. Purdy, James Lara, Yury Khudyakov
    Abstract:

    Genomes of hepatitis E virus (HEV), Rubivirus and cutthroat virus (CTV) contain a region of high proline density and low amino acid (aa) complexity, named the polyproline region (PPR). In HEV genotypes 1, 3 and 4, it is the only region within the non-structural open reading frame (ORF1) with positive selection (4-10 codons with dN/dS>1). This region has the highest density of sites with homoplasy values >0.5. Genotypes 3 and 4 show ∼3-fold increase in homoplastic density (HD) in the PPR compared to any other region in ORF1, genotype 1 does not exhibit significant HD (p

  • the hepatitis e virus polyproline region is involved in viral adaptation
    PLOS ONE, 2012
    Co-Authors: Michael A. Purdy, James Lara, Yury Khudyakov
    Abstract:

    Genomes of hepatitis E virus (HEV), Rubivirus and cutthroat virus (CTV) contain a region of high proline density and low amino acid (aa) complexity, named the polyproline region (PPR). In HEV genotypes 1, 3 and 4, it is the only region within the non-structural open reading frame (ORF1) with positive selection (4-10 codons with dN/dS>1). This region has the highest density of sites with homoplasy values >0.5. Genotypes 3 and 4 show ∼3-fold increase in homoplastic density (HD) in the PPR compared to any other region in ORF1, genotype 1 does not exhibit significant HD (p<0.0001). PPR sequence divergence was found to be 2-fold greater for HEV genotypes 3 and 4 than for genotype 1. The data suggest the PPR plays an important role in host-range adaptation. Although the PPR appears to be hypervariable and homoplastic, it retains as much phylogenetic signal as any other similar sized region in the ORF1, indicating that convergent evolution operates within the major HEV phylogenetic lineages. Analyses of sequence-based secondary structure and the tertiary structure identify PPR as an intrinsically disordered region (IDR), implicating its role in regulation of replication. The identified propensity for the disorder-to-order state transitions indicates the PPR is involved in protein-protein interactions. Furthermore, the PPR of all four HEV genotypes contains seven putative linear binding motifs for ligands involved in the regulation of a wide number of cellular signaling processes. Structure-based analysis of possible molecular functions of these motifs showed the PPR is prone to bind a wide variety of ligands. Collectively, these data suggest a role for the PPR in HEV adaptation. Particularly as an IDR, the PPR likely contributes to fine tuning of viral replication through protein-protein interactions and should be considered as a target for development of novel anti-viral drugs.

James Lara - One of the best experts on this subject based on the ideXlab platform.

  • The Hepatitis E Virus Polyproline Region Is Involved in Viral Adaptation
    2013
    Co-Authors: Michael A. Purdy, James Lara, Yury E. Khudyakov
    Abstract:

    Genomes of hepatitis E virus (HEV), Rubivirus and cutthroat virus (CTV) contain a region of high proline density and low amino acid (aa) complexity, named the polyproline region (PPR). In HEV genotypes 1, 3 and 4, it is the only region within the non-structural open reading frame (ORF1) with positive selection (4–10 codons with dN/dS.1). This region has the highest density of sites with homoplasy values.0.5. Genotypes 3 and 4 show,3-fold increase in homoplastic density (HD) in the PPR compared to any other region in ORF1, genotype 1 does not exhibit significant HD (p,0.0001). PPR sequence divergence was found to be 2-fold greater for HEV genotypes 3 and 4 than for genotype 1. The data suggest the PPR plays an important role in host-range adaptation. Although the PPR appears to be hypervariable and homoplastic, it retains as much phylogenetic signal as any other similar sized region in the ORF1, indicating that convergent evolution operates within the major HEV phylogenetic lineages. Analyses of sequence-based secondary structure and the tertiary structure identify PPR as an intrinsically disordered region (IDR), implicating its role in regulation of replication. The identified propensity for the disorder-to-order state transitions indicates the PPR is involved in protein-protein interactions. Furthermore, the PPR of all four HEV genotypes contains seven putative linear binding motifs for ligands involved in the regulation of a wide number of cellular signaling processes. Structure-based analysis of possible molecular functions of these motifs showed the PPR is prone to bind a wide variety of ligands. Collectively, these data suggest a role for the PPR i

  • The hepatitis E virus polyproline region is involved in viral adaptation.
    PloS one, 2012
    Co-Authors: Michael A. Purdy, James Lara, Yury Khudyakov
    Abstract:

    Genomes of hepatitis E virus (HEV), Rubivirus and cutthroat virus (CTV) contain a region of high proline density and low amino acid (aa) complexity, named the polyproline region (PPR). In HEV genotypes 1, 3 and 4, it is the only region within the non-structural open reading frame (ORF1) with positive selection (4-10 codons with dN/dS>1). This region has the highest density of sites with homoplasy values >0.5. Genotypes 3 and 4 show ∼3-fold increase in homoplastic density (HD) in the PPR compared to any other region in ORF1, genotype 1 does not exhibit significant HD (p

  • the hepatitis e virus polyproline region is involved in viral adaptation
    PLOS ONE, 2012
    Co-Authors: Michael A. Purdy, James Lara, Yury Khudyakov
    Abstract:

    Genomes of hepatitis E virus (HEV), Rubivirus and cutthroat virus (CTV) contain a region of high proline density and low amino acid (aa) complexity, named the polyproline region (PPR). In HEV genotypes 1, 3 and 4, it is the only region within the non-structural open reading frame (ORF1) with positive selection (4-10 codons with dN/dS>1). This region has the highest density of sites with homoplasy values >0.5. Genotypes 3 and 4 show ∼3-fold increase in homoplastic density (HD) in the PPR compared to any other region in ORF1, genotype 1 does not exhibit significant HD (p<0.0001). PPR sequence divergence was found to be 2-fold greater for HEV genotypes 3 and 4 than for genotype 1. The data suggest the PPR plays an important role in host-range adaptation. Although the PPR appears to be hypervariable and homoplastic, it retains as much phylogenetic signal as any other similar sized region in the ORF1, indicating that convergent evolution operates within the major HEV phylogenetic lineages. Analyses of sequence-based secondary structure and the tertiary structure identify PPR as an intrinsically disordered region (IDR), implicating its role in regulation of replication. The identified propensity for the disorder-to-order state transitions indicates the PPR is involved in protein-protein interactions. Furthermore, the PPR of all four HEV genotypes contains seven putative linear binding motifs for ligands involved in the regulation of a wide number of cellular signaling processes. Structure-based analysis of possible molecular functions of these motifs showed the PPR is prone to bind a wide variety of ligands. Collectively, these data suggest a role for the PPR in HEV adaptation. Particularly as an IDR, the PPR likely contributes to fine tuning of viral replication through protein-protein interactions and should be considered as a target for development of novel anti-viral drugs.

  • Shannon entropy for alignments of rubi-like viruses.
    2012
    Co-Authors: Michael A. Purdy, James Lara, Yury E. Khudyakov
    Abstract:

    Data are shown as the average Shannon entropy in 30-aa acid windows with a one-residue step. Sequences are full-length with the three ORFs concatenated in head-to-tail fashion as ORF1, ORF2 and ORF3. Rubi (Rubivirus), DQ085338; g1 (genotype 1), M80581; g2 (genotype 2), M74506; g3 (genotype 3), AB369691; g4 (genotype 4), AB220972; avian, AY535004. Subtype 3f sequences have a 27-aa sequence duplication removed from the PPR to allow better alignment of sequences. The PPRs are located by the grey arrow (avian HEV) and the black arrow (Rubivirus and HEV genotypes 1, 3 and 4). The white arrow is immediately upstream from the Rubivirus endopeptidase (centered near residue 1010).

  • dN/dS values for Rubivirus and HEV.
    2012
    Co-Authors: Michael A. Purdy, James Lara, Yury E. Khudyakov
    Abstract:

    For genotypes 1, 3 and 4, and Rubivirus, results of analysis are shown across from aa positions 701 to 800, which includes the PPR IDR region. Values >1 represent positions under positive selection. Insert shows dN/dS values for the PPR IDR of avian HEV (528 to 614 aa). There are no dN/dS values ≥1 in ORF1 outside the regions shown.