Saturation State

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 6219 Experts worldwide ranked by ideXlab platform

Justin B Ries - One of the best experts on this subject based on the ideXlab platform.

  • Impacts of seawater Saturation State (ΩA = 0.4–4.6) and temperature (10, 25 °C) on the dissolution kinetics of whole-shell biogenic carbonates
    Geochimica et Cosmochimica Acta, 2016
    Co-Authors: Justin B Ries, Maite N. Ghazaleh, Brian Connolly, Isaac Westfield, Karl D. Castillo
    Abstract:

    Abstract Anthropogenic increase of atmospheric pCO2 since the Industrial Revolution has caused seawater pH to decrease and seawater temperatures to increase—trends that are expected to continue into the foreseeable future. Myriad experimental studies have investigated the impacts of ocean acidification and warming on marine calcifiers’ ability to build protective shells and skeletons. No studies, however, have investigated the combined impacts of ocean acidification and warming on the whole-shell dissolution kinetics of biogenic carbonates. Here, we present the results of experiments designed to investigate the effects of seawater Saturation State (ΩA = 0.4–4.6) and temperature (10, 25 °C) on gross rates of whole-shell dissolution for ten species of benthic marine calcifiers: the oyster Crassostrea virginica, the ivory barnacle Balanus eburneus, the blue mussel Mytilus edulis, the conch Strombus alatus, the tropical coral Siderastrea siderea, the temperate coral Oculina arbuscula, the hard clam Mercenaria mercenaria, the soft clam Mya arenaria, the branching bryozoan Schizoporella errata, and the coralline red alga Neogoniolithon sp. These experiments confirm that dissolution rates of whole-shell biogenic carbonates decrease with calcium carbonate (CaCO3) Saturation State, increase with temperature, and vary predictably with respect to the relative solubility of the calcifiers’ polymorph mineralogy [high-Mg calcite (mol% Mg > 4) ≥ aragonite > low-Mg calcite (mol% Mg  y = B 0 – B 2 · e B 1 Ω ) that appeals to the general Arrhenius-derived rate equation for mineral dissolution [ r = ( C · e - E a / RT ) (1 − Ω)n]. Although the dissolution curves for the investigated biogenic CaCO3 exhibited exponential asymptotic trends similar to those of inorganic CaCO3, the observation that gross dissolution of whole-shell biogenic CaCO3 occurred (albeit at lower rates) even in treatments that were oversaturated (Ω > 1) with respect to both aragonite and calcite reveals fundamental differences between the dissolution kinetics of whole-shell biogenic CaCO3 and inorganic CaCO3. Thus, applying stoichiometric solubility products derived for inorganic CaCO3 to model gross dissolution of biogenic carbonates may substantially underestimate the impacts of ocean acidification on net calcification (gross calcification minus gross dissolution) of systems ranging in scale from individual organisms to entire ecosystems (e.g., net ecosystem calcification). Finally, these experiments permit rough estimation of the impact of CO2-induced ocean acidification on the gross calcification rates of various marine calcifiers, calculated as the difference between net calcification rates derived empirically in prior studies and gross dissolution rates derived from the present study. Organisms’ gross calcification responses to acidification were generally less severe than their net calcification response patterns, with aragonite mollusks (bivalves, gastropods) exhibiting the most negative gross calcification response to acidification, and photosynthesizing organisms, including corals and coralline red algae, exhibiting relative resilience.

  • impacts of seawater Saturation State ωa 0 4 4 6 and temperature 10 25 c on the dissolution kinetics of whole shell biogenic carbonates
    Geochimica et Cosmochimica Acta, 2016
    Co-Authors: Justin B Ries, Maite N. Ghazaleh, Brian Connolly, Isaac Westfield, Karl D. Castillo
    Abstract:

    Abstract Anthropogenic increase of atmospheric pCO2 since the Industrial Revolution has caused seawater pH to decrease and seawater temperatures to increase—trends that are expected to continue into the foreseeable future. Myriad experimental studies have investigated the impacts of ocean acidification and warming on marine calcifiers’ ability to build protective shells and skeletons. No studies, however, have investigated the combined impacts of ocean acidification and warming on the whole-shell dissolution kinetics of biogenic carbonates. Here, we present the results of experiments designed to investigate the effects of seawater Saturation State (ΩA = 0.4–4.6) and temperature (10, 25 °C) on gross rates of whole-shell dissolution for ten species of benthic marine calcifiers: the oyster Crassostrea virginica, the ivory barnacle Balanus eburneus, the blue mussel Mytilus edulis, the conch Strombus alatus, the tropical coral Siderastrea siderea, the temperate coral Oculina arbuscula, the hard clam Mercenaria mercenaria, the soft clam Mya arenaria, the branching bryozoan Schizoporella errata, and the coralline red alga Neogoniolithon sp. These experiments confirm that dissolution rates of whole-shell biogenic carbonates decrease with calcium carbonate (CaCO3) Saturation State, increase with temperature, and vary predictably with respect to the relative solubility of the calcifiers’ polymorph mineralogy [high-Mg calcite (mol% Mg > 4) ≥ aragonite > low-Mg calcite (mol% Mg  y = B 0 – B 2 · e B 1 Ω ) that appeals to the general Arrhenius-derived rate equation for mineral dissolution [ r = ( C · e - E a / RT ) (1 − Ω)n]. Although the dissolution curves for the investigated biogenic CaCO3 exhibited exponential asymptotic trends similar to those of inorganic CaCO3, the observation that gross dissolution of whole-shell biogenic CaCO3 occurred (albeit at lower rates) even in treatments that were oversaturated (Ω > 1) with respect to both aragonite and calcite reveals fundamental differences between the dissolution kinetics of whole-shell biogenic CaCO3 and inorganic CaCO3. Thus, applying stoichiometric solubility products derived for inorganic CaCO3 to model gross dissolution of biogenic carbonates may substantially underestimate the impacts of ocean acidification on net calcification (gross calcification minus gross dissolution) of systems ranging in scale from individual organisms to entire ecosystems (e.g., net ecosystem calcification). Finally, these experiments permit rough estimation of the impact of CO2-induced ocean acidification on the gross calcification rates of various marine calcifiers, calculated as the difference between net calcification rates derived empirically in prior studies and gross dissolution rates derived from the present study. Organisms’ gross calcification responses to acidification were generally less severe than their net calcification response patterns, with aragonite mollusks (bivalves, gastropods) exhibiting the most negative gross calcification response to acidification, and photosynthesizing organisms, including corals and coralline red algae, exhibiting relative resilience.

  • the influence of temperature and seawater carbonate Saturation State on 13c 18o bond ordering in bivalve mollusks
    Biogeosciences, 2013
    Co-Authors: Robert A Eagle, John M Eiler, Aradhna Tripati, Justin B Ries, P S Freitas, Claas Hiebenthal, Alan D Wanamaker, Marco Taviani, Mary Elliot
    Abstract:

    The shells of marine mollusks are widely used archives of past climate and ocean chemistry. Whilst the measurement of mollusk δ18O to develop records of past climate change is a commonly used approach, it has proven challenging to develop reliable independent paleothermometers that can be used to deconvolve the contributions of temperature and fluid composition on molluscan oxygen isotope compositions. Here we investigate the temperature dependence of 13C–18O bond abundance, denoted by the measured parameter Δ47, in shell carbonates of bivalve mollusks and assess its potential to be a useful paleothermometer. We report measurements on cultured specimens spanning a range in water temperatures of 5 to 25 °C, and field collected specimens spanning a range of −1 to 29 °C. In addition we investigate the potential influence of carbonate Saturation State on bivalve stable isotope compositions by making measurements on both calcitic and aragonitic specimens that have been cultured in seawater that is either supersaturated or undersaturated with respect to aragonite. We find a robust relationship between Δ47 and growth temperature. We also find that the slope of a linear regression through all the Δ47 data for bivalves plotted against seawater temperature is significantly shallower than previously published inorganic and biogenic carbonate calibration studies produced in our laboratory and go on to discuss the possible sources of this difference. We find that changing seawater Saturation State does not have significant effect on the Δ47 of bivalve shell carbonate in two taxa that we examined, and we do not observe significant differences between Δ47-temperature relationships between calcitic and aragonitic taxa.

  • The influence of temperature and seawater carbonate Saturation State on 13C–18O bond ordering in bivalve mollusks
    Biogeosciences, 2013
    Co-Authors: Robert A Eagle, John M Eiler, Aradhna Tripati, Justin B Ries, P S Freitas, Claas Hiebenthal, Alan D Wanamaker, Marco Taviani, Mary Elliot, Sergio A. Marenssi
    Abstract:

    The shells of marine mollusks are widely used archives of past climate and ocean chemistry. Whilst the measurement of mollusk δ18O to develop records of past climate change is a commonly used approach, it has proven challenging to develop reliable independent paleothermometers that can be used to deconvolve the contributions of temperature and fluid composition on molluscan oxygen isotope compositions. Here we investigate the temperature dependence of 13C–18O bond abundance, denoted by the measured parameter Δ47, in shell carbonates of bivalve mollusks and assess its potential to be a useful paleothermometer. We report measurements on cultured specimens spanning a range in water temperatures of 5 to 25 °C, and field collected specimens spanning a range of −1 to 29 °C. In addition we investigate the potential influence of carbonate Saturation State on bivalve stable isotope compositions by making measurements on both calcitic and aragonitic specimens that have been cultured in seawater that is either supersaturated or undersaturated with respect to aragonite. We find a robust relationship between Δ47 and growth temperature. We also find that the slope of a linear regression through all the Δ47 data for bivalves plotted against seawater temperature is significantly shallower than previously published inorganic and biogenic carbonate calibration studies produced in our laboratory and go on to discuss the possible sources of this difference. We find that changing seawater Saturation State does not have significant effect on the Δ47 of bivalve shell carbonate in two taxa that we examined, and we do not observe significant differences between Δ47-temperature relationships between calcitic and aragonitic taxa.

Karl D. Castillo - One of the best experts on this subject based on the ideXlab platform.

  • Impacts of seawater Saturation State (ΩA = 0.4–4.6) and temperature (10, 25 °C) on the dissolution kinetics of whole-shell biogenic carbonates
    Geochimica et Cosmochimica Acta, 2016
    Co-Authors: Justin B Ries, Maite N. Ghazaleh, Brian Connolly, Isaac Westfield, Karl D. Castillo
    Abstract:

    Abstract Anthropogenic increase of atmospheric pCO2 since the Industrial Revolution has caused seawater pH to decrease and seawater temperatures to increase—trends that are expected to continue into the foreseeable future. Myriad experimental studies have investigated the impacts of ocean acidification and warming on marine calcifiers’ ability to build protective shells and skeletons. No studies, however, have investigated the combined impacts of ocean acidification and warming on the whole-shell dissolution kinetics of biogenic carbonates. Here, we present the results of experiments designed to investigate the effects of seawater Saturation State (ΩA = 0.4–4.6) and temperature (10, 25 °C) on gross rates of whole-shell dissolution for ten species of benthic marine calcifiers: the oyster Crassostrea virginica, the ivory barnacle Balanus eburneus, the blue mussel Mytilus edulis, the conch Strombus alatus, the tropical coral Siderastrea siderea, the temperate coral Oculina arbuscula, the hard clam Mercenaria mercenaria, the soft clam Mya arenaria, the branching bryozoan Schizoporella errata, and the coralline red alga Neogoniolithon sp. These experiments confirm that dissolution rates of whole-shell biogenic carbonates decrease with calcium carbonate (CaCO3) Saturation State, increase with temperature, and vary predictably with respect to the relative solubility of the calcifiers’ polymorph mineralogy [high-Mg calcite (mol% Mg > 4) ≥ aragonite > low-Mg calcite (mol% Mg  y = B 0 – B 2 · e B 1 Ω ) that appeals to the general Arrhenius-derived rate equation for mineral dissolution [ r = ( C · e - E a / RT ) (1 − Ω)n]. Although the dissolution curves for the investigated biogenic CaCO3 exhibited exponential asymptotic trends similar to those of inorganic CaCO3, the observation that gross dissolution of whole-shell biogenic CaCO3 occurred (albeit at lower rates) even in treatments that were oversaturated (Ω > 1) with respect to both aragonite and calcite reveals fundamental differences between the dissolution kinetics of whole-shell biogenic CaCO3 and inorganic CaCO3. Thus, applying stoichiometric solubility products derived for inorganic CaCO3 to model gross dissolution of biogenic carbonates may substantially underestimate the impacts of ocean acidification on net calcification (gross calcification minus gross dissolution) of systems ranging in scale from individual organisms to entire ecosystems (e.g., net ecosystem calcification). Finally, these experiments permit rough estimation of the impact of CO2-induced ocean acidification on the gross calcification rates of various marine calcifiers, calculated as the difference between net calcification rates derived empirically in prior studies and gross dissolution rates derived from the present study. Organisms’ gross calcification responses to acidification were generally less severe than their net calcification response patterns, with aragonite mollusks (bivalves, gastropods) exhibiting the most negative gross calcification response to acidification, and photosynthesizing organisms, including corals and coralline red algae, exhibiting relative resilience.

  • impacts of seawater Saturation State ωa 0 4 4 6 and temperature 10 25 c on the dissolution kinetics of whole shell biogenic carbonates
    Geochimica et Cosmochimica Acta, 2016
    Co-Authors: Justin B Ries, Maite N. Ghazaleh, Brian Connolly, Isaac Westfield, Karl D. Castillo
    Abstract:

    Abstract Anthropogenic increase of atmospheric pCO2 since the Industrial Revolution has caused seawater pH to decrease and seawater temperatures to increase—trends that are expected to continue into the foreseeable future. Myriad experimental studies have investigated the impacts of ocean acidification and warming on marine calcifiers’ ability to build protective shells and skeletons. No studies, however, have investigated the combined impacts of ocean acidification and warming on the whole-shell dissolution kinetics of biogenic carbonates. Here, we present the results of experiments designed to investigate the effects of seawater Saturation State (ΩA = 0.4–4.6) and temperature (10, 25 °C) on gross rates of whole-shell dissolution for ten species of benthic marine calcifiers: the oyster Crassostrea virginica, the ivory barnacle Balanus eburneus, the blue mussel Mytilus edulis, the conch Strombus alatus, the tropical coral Siderastrea siderea, the temperate coral Oculina arbuscula, the hard clam Mercenaria mercenaria, the soft clam Mya arenaria, the branching bryozoan Schizoporella errata, and the coralline red alga Neogoniolithon sp. These experiments confirm that dissolution rates of whole-shell biogenic carbonates decrease with calcium carbonate (CaCO3) Saturation State, increase with temperature, and vary predictably with respect to the relative solubility of the calcifiers’ polymorph mineralogy [high-Mg calcite (mol% Mg > 4) ≥ aragonite > low-Mg calcite (mol% Mg  y = B 0 – B 2 · e B 1 Ω ) that appeals to the general Arrhenius-derived rate equation for mineral dissolution [ r = ( C · e - E a / RT ) (1 − Ω)n]. Although the dissolution curves for the investigated biogenic CaCO3 exhibited exponential asymptotic trends similar to those of inorganic CaCO3, the observation that gross dissolution of whole-shell biogenic CaCO3 occurred (albeit at lower rates) even in treatments that were oversaturated (Ω > 1) with respect to both aragonite and calcite reveals fundamental differences between the dissolution kinetics of whole-shell biogenic CaCO3 and inorganic CaCO3. Thus, applying stoichiometric solubility products derived for inorganic CaCO3 to model gross dissolution of biogenic carbonates may substantially underestimate the impacts of ocean acidification on net calcification (gross calcification minus gross dissolution) of systems ranging in scale from individual organisms to entire ecosystems (e.g., net ecosystem calcification). Finally, these experiments permit rough estimation of the impact of CO2-induced ocean acidification on the gross calcification rates of various marine calcifiers, calculated as the difference between net calcification rates derived empirically in prior studies and gross dissolution rates derived from the present study. Organisms’ gross calcification responses to acidification were generally less severe than their net calcification response patterns, with aragonite mollusks (bivalves, gastropods) exhibiting the most negative gross calcification response to acidification, and photosynthesizing organisms, including corals and coralline red algae, exhibiting relative resilience.

Chris Langdon - One of the best experts on this subject based on the ideXlab platform.

  • Saturation State sensitivity of marine bivalve larvae to ocean acidification
    Nature Climate Change, 2015
    Co-Authors: George G Waldbusser, Burke Hales, Chris Langdon, Brian A Haley, Paul S Schrader, Elizabeth L Brunner, Matthew W Gray, Cale A Miller, Iria Gimenez
    Abstract:

    Saturation State is shown to be the key component of marine carbonate chemistry affecting larval shell development and growth in two commercially important bivalve species.

  • effect of aragonite Saturation State on settlement and post settlement growth of porites astreoides larvae
    Coral Reefs, 2008
    Co-Authors: Rebecca Albright, Benjamin Mason, Chris Langdon
    Abstract:

    In response to the increases in pCO2 projected in the 21st century, adult coral growth and calcification are expected to decrease significantly. However, no published studies have investigated the effect of elevated pCO2 on earlier life history stages of corals. Porites astreoides larvae were collected from reefs in Key Largo, Florida, USA, settled and reared in controlled Saturation State seawater. Three Saturation States were obtained, using 1 M HCl additions, corresponding to present (380 ppm) and projected pCO2 scenarios for the years 2065 (560 ppm) and 2100 (720 ppm). The effect of Saturation State on settlement and post-settlement growth was evaluated. Saturation State had no significant effect on percent settlement; however, skeletal extension rate was positively correlated with Saturation State, with ~50% and 78% reductions in growth at the mid and high pCO2 treatments compared to controls, respectively.

  • effect of calcium carbonate Saturation State on the calcification rate of an experimental coral reef
    Global Biogeochemical Cycles, 2000
    Co-Authors: Chris Langdon, Taro Takahashi, Colm Sweeney, Dave Chipman, John Goddard, Francesca Marubini, Heather Aceves, Heidi Barnett, Marlin J Atkinson
    Abstract:

    The concentration of CO2 in the atmosphere is projected to reach twice the preindustrial level by the middle of the 21st century. This increase will reduce the concentration of CO32− of the surface ocean by 30% relative to the preindustrial level and will reduce the calcium carbonate Saturation State of the surface ocean by an equal percentage. Using the large 2650 m3 coral reef mesocosm at the BIOSPHERE-2 facility near Tucson, Arizona, we investigated the effect of the projected changes in seawater carbonate chemistry on the calcification of coral reef organisms at the community scale. Our experimental design was to obtain a long (3.8 years) time series of the net calcification of the complete system and all relevant physical and chemical variables (temperature, salinity, light, nutrients, Ca2+,pCO2, TCO2, and total alkalinity). Periodic additions of NaHCO3, Na2CO3, and/or CaCl2 were made to change the calcium carbonate Saturation State of the water. We found that there were consistent and reproducible changes in the rate of calcification in response to our manipulations of the Saturation State. We show that the net community calcification rate responds to manipulations in the concentrations of both Ca2+ and CO32− and that the rate is well described as a linear function of the ion concentration product, [Ca2+]0.69[CO32−]. This suggests that Saturation State or a closely related quantity is a primary environmental factor that influences calcification on coral reefs at the ecosystem level. We compare the sensitivity of calcification to short-term (days) and long-term (months to years) changes in Saturation State and found that the response was not significantly different. This indicates that coral reef organisms do not seem to be able to acclimate to changing Saturation State. The predicted decrease in coral reef calcification between the years 1880 and 2065 A.D. based on our long-term results is 40%. Previous small-scale, short-term organismal studies predicted a calcification reduction of 14-30%. This much longer, community-scale study suggests that the impact on coral reefs may be greater than previously suspected. In the next century coral reefs will be less able to cope with rising sea level and other anthropogenic stresses.

Maite N. Ghazaleh - One of the best experts on this subject based on the ideXlab platform.

  • Impacts of seawater Saturation State (ΩA = 0.4–4.6) and temperature (10, 25 °C) on the dissolution kinetics of whole-shell biogenic carbonates
    Geochimica et Cosmochimica Acta, 2016
    Co-Authors: Justin B Ries, Maite N. Ghazaleh, Brian Connolly, Isaac Westfield, Karl D. Castillo
    Abstract:

    Abstract Anthropogenic increase of atmospheric pCO2 since the Industrial Revolution has caused seawater pH to decrease and seawater temperatures to increase—trends that are expected to continue into the foreseeable future. Myriad experimental studies have investigated the impacts of ocean acidification and warming on marine calcifiers’ ability to build protective shells and skeletons. No studies, however, have investigated the combined impacts of ocean acidification and warming on the whole-shell dissolution kinetics of biogenic carbonates. Here, we present the results of experiments designed to investigate the effects of seawater Saturation State (ΩA = 0.4–4.6) and temperature (10, 25 °C) on gross rates of whole-shell dissolution for ten species of benthic marine calcifiers: the oyster Crassostrea virginica, the ivory barnacle Balanus eburneus, the blue mussel Mytilus edulis, the conch Strombus alatus, the tropical coral Siderastrea siderea, the temperate coral Oculina arbuscula, the hard clam Mercenaria mercenaria, the soft clam Mya arenaria, the branching bryozoan Schizoporella errata, and the coralline red alga Neogoniolithon sp. These experiments confirm that dissolution rates of whole-shell biogenic carbonates decrease with calcium carbonate (CaCO3) Saturation State, increase with temperature, and vary predictably with respect to the relative solubility of the calcifiers’ polymorph mineralogy [high-Mg calcite (mol% Mg > 4) ≥ aragonite > low-Mg calcite (mol% Mg  y = B 0 – B 2 · e B 1 Ω ) that appeals to the general Arrhenius-derived rate equation for mineral dissolution [ r = ( C · e - E a / RT ) (1 − Ω)n]. Although the dissolution curves for the investigated biogenic CaCO3 exhibited exponential asymptotic trends similar to those of inorganic CaCO3, the observation that gross dissolution of whole-shell biogenic CaCO3 occurred (albeit at lower rates) even in treatments that were oversaturated (Ω > 1) with respect to both aragonite and calcite reveals fundamental differences between the dissolution kinetics of whole-shell biogenic CaCO3 and inorganic CaCO3. Thus, applying stoichiometric solubility products derived for inorganic CaCO3 to model gross dissolution of biogenic carbonates may substantially underestimate the impacts of ocean acidification on net calcification (gross calcification minus gross dissolution) of systems ranging in scale from individual organisms to entire ecosystems (e.g., net ecosystem calcification). Finally, these experiments permit rough estimation of the impact of CO2-induced ocean acidification on the gross calcification rates of various marine calcifiers, calculated as the difference between net calcification rates derived empirically in prior studies and gross dissolution rates derived from the present study. Organisms’ gross calcification responses to acidification were generally less severe than their net calcification response patterns, with aragonite mollusks (bivalves, gastropods) exhibiting the most negative gross calcification response to acidification, and photosynthesizing organisms, including corals and coralline red algae, exhibiting relative resilience.

  • impacts of seawater Saturation State ωa 0 4 4 6 and temperature 10 25 c on the dissolution kinetics of whole shell biogenic carbonates
    Geochimica et Cosmochimica Acta, 2016
    Co-Authors: Justin B Ries, Maite N. Ghazaleh, Brian Connolly, Isaac Westfield, Karl D. Castillo
    Abstract:

    Abstract Anthropogenic increase of atmospheric pCO2 since the Industrial Revolution has caused seawater pH to decrease and seawater temperatures to increase—trends that are expected to continue into the foreseeable future. Myriad experimental studies have investigated the impacts of ocean acidification and warming on marine calcifiers’ ability to build protective shells and skeletons. No studies, however, have investigated the combined impacts of ocean acidification and warming on the whole-shell dissolution kinetics of biogenic carbonates. Here, we present the results of experiments designed to investigate the effects of seawater Saturation State (ΩA = 0.4–4.6) and temperature (10, 25 °C) on gross rates of whole-shell dissolution for ten species of benthic marine calcifiers: the oyster Crassostrea virginica, the ivory barnacle Balanus eburneus, the blue mussel Mytilus edulis, the conch Strombus alatus, the tropical coral Siderastrea siderea, the temperate coral Oculina arbuscula, the hard clam Mercenaria mercenaria, the soft clam Mya arenaria, the branching bryozoan Schizoporella errata, and the coralline red alga Neogoniolithon sp. These experiments confirm that dissolution rates of whole-shell biogenic carbonates decrease with calcium carbonate (CaCO3) Saturation State, increase with temperature, and vary predictably with respect to the relative solubility of the calcifiers’ polymorph mineralogy [high-Mg calcite (mol% Mg > 4) ≥ aragonite > low-Mg calcite (mol% Mg  y = B 0 – B 2 · e B 1 Ω ) that appeals to the general Arrhenius-derived rate equation for mineral dissolution [ r = ( C · e - E a / RT ) (1 − Ω)n]. Although the dissolution curves for the investigated biogenic CaCO3 exhibited exponential asymptotic trends similar to those of inorganic CaCO3, the observation that gross dissolution of whole-shell biogenic CaCO3 occurred (albeit at lower rates) even in treatments that were oversaturated (Ω > 1) with respect to both aragonite and calcite reveals fundamental differences between the dissolution kinetics of whole-shell biogenic CaCO3 and inorganic CaCO3. Thus, applying stoichiometric solubility products derived for inorganic CaCO3 to model gross dissolution of biogenic carbonates may substantially underestimate the impacts of ocean acidification on net calcification (gross calcification minus gross dissolution) of systems ranging in scale from individual organisms to entire ecosystems (e.g., net ecosystem calcification). Finally, these experiments permit rough estimation of the impact of CO2-induced ocean acidification on the gross calcification rates of various marine calcifiers, calculated as the difference between net calcification rates derived empirically in prior studies and gross dissolution rates derived from the present study. Organisms’ gross calcification responses to acidification were generally less severe than their net calcification response patterns, with aragonite mollusks (bivalves, gastropods) exhibiting the most negative gross calcification response to acidification, and photosynthesizing organisms, including corals and coralline red algae, exhibiting relative resilience.

Richard A. Feely - One of the best experts on this subject based on the ideXlab platform.

  • internal consistency of marine carbonate system measurements and assessments of aragonite Saturation State insights from two u s coastal cruises
    Marine Chemistry, 2015
    Co-Authors: Mark C. Patsavas, Rik Wanninkhof, Robert H. Byrne, Richard A. Feely
    Abstract:

    This research assesses the thermodynamic consistency of recent marine CO2 system measurements in United States coastal waters. As one means of assessment, we compared aragonite Saturation States calculated using various combinations of measured parameters. We also compared directly measured and calculated values of total alkalinity and CO2 fugacity. The primary data set consists of State-of-the-art measurements of the keystone parameters of the marine CO2 system: dissolved inorganic carbon (DIC), total alkalinity (TA), CO2 fugacity (fCO2), and pH. This study is the first thermodynamic CO2 system intercomparison based on measurements obtained using purified meta cresol purple as a pH indicator. The data are from 1890 water samples collected during NOAA's West Coast Ocean Acidification Cruise of 2011 (WCOA2011) and NOAA's Gulf of Mexico and East Coast Carbon Cruise of 2012 (GOMECC-2). Calculations of in situ aragonite Saturation States (ΩA) near the Saturation horizon exhibited differences on the order of ± 10% between predictions based on the (DIC, TA) pair of measurements vs. the (pH, DIC), (fCO2, DIC), or (fCO2, pH) pairs. Differences of this magnitude, which are largely attributable to the imprecision of ΩA calculated from the (DIC, TA) pair, are roughly equivalent to the magnitude of ΩA change projected to occur over the next several decades due to ocean acidification. These observations highlight the importance of including either pH or fCO2 in Saturation State calculations. Calculations of TA from (pH, DIC) and (fCO2, DIC) showed that internal consistency could be achieved if minor subtractions of TA (≤ 4 μmol kg− 1) were applied to samples of salinity < 35. The extent of thermodynamic consistency is also exemplified by the small offset between TA calculated from (DIC, pH) and that calculated from (DIC, fCO2): ~ 3 μmol kg− 1, which is similar to the accuracy of the TA measurements. Systematic trends can be detected in the offsets between measured and calculated parameters, but for this high-quality data set the magnitude of methodological improvements required to achieve exact thermodynamic consistency is quite small.

  • Internal consistency of marine carbonate system measurements and assessments of aragonite Saturation State: Insights from two U.S. coastal cruises
    Marine Chemistry, 2015
    Co-Authors: Mark C. Patsavas, Rik Wanninkhof, Robert H. Byrne, Richard A. Feely
    Abstract:

    This research assesses the thermodynamic consistency of recent marine CO2 system measurements in United States coastal waters. As one means of assessment, we compared aragonite Saturation States calculated using various combinations of measured parameters. We also compared directly measured and calculated values of total alkalinity and CO2 fugacity. The primary data set consists of State-of-the-art measurements of the keystone parameters of the marine CO2 system: dissolved inorganic carbon (DIC), total alkalinity (TA), CO2 fugacity (fCO2), and pH. This study is the first thermodynamic CO2 system intercomparison based on measurements obtained using purified meta cresol purple as a pH indicator. The data are from 1890 water samples collected during NOAA's West Coast Ocean Acidification Cruise of 2011 (WCOA2011) and NOAA's Gulf of Mexico and East Coast Carbon Cruise of 2012 (GOMECC-2). Calculations of in situ aragonite Saturation States (ΩA) near the Saturation horizon exhibited differences on the order of ± 10% between predictions based on the (DIC, TA) pair of measurements vs. the (pH, DIC), (fCO2, DIC), or (fCO2, pH) pairs. Differences of this magnitude, which are largely attributable to the imprecision of ΩA calculated from the (DIC, TA) pair, are roughly equivalent to the magnitude of ΩA change projected to occur over the next several decades due to ocean acidification. These observations highlight the importance of including either pH or fCO2 in Saturation State calculations. Calculations of TA from (pH, DIC) and (fCO2, DIC) showed that internal consistency could be achieved if minor subtractions of TA (≤ 4 μmol kg− 1) were applied to samples of salinity

  • climatological distribution of aragonite Saturation State in the global oceans
    Global Biogeochemical Cycles, 2015
    Co-Authors: Li-qing Jiang, B R Carter, Richard A. Feely, Dana Greeley, Dwight K Gledhill, Krisa M Arzayus
    Abstract:

    Aragonite Saturation State (Ωarag) in surface and subsurface waters of the global oceans was calculated from up-to-date (through the year of 2012) ocean station dissolved inorganic carbon (DIC) and total alkalinity (TA) data. Surface Ωarag in the open ocean was always supersaturated (Ω > 1), ranging between 1.1 and 4.2. It was above 2.0 (2.0–4.2) between 40°N and 40°S but decreased toward higher latitude to below 1.5 in polar areas. The influences of water temperature on the TA/DIC ratio, combined with the temperature effects on inorganic carbon equilibrium and apparent solubility product (K′sp), explain the latitudinal differences in surface Ωarag. Vertically, Ωarag was highest in the surface mixed layer. Higher hydrostatic pressure, lower water temperature, and more CO2 buildup from biological activity in the absence of air-sea gas exchange helped maintain lower Ωarag in the deep ocean. Below the thermocline, aerobic decomposition of organic matter along the pathway of global thermohaline circulation played an important role in controlling Ωarag distributions. Seasonally, surface Ωarag above 30° latitudes was about 0.06 to 0.55 higher during warmer months than during colder months in the open-ocean waters of both hemispheres. Decadal changes of Ωarag in the Atlantic and Pacific Oceans showed that Ωarag in waters shallower than 100 m depth decreased by 0.10 ± 0.09 (−0.40 ± 0.37% yr−1) on average from the decade spanning 1989–1998 to the decade spanning 1998–2010.

  • Seasonal variations in the aragonite Saturation State in the upper open‐ocean waters of the North Pacific Ocean
    Geophysical Research Letters, 2015
    Co-Authors: Geun Ha Park, Richard A. Feely, Frank J. Millero
    Abstract:

    Seasonal variability of the aragonite Saturation State (ΩAR) in the upper (50 m and 100 m depths) North Pacific Ocean (NPO) was investigated using multiple linear regression (MLR). The MLR algorithm derived from a high-quality carbon data set accurately predicted the ΩAR of evaluation data sets (three time series stations and P02 section) with acceptable uncertainty (

  • decadal changes in the aragonite and calcite Saturation State of the pacific ocean
    Global Biogeochemical Cycles, 2012
    Co-Authors: Richard A. Feely, Akihiko Murata, Frank J. Millero, Robert H. Byrne, Andrew G. Dickson, Rik Wanninkhof, Christopher L Sabine, Lisa A Miller, Dana Greeley
    Abstract:

    [1] Based on measurements from the WOCE/JGOFS global CO2 survey, the CLIVAR/CO2 Repeat Hydrography Program and the Canadian Line P survey, we have observed an average decrease of 0.34% yr−1 in the Saturation State of surface seawater in the Pacific Ocean with respect to aragonite and calcite. The upward migrations of the aragonite and calcite Saturation horizons, averaging about 1 to 2 m yr−1, are the direct result of the uptake of anthropogenic CO2 by the oceans and regional changes in circulation and biogeochemical processes. The shoaling of the Saturation horizon is regionally variable, with more rapid shoaling in the South Pacific where there is a larger uptake of anthropogenic CO2. In some locations, particularly in the North Pacific Subtropical Gyre and in the California Current, the decadal changes in circulation can be the dominant factor in controlling the migration of the Saturation horizon. If CO2 emissions continue as projected over the rest of this century, the resulting changes in the marine carbonate system would mean that many coral reef systems in the Pacific would no longer be able to sustain a sufficiently high rate of calcification to maintain the viability of these ecosystems as a whole, and these changes perhaps could seriously impact the thousands of marine species that depend on them for survival.