Scaled Model

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 81303 Experts worldwide ranked by ideXlab platform

F Landini - One of the best experts on this subject based on the ideXlab platform.

  • Scaled Model guidelines for solar coronagraphs external occulters with an optimized shape
    2017
    Co-Authors: F Landini, M Romoli, Cristian Baccani, Mauro Focardi, M Pancrazzi, Hagen Schweitzer, Daniel Asoubar, Matteo Taccola, Silvano Fineschi
    Abstract:

    One of the major challenges faced by externally occulted solar coronagraphs is the suppression of the light diffracted by the occulter edge. It is a contribution to the stray light that overwhelms the coronal signal on the focal plane and must be reduced by modifying the geometrical shape of the occulter. There is a rich literature, mostly experimental, on the appropriate choice of the most suitable shape. The problem arises when huge coronagraphs, such as those in formation flight, shall be tested in a laboratory. A recent contribution [Opt. Lett.41, 757 (2016)OPLEDP0146-959210.1364/OL.41.000757] provides the guidelines for scaling the geometry and replicate in the laboratory the flight diffraction pattern as produced by the whole solar disk and a flight occulter but leaves the conclusion on the occulter scale law somehow unjustified. This paper provides the numerical support for validating that conclusion and presents the first-ever simulation of the diffraction behind an occulter with an optimized shape along the optical axis with the solar disk as a source. This paper, together with Opt. Lett.41, 757 (2016)OPLEDP0146-959210.1364/OL.41.000757, aims at constituting a complete guide for scaling the coronagraphs’ geometry.

  • Scaled Model guidelines for formation flying solar coronagraph missions
    2016
    Co-Authors: F Landini, M Romoli, Cristian Baccani, Mauro Focardi, M Pancrazzi, Damien Galano, Volker Kirschner
    Abstract:

    Stray light suppression is the main concern in designing a solar coronagraph. The main contribution to the stray light for an externally occulted space-borne solar coronagraph is the light diffracted by the occulter and scattered by the optics. It is mandatory to carefully evaluate the diffraction generated by an external occulter and the impact that it has on the stray light signal on the focal plane. The scientific need for observations to cover a large portion of the heliosphere with an inner field of view as close as possible to the photospheric limb supports the ambition of launching formation-flying giant solar coronagraphs. Their dimension prevents the possibility of replicating the flight geometry in a clean laboratory environment, and the strong need for a Scaled Model is thus envisaged. The problem of scaling a coronagraph has already been faced for exoplanets, for a single point source on axis at infinity. We face the problem here by adopting an original approach and by introducing the scaling of the solar disk as an extended source.

Volker Kirschner - One of the best experts on this subject based on the ideXlab platform.

  • Scaled Model guidelines for formation flying solar coronagraph missions
    2016
    Co-Authors: F Landini, M Romoli, Cristian Baccani, Mauro Focardi, M Pancrazzi, Damien Galano, Volker Kirschner
    Abstract:

    Stray light suppression is the main concern in designing a solar coronagraph. The main contribution to the stray light for an externally occulted space-borne solar coronagraph is the light diffracted by the occulter and scattered by the optics. It is mandatory to carefully evaluate the diffraction generated by an external occulter and the impact that it has on the stray light signal on the focal plane. The scientific need for observations to cover a large portion of the heliosphere with an inner field of view as close as possible to the photospheric limb supports the ambition of launching formation-flying giant solar coronagraphs. Their dimension prevents the possibility of replicating the flight geometry in a clean laboratory environment, and the strong need for a Scaled Model is thus envisaged. The problem of scaling a coronagraph has already been faced for exoplanets, for a single point source on axis at infinity. We face the problem here by adopting an original approach and by introducing the scaling of the solar disk as an extended source.

Katsunori Shimohara - One of the best experts on this subject based on the ideXlab platform.

  • Evolution of the driving styles of anticipatory agent remotely operating a Scaled Model of racing car
    2005
    Co-Authors: Ivan Tanev, M. Joachimczak, Hisashi Hemmi, Katsunori Shimohara
    Abstract:

    We present an approach for automated evolutionary design of driving agent, able to remotely operate a scale Model of racing car running in a fastest possible way. The agent's actions are conveyed to the car via standard radio control transmitter. The agent perceives the environment from a live video feedback of an overhead camera. In order to cope with the inherent video feed latency, which renders even the straightforward tasks of following simple routes unsolvable, we implement an anticipatory Modeling - the agent considers its current actions based on anticipated intrinsic (rather than currently available, outdated) state of the car and its surrounding. The driving style (i.e. the driving line combined with the speed at which the car travels along this line) is first evolved offline on a software simulator of the car and then adapted online to the real world. Experimental results demonstrate that on long runs the agent-operated car is only marginally slower than a human-operated one, while the consistence of lap times posted by the evolved driving style of the agent is better than that of a human. This work can be viewed as a step towards the development of a framework for automated design of the controllers of remotely operated vehicles capable to find an optimal solution to various tasks in different traffic situations and road conditions.

Cristian Baccani - One of the best experts on this subject based on the ideXlab platform.

  • Scaled Model guidelines for solar coronagraphs external occulters with an optimized shape
    2017
    Co-Authors: F Landini, M Romoli, Cristian Baccani, Mauro Focardi, M Pancrazzi, Hagen Schweitzer, Daniel Asoubar, Matteo Taccola, Silvano Fineschi
    Abstract:

    One of the major challenges faced by externally occulted solar coronagraphs is the suppression of the light diffracted by the occulter edge. It is a contribution to the stray light that overwhelms the coronal signal on the focal plane and must be reduced by modifying the geometrical shape of the occulter. There is a rich literature, mostly experimental, on the appropriate choice of the most suitable shape. The problem arises when huge coronagraphs, such as those in formation flight, shall be tested in a laboratory. A recent contribution [Opt. Lett.41, 757 (2016)OPLEDP0146-959210.1364/OL.41.000757] provides the guidelines for scaling the geometry and replicate in the laboratory the flight diffraction pattern as produced by the whole solar disk and a flight occulter but leaves the conclusion on the occulter scale law somehow unjustified. This paper provides the numerical support for validating that conclusion and presents the first-ever simulation of the diffraction behind an occulter with an optimized shape along the optical axis with the solar disk as a source. This paper, together with Opt. Lett.41, 757 (2016)OPLEDP0146-959210.1364/OL.41.000757, aims at constituting a complete guide for scaling the coronagraphs’ geometry.

  • Scaled Model guidelines for formation flying solar coronagraph missions
    2016
    Co-Authors: F Landini, M Romoli, Cristian Baccani, Mauro Focardi, M Pancrazzi, Damien Galano, Volker Kirschner
    Abstract:

    Stray light suppression is the main concern in designing a solar coronagraph. The main contribution to the stray light for an externally occulted space-borne solar coronagraph is the light diffracted by the occulter and scattered by the optics. It is mandatory to carefully evaluate the diffraction generated by an external occulter and the impact that it has on the stray light signal on the focal plane. The scientific need for observations to cover a large portion of the heliosphere with an inner field of view as close as possible to the photospheric limb supports the ambition of launching formation-flying giant solar coronagraphs. Their dimension prevents the possibility of replicating the flight geometry in a clean laboratory environment, and the strong need for a Scaled Model is thus envisaged. The problem of scaling a coronagraph has already been faced for exoplanets, for a single point source on axis at infinity. We face the problem here by adopting an original approach and by introducing the scaling of the solar disk as an extended source.

Mauro Focardi - One of the best experts on this subject based on the ideXlab platform.

  • Scaled Model guidelines for solar coronagraphs external occulters with an optimized shape
    2017
    Co-Authors: F Landini, M Romoli, Cristian Baccani, Mauro Focardi, M Pancrazzi, Hagen Schweitzer, Daniel Asoubar, Matteo Taccola, Silvano Fineschi
    Abstract:

    One of the major challenges faced by externally occulted solar coronagraphs is the suppression of the light diffracted by the occulter edge. It is a contribution to the stray light that overwhelms the coronal signal on the focal plane and must be reduced by modifying the geometrical shape of the occulter. There is a rich literature, mostly experimental, on the appropriate choice of the most suitable shape. The problem arises when huge coronagraphs, such as those in formation flight, shall be tested in a laboratory. A recent contribution [Opt. Lett.41, 757 (2016)OPLEDP0146-959210.1364/OL.41.000757] provides the guidelines for scaling the geometry and replicate in the laboratory the flight diffraction pattern as produced by the whole solar disk and a flight occulter but leaves the conclusion on the occulter scale law somehow unjustified. This paper provides the numerical support for validating that conclusion and presents the first-ever simulation of the diffraction behind an occulter with an optimized shape along the optical axis with the solar disk as a source. This paper, together with Opt. Lett.41, 757 (2016)OPLEDP0146-959210.1364/OL.41.000757, aims at constituting a complete guide for scaling the coronagraphs’ geometry.

  • Scaled Model guidelines for formation flying solar coronagraph missions
    2016
    Co-Authors: F Landini, M Romoli, Cristian Baccani, Mauro Focardi, M Pancrazzi, Damien Galano, Volker Kirschner
    Abstract:

    Stray light suppression is the main concern in designing a solar coronagraph. The main contribution to the stray light for an externally occulted space-borne solar coronagraph is the light diffracted by the occulter and scattered by the optics. It is mandatory to carefully evaluate the diffraction generated by an external occulter and the impact that it has on the stray light signal on the focal plane. The scientific need for observations to cover a large portion of the heliosphere with an inner field of view as close as possible to the photospheric limb supports the ambition of launching formation-flying giant solar coronagraphs. Their dimension prevents the possibility of replicating the flight geometry in a clean laboratory environment, and the strong need for a Scaled Model is thus envisaged. The problem of scaling a coronagraph has already been faced for exoplanets, for a single point source on axis at infinity. We face the problem here by adopting an original approach and by introducing the scaling of the solar disk as an extended source.