Shockwaves

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 21534 Experts worldwide ranked by ideXlab platform

Marianne K E Koolen - One of the best experts on this subject based on the ideXlab platform.

  • Effect of unfocused extracorporeal shockwave therapy on bone mineral content of twelve distal forearms of postmenopausal women: a clinical pilot study.
    Archives of Osteoporosis, 2019
    Co-Authors: Marianne K E Koolen, Harrie Weinans, Wolfgang Schaden, Moyo C. Kruyt, Fetullah Cumhur Oner, Olav P. Van Der Jagt
    Abstract:

    Summary: Extracorporeal shockwave therapy showed a pronounced effect on bone mass in previous animal studies. We showed in this pilot study that a single treatment with unfocused shockwave therapy in unselected patients does not show side effects. Although our study did not show any effect of shockwave on BMD, the limited sample size does not definitively exclude this and a study with 174 subjects per group would be needed to show an effect size of 0.3 with a power of 80%. Purpose: Unfocused extracorporeal shockwave therapy might stimulate bone formation to reduce the fracture risk. In this study, we assessed the safety of unfocused extracorporeal shockwave therapy and its effects on bone mass. Methods: A clinical pilot study with twelve female patients free of bone disease undergoing elective surgery of the lower extremity or elective spinal surgery under general anesthesia received 3.000 electrohydraulic-generated unfocused extracorporeal Shockwaves (energy flux density 0.3 mJ/mm2) to one distal forearm. The contralateral forearm served as a control. We examined the effect on bone mass with the use of repeated dual energy X-ray absorptiometry measurements and we measured patient discomfort around the therapy. Results: No difference in bone mineral content and density was measured 6 and 12 weeks after therapy. shockwave therapy occasionally caused transient erythema or mild hematoma, but no discomfort in daily life or (late) adverse events. Conclusions: Unfocused extracorporeal shockwave therapy is a safe treatment, but no increase in bone mass on the forearm was found at 0.3 mJ/mm2 energy flux density. In this study, we were not able to demonstrate that a single treatment with unfocused shockwave therapy in unselected patients had any effect in terms of bone mineral density (BMD) or bone mineral content (BMC). A power analysis indicated that 174 patients per group are required to show an effect size of 0.3 with a power of 80%.

  • unfocused Shockwaves for osteoinduction in bone substitutes in rat cortical bone defects
    PLOS ONE, 2018
    Co-Authors: Marianne K E Koolen, Olav P Van Der Jagt, Fetullah C Oner, Amir Abbas Zadpoor, Behdad Pouran, Harrie Weinans
    Abstract:

    Bone substitutes are frequently used in clinical practice but often exhibit limited osteoinductivity. We hypothesized that unfocused Shockwaves enhance the osteoinductivity of bone substitutes and improve osteointegration and angiogenesis. Three different bone substitutes, namely porous tricalcium phosphate, porous hydroxyapatite and porous titanium alloy, were implanted in a critical size (i.e. 6-mm) femoral defect in rats. The femora were treated twice with 1500 Shockwaves at 2 and 4 weeks after surgery and compared with non-treated controls. The net volume of de novo bone in the defect was measured by microCT-scanning during 11-weeks follow-up. Bone ingrowth and angiogenesis in the bone substitutes was examined at 5 and 11 weeks using histology. It was shown that hydroxyapatite and titanium both had an increase of bone ingrowth with more bone in the shockwave group compared to the control group, whereas resorption was seen in tricalcium phosphate bone substitutes over time and this was insensitive to shockwave treatment. In conclusion, hydroxyapatite and titanium bone substitutes favour from shockwave treatment, whereas tricalcium phosphate does not. This study shows that osteoinduction and osteointegration of bone substitutes can be influenced with unfocused shockwave therapy, but among other factors depend on the type of bone substitute, likely reflecting its mechanical and biological properties.

Harrie Weinans - One of the best experts on this subject based on the ideXlab platform.

  • Effect of unfocused extracorporeal shockwave therapy on bone mineral content of twelve distal forearms of postmenopausal women: a clinical pilot study.
    Archives of Osteoporosis, 2019
    Co-Authors: Marianne K E Koolen, Harrie Weinans, Wolfgang Schaden, Moyo C. Kruyt, Fetullah Cumhur Oner, Olav P. Van Der Jagt
    Abstract:

    Summary: Extracorporeal shockwave therapy showed a pronounced effect on bone mass in previous animal studies. We showed in this pilot study that a single treatment with unfocused shockwave therapy in unselected patients does not show side effects. Although our study did not show any effect of shockwave on BMD, the limited sample size does not definitively exclude this and a study with 174 subjects per group would be needed to show an effect size of 0.3 with a power of 80%. Purpose: Unfocused extracorporeal shockwave therapy might stimulate bone formation to reduce the fracture risk. In this study, we assessed the safety of unfocused extracorporeal shockwave therapy and its effects on bone mass. Methods: A clinical pilot study with twelve female patients free of bone disease undergoing elective surgery of the lower extremity or elective spinal surgery under general anesthesia received 3.000 electrohydraulic-generated unfocused extracorporeal Shockwaves (energy flux density 0.3 mJ/mm2) to one distal forearm. The contralateral forearm served as a control. We examined the effect on bone mass with the use of repeated dual energy X-ray absorptiometry measurements and we measured patient discomfort around the therapy. Results: No difference in bone mineral content and density was measured 6 and 12 weeks after therapy. shockwave therapy occasionally caused transient erythema or mild hematoma, but no discomfort in daily life or (late) adverse events. Conclusions: Unfocused extracorporeal shockwave therapy is a safe treatment, but no increase in bone mass on the forearm was found at 0.3 mJ/mm2 energy flux density. In this study, we were not able to demonstrate that a single treatment with unfocused shockwave therapy in unselected patients had any effect in terms of bone mineral density (BMD) or bone mineral content (BMC). A power analysis indicated that 174 patients per group are required to show an effect size of 0.3 with a power of 80%.

  • unfocused Shockwaves for osteoinduction in bone substitutes in rat cortical bone defects
    PLOS ONE, 2018
    Co-Authors: Marianne K E Koolen, Olav P Van Der Jagt, Fetullah C Oner, Amir Abbas Zadpoor, Behdad Pouran, Harrie Weinans
    Abstract:

    Bone substitutes are frequently used in clinical practice but often exhibit limited osteoinductivity. We hypothesized that unfocused Shockwaves enhance the osteoinductivity of bone substitutes and improve osteointegration and angiogenesis. Three different bone substitutes, namely porous tricalcium phosphate, porous hydroxyapatite and porous titanium alloy, were implanted in a critical size (i.e. 6-mm) femoral defect in rats. The femora were treated twice with 1500 Shockwaves at 2 and 4 weeks after surgery and compared with non-treated controls. The net volume of de novo bone in the defect was measured by microCT-scanning during 11-weeks follow-up. Bone ingrowth and angiogenesis in the bone substitutes was examined at 5 and 11 weeks using histology. It was shown that hydroxyapatite and titanium both had an increase of bone ingrowth with more bone in the shockwave group compared to the control group, whereas resorption was seen in tricalcium phosphate bone substitutes over time and this was insensitive to shockwave treatment. In conclusion, hydroxyapatite and titanium bone substitutes favour from shockwave treatment, whereas tricalcium phosphate does not. This study shows that osteoinduction and osteointegration of bone substitutes can be influenced with unfocused shockwave therapy, but among other factors depend on the type of bone substitute, likely reflecting its mechanical and biological properties.

Olav P. Van Der Jagt - One of the best experts on this subject based on the ideXlab platform.

  • Effect of unfocused extracorporeal shockwave therapy on bone mineral content of twelve distal forearms of postmenopausal women: a clinical pilot study.
    Archives of Osteoporosis, 2019
    Co-Authors: Marianne K E Koolen, Harrie Weinans, Wolfgang Schaden, Moyo C. Kruyt, Fetullah Cumhur Oner, Olav P. Van Der Jagt
    Abstract:

    Summary: Extracorporeal shockwave therapy showed a pronounced effect on bone mass in previous animal studies. We showed in this pilot study that a single treatment with unfocused shockwave therapy in unselected patients does not show side effects. Although our study did not show any effect of shockwave on BMD, the limited sample size does not definitively exclude this and a study with 174 subjects per group would be needed to show an effect size of 0.3 with a power of 80%. Purpose: Unfocused extracorporeal shockwave therapy might stimulate bone formation to reduce the fracture risk. In this study, we assessed the safety of unfocused extracorporeal shockwave therapy and its effects on bone mass. Methods: A clinical pilot study with twelve female patients free of bone disease undergoing elective surgery of the lower extremity or elective spinal surgery under general anesthesia received 3.000 electrohydraulic-generated unfocused extracorporeal Shockwaves (energy flux density 0.3 mJ/mm2) to one distal forearm. The contralateral forearm served as a control. We examined the effect on bone mass with the use of repeated dual energy X-ray absorptiometry measurements and we measured patient discomfort around the therapy. Results: No difference in bone mineral content and density was measured 6 and 12 weeks after therapy. shockwave therapy occasionally caused transient erythema or mild hematoma, but no discomfort in daily life or (late) adverse events. Conclusions: Unfocused extracorporeal shockwave therapy is a safe treatment, but no increase in bone mass on the forearm was found at 0.3 mJ/mm2 energy flux density. In this study, we were not able to demonstrate that a single treatment with unfocused shockwave therapy in unselected patients had any effect in terms of bone mineral density (BMD) or bone mineral content (BMC). A power analysis indicated that 174 patients per group are required to show an effect size of 0.3 with a power of 80%.

Judit Canadell - One of the best experts on this subject based on the ideXlab platform.

  • The effect of Shockwaves on mature and healing cortical bone.
    International Orthopaedics, 1994
    Co-Authors: Francisco Forriol, L. Solchaga, J. L. Moreno, Judit Canadell
    Abstract:

    It has been proposed that high energy Shockwaves could be used to create microfractures in cortical bone. This quality might be exploited clinically to perform closed osteotomies and promote healing in nonunion (15). However, no study has previously documented the effect of Shockwaves on cortical bone “in vivo”. We report an investigation designed to demonstrate the effect of Shockwaves on mature cortical and healing bone. An osteotomy was performed on the tibiae of 37 lambs; two weeks later the operation site was exposed to Shockwaves. Three weeks later the lambs were killed and specimens of the bone examined histologically and radiographically. Shockwaves had no effect on the periosteal surface of mature cortical bone, but on the endosteal surface some new trabecular bone was seen. Healing of bone was delayed by the shockwave therapy. We conclude that there is currently little place for shockwave treatment in clinical orthopaedics.

Wolfgang G Junger - One of the best experts on this subject based on the ideXlab platform.

  • Shockwaves induce osteogenic differentiation of human mesenchymal stem cells through atp release and activation of p2x7 receptors
    Stem Cells, 2013
    Co-Authors: Dahui Sun, Wolfgang G Junger, Changji Yuan, Wenyan Zhang, Yi Bao, Daming Qin, Chengxue Wang, Lei Tan, Dong Zhu
    Abstract:

    Shockwave treatment promotes bone healing of nonunion fractures. In this study, we investigated whether this effect could be due to adenosine 5′-triphosphate (ATP) release-induced differentiation of human mesenchymal stem cells (hMSCs) into osteoprogenitor cells. Cultured bone marrow-derived hMSCs were subjected to shockwave treatment and ATP release was assessed. Osteogenic differentiation and mineralization of hMSCs were evaluated by examining alkaline phosphatase activity, osteocalcin production, and calcium nodule formation. Expression of P2X7 receptors and c-fos and c-jun mRNA was determined with real-time reverse transcription polymerase chain reaction and Western blotting. P2X7-siRNA, apyrase, P2 receptor antagonists, and p38 MAPK inhibitors were used to evaluate the roles of ATP release, P2X7 receptors, and p38 MAPK signaling in shockwave-induced osteogenic hMSCs differentiation. Shockwave treatment released significant amounts (∼7 μM) of ATP from hMSCs. Shockwaves and exogenous ATP induced c-fos and c-jun mRNA transcription, p38 MAPK activation, and hMSC differentiation. Removal of ATP with apyrase, targeting of P2X7 receptors with P2X7-siRNA or selective antagonists, or blockade of p38 MAPK with SB203580 prevented osteogenic differentiation of hMSCs. Our findings indicate that Shockwaves release cellular ATP that activates P2X7 receptors and downstream signaling events that caused osteogenic differentiation of hMSCs. We conclude that shockwave therapy promotes bone healing through P2X7 receptor signaling, which contributes to hMSC differentiation. STEM Cells 2013;31:1170–1180

  • Shockwaves increase t cell proliferation and il 2 expression through atp release p2x7 receptors and fak activation
    American Journal of Physiology-cell Physiology, 2010
    Co-Authors: Wolfgang G Junger, Changji Yuan, An Jin, Yi Zhao, Xueqing Zheng, Yanjun Zeng, Jianguo Liu
    Abstract:

    Shockwaves elicited by transient pressure disturbances are used to treat musculoskeletal disorders. Previous research has shown that shockwave treatment affects T-cell function, enhancing T-cell proliferation and IL-2 expression by activating p38 mitogen-activated protein kinase (MAPK) signaling. Here we investigated the signaling pathway by which Shockwaves mediate p38 MAPK phosphorylation. We found that Shockwaves at an intensity of 0.18 mJ/mm2 induce the release of extracellular ATP from human Jurkat T-cells at least in part by affecting cell viability. ATP released into the extracellular space stimulates P2X7-type purinergic receptors that induce the activation of p38 MAPK and of focal adhesion kinase (FAK) by phosphorylation on residues Tyr397 and Tyr576/577. Elimination of released ATP with apyrase or inhibition of P2X7 receptors with the antagonists KN-62 or suramin significantly weakens FAK phosphorylation, p38 MAPK activation, IL-2 expression, and T-cell proliferation. Conversely, addition of exogenous ATP causes phosphorylation of FAK and p38 MAPK. Silencing of FAK expression also reduces these cell responses to shockwave treatment. We conclude that Shockwaves enhance p38 MAPK activation, IL-2 expression, and T-cell proliferation via the release of cellular ATP and feedback mechanisms that involve P2X7 receptor activation and FAK phosphorylation.