SKBR3

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 5796 Experts worldwide ranked by ideXlab platform

Jaydutt V. Vadgama - One of the best experts on this subject based on the ideXlab platform.

  • Utilization of NGS technologies to investigate transcriptomic and epigenomic mechanisms in trastuzumab resistance
    Nature Publishing Group, 2019
    Co-Authors: Miguel Nava, Pranabananda Dutta, Robin Farias-eisner, Jaydutt V. Vadgama
    Abstract:

    Abstract NGS (Next Generation Sequencing) technologies allows us to determine key gene expression signatures that correlate with resistance (and responsiveness) to anti-cancer therapeutics. We have undertaken a transcriptomic and chromatin immunoprecipitation followed by sequencing (ChIP-seq) approach to describe differences in gene expression and the underlying chromatin landscape between two representative HER2+ cell lines, one of which is sensitive (SKBR3) and the other which is resistant (JIMT1) to trastuzumab. We identified differentially expressed genes (DEGs) and differentially expressed transcripts (DETs) between SKBR3 and JIMT1 cells. Several of the DEGs are components of the Polycomb Repressing Complex 2 (PRC2), and they are expressed higher in JIMT1 cells. In addition, we utilized ChIP-seq to identify H3K18ac, H3K27ac and H3K27me3 histone modifications genome-wide. We identified key differences of H3K18ac and H3K27ac enrichment in regulatory regions, found a correlation between these modifications and differential gene expression and identified a transcription factor binding motif for LRF near these modifications in both cell lines. Lastly, we found a small subset of genes that contain repressive H3K27me3 marks near the gene body in SKBR3 cells but are absent in JIMT1. Taken together, our data suggests that differential gene expression and trastuzumab responsiveness in JIMT1 and SKBR3 is determined by epigenetic mechanisms

  • expression of wnt3 activates wnt β catenin pathway and promotes emt like phenotype in trastuzumab resistant her2 overexpressing breast cancer cells
    Molecular Cancer Research, 2012
    Co-Authors: Charles Ginther, Juri Kim, Nicole Mosher, Seyung Chung, Dennis J. Slamon, Jaydutt V. Vadgama
    Abstract:

    To understand the mechanisms leading to trastuzumab resistance in HER2-overexpressing breast tumors we created trastuzumab insensitive cell lines (SKBR3/100-8 and BT474/100-2). The cell lines maintain HER2 receptor overexpression, and show increase in EGFR. Upon trastuzumab treatment, SKBR3/100-8 and BT474/100-2 cell lines displayed increased growth rate and invasiveness. The trastuzumab resistance in SKBR3/100-8 and BT474/100-2 was accompanied with activation of the Wnt/β-catenin signaling pathway. Further investigation found that Wnt3 overexpression played a key role toward the development of trastuzumab resistance. The expression of Wnt3 in trastuzumab resistant cells increased nuclear expression of β-catenin and transactivated expression of EGFR. The increased Wnt3 in the trastuzumab resistant cells also promoted a parental EMT-like transition (epithelial to mesenchymal transition), increased N-cadherin, Twist, SLUG and decreased E-cadherin. Knockdown of Wnt3 by siRNA restored cytoplasmic expression of β-catenin, and decreased EGFR expression in trastuzumab resistant cells. Furthermore the EMT markers were decreased, E-cadherin was increased and the cell invasiveness was inhibited in response to the Wnt3 down-regulation. Conversely, SKBR3 cells which had been stably transfected with full-length Wnt3 exhibited EMT-like transition. The Wnt3 transfectants, SKBR3/Wnt3-7 and SKBR3/Wnt3-9, showed a significant decrease in E-cadherin and increase in N-cadherin, Twist and SLUG. The cells were less sensitive to trastuzumab compared to parental SKBR3 and vector transfected cells. In summary, our data suggests that Wnt3 overexpression activates Wnt/β-catenin signaling pathway that leads to transactivation of EGFR and promotes EMT-like transition. This could be an important mechanism leading to trastuzumab resistance in HER2 overexpressing breast cancer cells.

  • Expression of Wnt3 activates Wnt/β-catenin pathway and promotes EMT-like phenotype in trastuzumab-resistant HER2-overexpressing breast cancer cells.
    Molecular cancer research : MCR, 2012
    Co-Authors: Charles Ginther, Juri Kim, Nicole Mosher, Seyung Chung, Dennis J. Slamon, Jaydutt V. Vadgama
    Abstract:

    To understand the mechanisms leading to trastuzumab resistance in HER2-overexpressing breast tumors we created trastuzumab insensitive cell lines (SKBR3/100-8 and BT474/100-2). The cell lines maintain HER2 receptor overexpression, and show increase in EGFR. Upon trastuzumab treatment, SKBR3/100-8 and BT474/100-2 cell lines displayed increased growth rate and invasiveness. The trastuzumab resistance in SKBR3/100-8 and BT474/100-2 was accompanied with activation of the Wnt/β-catenin signaling pathway. Further investigation found that Wnt3 overexpression played a key role toward the development of trastuzumab resistance. The expression of Wnt3 in trastuzumab resistant cells increased nuclear expression of β-catenin and transactivated expression of EGFR. The increased Wnt3 in the trastuzumab resistant cells also promoted a parental EMT-like transition (epithelial to mesenchymal transition), increased N-cadherin, Twist, SLUG and decreased E-cadherin. Knockdown of Wnt3 by siRNA restored cytoplasmic expression of β-catenin, and decreased EGFR expression in trastuzumab resistant cells. Furthermore the EMT markers were decreased, E-cadherin was increased and the cell invasiveness was inhibited in response to the Wnt3 down-regulation. Conversely, SKBR3 cells which had been stably transfected with full-length Wnt3 exhibited EMT-like transition. The Wnt3 transfectants, SKBR3/Wnt3-7 and SKBR3/Wnt3-9, showed a significant decrease in E-cadherin and increase in N-cadherin, Twist and SLUG. The cells were less sensitive to trastuzumab compared to parental SKBR3 and vector transfected cells. In summary, our data suggests that Wnt3 overexpression activates Wnt/β-catenin signaling pathway that leads to transactivation of EGFR and promotes EMT-like transition. This could be an important mechanism leading to trastuzumab resistance in HER2 overexpressing breast cancer cells.

  • abstract b31 expression of wnt3 activates wnt β catenin pathway and promotes emt like phenotype in trastuzumab resistant her2 overexpressing breast cancer cells
    Cancer Epidemiology Biomarkers & Prevention, 2012
    Co-Authors: Charles Ginther, Juri Kim, Nicole Mosher, Seyung Chung, Dennis J. Slamon, Jaydutt V. Vadgama
    Abstract:

    To understand the mechanisms leading to trastuzumab resistance in HER2-overexpressing breast tumors we created trastuzumab insensitive cell lines (SKBR3/100-8 and BT474/100-2). The cell lines maintain HER2 receptor overexpression, and show increase in EGFR. Upon trastuzumab treatment, SKBR3/100-8 and BT474/100-2 cell lines displayed increased growth rate and invasiveness. The trastuzumab resistance in SKBR3/100-8 and BT474/100-2 was accompanied with activation of the Wnt/β-catenin signaling pathway. Further investigation found that Wnt3 overexpression played a key role toward the development of trastuzumab resistance. The expression of Wnt3 in trastuzumab resistant cells increased nuclear expression of β-catenin and transactivated expression of EGFR. The increased Wnt3 in the trastuzumab resistant cells also promoted a parental EMT-like transition (epithelial to mesenchymal transition), increased N-cadherin, Twist, SLUG and decreased E-cadherin. Knockdown Wnt3 by siRNA restored cytoplasmic expression of β-catenin, and decreased EGFR expression in trastuzumab resistant cells. Furthermore the EMT markers were decreased, E-cadherin was increased and the cell invasiveness was inhibited in response to the Wnt3 down-regulation. Conversely, SKBR3 cells which had been stably transfected with full-length Wnt3 exhibited EMT-like transition. The Wnt3 transfectants, SKBR3/Wnt3-7 and SKBR3/Wnt3-9, showed significant decrease in E-cadherin and increase in N-cadherin, Twist and SLUG. The cells were less sensitive to trastuzumab compared to parental SKBR3 and vector transfected cells. In summary, our data suggests that Wnt3 overexpression activates Wnt/β-catenin signaling pathway that leads to transactivation of EGFR and promotes EMT-like transition. This could be an important mechanism leading to trastuzumab resistance in HER2 overexpressing breast cancer cells. Citation Format: Yanyuan Wu, Charles Ginther, Juri Kim, Nicole Mosher, Seyung Chung, Dennis Slamon, Jaydutt V. Vadgama. Expression of Wnt3 activates Wnt/β-catenin pathway and promotes EMT-like phenotype in trastuzumab resistant HER2-overexpressing breast cancer cells. [abstract]. In: Proceedings of the Fifth AACR Conference on the Science of Cancer Health Disparities in Racial/Ethnic Minorities and the Medically Underserved; 2012 Oct 27-30; San Diego, CA. Philadelphia (PA): AACR; Cancer Epidemiol Biomarkers Prev 2012;21(10 Suppl):Abstract nr B31.

  • Abstract B31: Expression of Wnt3 activates Wnt/β-catenin pathway and promotes EMT-like phenotype in trastuzumab resistant HER2-overexpressing breast cancer cells.
    Cell Molecular and Tumor Biology, 2012
    Co-Authors: Charles Ginther, Juri Kim, Nicole Mosher, Seyung Chung, Dennis J. Slamon, Jaydutt V. Vadgama
    Abstract:

    To understand the mechanisms leading to trastuzumab resistance in HER2-overexpressing breast tumors we created trastuzumab insensitive cell lines (SKBR3/100-8 and BT474/100-2). The cell lines maintain HER2 receptor overexpression, and show increase in EGFR. Upon trastuzumab treatment, SKBR3/100-8 and BT474/100-2 cell lines displayed increased growth rate and invasiveness. The trastuzumab resistance in SKBR3/100-8 and BT474/100-2 was accompanied with activation of the Wnt/β-catenin signaling pathway. Further investigation found that Wnt3 overexpression played a key role toward the development of trastuzumab resistance. The expression of Wnt3 in trastuzumab resistant cells increased nuclear expression of β-catenin and transactivated expression of EGFR. The increased Wnt3 in the trastuzumab resistant cells also promoted a parental EMT-like transition (epithelial to mesenchymal transition), increased N-cadherin, Twist, SLUG and decreased E-cadherin. Knockdown Wnt3 by siRNA restored cytoplasmic expression of β-catenin, and decreased EGFR expression in trastuzumab resistant cells. Furthermore the EMT markers were decreased, E-cadherin was increased and the cell invasiveness was inhibited in response to the Wnt3 down-regulation. Conversely, SKBR3 cells which had been stably transfected with full-length Wnt3 exhibited EMT-like transition. The Wnt3 transfectants, SKBR3/Wnt3-7 and SKBR3/Wnt3-9, showed significant decrease in E-cadherin and increase in N-cadherin, Twist and SLUG. The cells were less sensitive to trastuzumab compared to parental SKBR3 and vector transfected cells. In summary, our data suggests that Wnt3 overexpression activates Wnt/β-catenin signaling pathway that leads to transactivation of EGFR and promotes EMT-like transition. This could be an important mechanism leading to trastuzumab resistance in HER2 overexpressing breast cancer cells. Citation Format: Yanyuan Wu, Charles Ginther, Juri Kim, Nicole Mosher, Seyung Chung, Dennis Slamon, Jaydutt V. Vadgama. Expression of Wnt3 activates Wnt/β-catenin pathway and promotes EMT-like phenotype in trastuzumab resistant HER2-overexpressing breast cancer cells. [abstract]. In: Proceedings of the Fifth AACR Conference on the Science of Cancer Health Disparities in Racial/Ethnic Minorities and the Medically Underserved; 2012 Oct 27-30; San Diego, CA. Philadelphia (PA): AACR; Cancer Epidemiol Biomarkers Prev 2012;21(10 Suppl):Abstract nr B31.

Razieh Yazdanparast - One of the best experts on this subject based on the ideXlab platform.

  • Sensitizing effect of juglone is mediated by down regulation of Notch1 signaling pathway in trastuzumab-resistant SKBR3 cells.
    Apoptosis : an international journal on programmed cell death, 2016
    Co-Authors: Soraya Sajadimajd, Razieh Yazdanparast
    Abstract:

    Trastuzumab (Herceptin) monoclonal antibody directed against HER2 receptor has been administered as a treatment for metastatic HER2 positive breast cancer. The problematic issue in treatment of HER2 positive breast cancer cells is commonly the induction of resistance to trastuzumab which might be due to modulation of some vital signaling elements such as Notch1 and Pin1. In this study, we were aimed to investigate whether the cross talk between pin1 and Notch1 has a role in this event. Our results indicated that the expression level of Pin1 in resistant SKBR3 cells increased by about twofold relative to sensitive SKBR3 cells. Besides, Pin1 inhibition via juglone reduced the extent of proliferation, colony formation and migration capacity of resistant SKBR3 cells. In addition, despite a feed forward loop between Notch1 and Pin1 in sensitive SKBR3 cells, inhibition of Notch1 cleavage in resistant SKBR3 cells did not affect pin1 level whereas pin1 inhibition by juglone reduced the level of Hes1, p-Akt and increased the cellular content of Numb. Therefore, we concluded that pin1 inhibition could be considered as a promising sensitizing strategy to weaken trastuzumab resistance.

  • Involvement of Numb-mediated HIF-1α inhibition in anti-proliferative effect of PNA-antimiR-182 in trastuzumab-sensitive and -resistant SKBR3 cells
    Tumor Biology, 2016
    Co-Authors: Soraya Sajadimajd, Razieh Yazdanparast, Sadeghirizi Akram
    Abstract:

    Trastuzumab is a humanized monoclonal antibody against the human epidermal growth factor receptor 2 (HER2) that is overexpressed in about 25 % of breast cancer patients. However, primary and/or acquired resistance to trastuzumab develops in most affected persons. In this study, we explored the functional role of miR-182 inhibition with aiming the sensitization of SKBR3 cells to trastuzumab. Cell viability, apoptosis, colony formation, and migration capacities of SKBR3^S (sensitive) and SKBR3^R (resistant) cells were assessed to determine the anti-proliferative effects of PNA-antimiR-182. In addition, the expression levels of miR-182, mRNA of FOXO1, and Bim as well as the protein levels of HER2 and Notch1 signaling factors were evaluated by stem-loop RT-qPCR, RT-qPCR, and Western blot, respectively. The results indicated that miR-182 might play a causal role in the mechanism of trastuzumab. In line with that, PNA-antimiR-182 inhibited synergistically the viability of both the sensitive and resistant cell groups. Furthermore, the inhibitory effect of PNA-anitmiR-182 on migration in SKBR3 cells was more than the induction of apoptosis. In addition, PNA-antimiR-182 reduced the levels of NICD, Hes1, HIF-1α, and p-Akt in both cell groups, while it augmented the intracellular content of FOXO1 and Numb suppressor proteins. In other words, PNA-antimiR-182-mediated upregulation of Numb was associated with downregulation of HIF-1α and Hes1. Consequently, downregulation of miR-182 might find therapeutical value for overcoming trastuzumab resistance. Graphical Abstract The crosstalk between HER2 and Notch1 signaling pathway is mediated by miR-182.

  • Differential behaviors of trastuzumab-sensitive and -resistant SKBR3 cells treated with menadione reveal the involvement of Notch1/Akt/FOXO1 signaling elements.
    Molecular and cellular biochemistry, 2015
    Co-Authors: Soraya Sajadimajd, Razieh Yazdanparast
    Abstract:

    Given that HER2 serves as a putative target for therapy in HER2-positive breast cancer, intrinsic and/or acquired resistance to trastuzumab (T) has been proposed to be the major obstacle in treatments. In addition, chemoresistance is commonly attributed to increased antioxidant capacity. In that regard, we evaluated the effect of menadione (M) alone and/or its combination with trastuzumab on proliferation, intracellular GSH and ROS contents as well as HER2 and Notch1 signaling pathways in both trastuzumab-resistant (SKBR3R) and -sensitive SKBR3 (SKBR3S) cells. In spite of increased level of ROS and reduced level of GSH in M-treated SKBR3S cells, M-treated SKBR3R cells showed a decreased content of ROS and GSH compared to untreated cells. However, M/T co-treatment of SKBR3 cells indicated no effect on ROS content, while decreased the level of GSH compared to untreated control cells. Based on the extent of apoptosis, colony formation and wound healing assays, M alone, and/or in combination with T had a stronger inhibitory effect on proliferation of SKBR3R cells relative to SKBR3S cells. These effects might be due to the stronger effects of M and/or M/T on downregulation of p-Akt, Hes1, NICD, and upregulation of FOXO1 among SKBR3R cells relative to the sensitive SKBR3 cells. These findings would certainly shed light on some of the signaling factors involved in induction of trastuzumab resistance and would be of value in designing more efficient chemosensitization strategies.

  • differential behaviors of trastuzumab sensitive and resistant SKBR3 cells treated with menadione reveal the involvement of notch1 akt foxo1 signaling elements
    Molecular and Cellular Biochemistry, 2015
    Co-Authors: Soraya Sajadimajd, Razieh Yazdanparast
    Abstract:

    Given that HER2 serves as a putative target for therapy in HER2-positive breast cancer, intrinsic and/or acquired resistance to trastuzumab (T) has been proposed to be the major obstacle in treatments. In addition, chemoresistance is commonly attributed to increased antioxidant capacity. In that regard, we evaluated the effect of menadione (M) alone and/or its combination with trastuzumab on proliferation, intracellular GSH and ROS contents as well as HER2 and Notch1 signaling pathways in both trastuzumab-resistant (SKBR3R) and -sensitive SKBR3 (SKBR3S) cells. In spite of increased level of ROS and reduced level of GSH in M-treated SKBR3S cells, M-treated SKBR3R cells showed a decreased content of ROS and GSH compared to untreated cells. However, M/T co-treatment of SKBR3 cells indicated no effect on ROS content, while decreased the level of GSH compared to untreated control cells. Based on the extent of apoptosis, colony formation and wound healing assays, M alone, and/or in combination with T had a stronger inhibitory effect on proliferation of SKBR3R cells relative to SKBR3S cells. These effects might be due to the stronger effects of M and/or M/T on downregulation of p-Akt, Hes1, NICD, and upregulation of FOXO1 among SKBR3R cells relative to the sensitive SKBR3 cells. These findings would certainly shed light on some of the signaling factors involved in induction of trastuzumab resistance and would be of value in designing more efficient chemosensitization strategies.

Soraya Sajadimajd - One of the best experts on this subject based on the ideXlab platform.

  • Sensitizing effect of juglone is mediated by down regulation of Notch1 signaling pathway in trastuzumab-resistant SKBR3 cells.
    Apoptosis : an international journal on programmed cell death, 2016
    Co-Authors: Soraya Sajadimajd, Razieh Yazdanparast
    Abstract:

    Trastuzumab (Herceptin) monoclonal antibody directed against HER2 receptor has been administered as a treatment for metastatic HER2 positive breast cancer. The problematic issue in treatment of HER2 positive breast cancer cells is commonly the induction of resistance to trastuzumab which might be due to modulation of some vital signaling elements such as Notch1 and Pin1. In this study, we were aimed to investigate whether the cross talk between pin1 and Notch1 has a role in this event. Our results indicated that the expression level of Pin1 in resistant SKBR3 cells increased by about twofold relative to sensitive SKBR3 cells. Besides, Pin1 inhibition via juglone reduced the extent of proliferation, colony formation and migration capacity of resistant SKBR3 cells. In addition, despite a feed forward loop between Notch1 and Pin1 in sensitive SKBR3 cells, inhibition of Notch1 cleavage in resistant SKBR3 cells did not affect pin1 level whereas pin1 inhibition by juglone reduced the level of Hes1, p-Akt and increased the cellular content of Numb. Therefore, we concluded that pin1 inhibition could be considered as a promising sensitizing strategy to weaken trastuzumab resistance.

  • Involvement of Numb-mediated HIF-1α inhibition in anti-proliferative effect of PNA-antimiR-182 in trastuzumab-sensitive and -resistant SKBR3 cells
    Tumor Biology, 2016
    Co-Authors: Soraya Sajadimajd, Razieh Yazdanparast, Sadeghirizi Akram
    Abstract:

    Trastuzumab is a humanized monoclonal antibody against the human epidermal growth factor receptor 2 (HER2) that is overexpressed in about 25 % of breast cancer patients. However, primary and/or acquired resistance to trastuzumab develops in most affected persons. In this study, we explored the functional role of miR-182 inhibition with aiming the sensitization of SKBR3 cells to trastuzumab. Cell viability, apoptosis, colony formation, and migration capacities of SKBR3^S (sensitive) and SKBR3^R (resistant) cells were assessed to determine the anti-proliferative effects of PNA-antimiR-182. In addition, the expression levels of miR-182, mRNA of FOXO1, and Bim as well as the protein levels of HER2 and Notch1 signaling factors were evaluated by stem-loop RT-qPCR, RT-qPCR, and Western blot, respectively. The results indicated that miR-182 might play a causal role in the mechanism of trastuzumab. In line with that, PNA-antimiR-182 inhibited synergistically the viability of both the sensitive and resistant cell groups. Furthermore, the inhibitory effect of PNA-anitmiR-182 on migration in SKBR3 cells was more than the induction of apoptosis. In addition, PNA-antimiR-182 reduced the levels of NICD, Hes1, HIF-1α, and p-Akt in both cell groups, while it augmented the intracellular content of FOXO1 and Numb suppressor proteins. In other words, PNA-antimiR-182-mediated upregulation of Numb was associated with downregulation of HIF-1α and Hes1. Consequently, downregulation of miR-182 might find therapeutical value for overcoming trastuzumab resistance. Graphical Abstract The crosstalk between HER2 and Notch1 signaling pathway is mediated by miR-182.

  • Differential behaviors of trastuzumab-sensitive and -resistant SKBR3 cells treated with menadione reveal the involvement of Notch1/Akt/FOXO1 signaling elements.
    Molecular and cellular biochemistry, 2015
    Co-Authors: Soraya Sajadimajd, Razieh Yazdanparast
    Abstract:

    Given that HER2 serves as a putative target for therapy in HER2-positive breast cancer, intrinsic and/or acquired resistance to trastuzumab (T) has been proposed to be the major obstacle in treatments. In addition, chemoresistance is commonly attributed to increased antioxidant capacity. In that regard, we evaluated the effect of menadione (M) alone and/or its combination with trastuzumab on proliferation, intracellular GSH and ROS contents as well as HER2 and Notch1 signaling pathways in both trastuzumab-resistant (SKBR3R) and -sensitive SKBR3 (SKBR3S) cells. In spite of increased level of ROS and reduced level of GSH in M-treated SKBR3S cells, M-treated SKBR3R cells showed a decreased content of ROS and GSH compared to untreated cells. However, M/T co-treatment of SKBR3 cells indicated no effect on ROS content, while decreased the level of GSH compared to untreated control cells. Based on the extent of apoptosis, colony formation and wound healing assays, M alone, and/or in combination with T had a stronger inhibitory effect on proliferation of SKBR3R cells relative to SKBR3S cells. These effects might be due to the stronger effects of M and/or M/T on downregulation of p-Akt, Hes1, NICD, and upregulation of FOXO1 among SKBR3R cells relative to the sensitive SKBR3 cells. These findings would certainly shed light on some of the signaling factors involved in induction of trastuzumab resistance and would be of value in designing more efficient chemosensitization strategies.

  • differential behaviors of trastuzumab sensitive and resistant SKBR3 cells treated with menadione reveal the involvement of notch1 akt foxo1 signaling elements
    Molecular and Cellular Biochemistry, 2015
    Co-Authors: Soraya Sajadimajd, Razieh Yazdanparast
    Abstract:

    Given that HER2 serves as a putative target for therapy in HER2-positive breast cancer, intrinsic and/or acquired resistance to trastuzumab (T) has been proposed to be the major obstacle in treatments. In addition, chemoresistance is commonly attributed to increased antioxidant capacity. In that regard, we evaluated the effect of menadione (M) alone and/or its combination with trastuzumab on proliferation, intracellular GSH and ROS contents as well as HER2 and Notch1 signaling pathways in both trastuzumab-resistant (SKBR3R) and -sensitive SKBR3 (SKBR3S) cells. In spite of increased level of ROS and reduced level of GSH in M-treated SKBR3S cells, M-treated SKBR3R cells showed a decreased content of ROS and GSH compared to untreated cells. However, M/T co-treatment of SKBR3 cells indicated no effect on ROS content, while decreased the level of GSH compared to untreated control cells. Based on the extent of apoptosis, colony formation and wound healing assays, M alone, and/or in combination with T had a stronger inhibitory effect on proliferation of SKBR3R cells relative to SKBR3S cells. These effects might be due to the stronger effects of M and/or M/T on downregulation of p-Akt, Hes1, NICD, and upregulation of FOXO1 among SKBR3R cells relative to the sensitive SKBR3 cells. These findings would certainly shed light on some of the signaling factors involved in induction of trastuzumab resistance and would be of value in designing more efficient chemosensitization strategies.

Charles Ginther - One of the best experts on this subject based on the ideXlab platform.

  • expression of wnt3 activates wnt β catenin pathway and promotes emt like phenotype in trastuzumab resistant her2 overexpressing breast cancer cells
    Molecular Cancer Research, 2012
    Co-Authors: Charles Ginther, Juri Kim, Nicole Mosher, Seyung Chung, Dennis J. Slamon, Jaydutt V. Vadgama
    Abstract:

    To understand the mechanisms leading to trastuzumab resistance in HER2-overexpressing breast tumors we created trastuzumab insensitive cell lines (SKBR3/100-8 and BT474/100-2). The cell lines maintain HER2 receptor overexpression, and show increase in EGFR. Upon trastuzumab treatment, SKBR3/100-8 and BT474/100-2 cell lines displayed increased growth rate and invasiveness. The trastuzumab resistance in SKBR3/100-8 and BT474/100-2 was accompanied with activation of the Wnt/β-catenin signaling pathway. Further investigation found that Wnt3 overexpression played a key role toward the development of trastuzumab resistance. The expression of Wnt3 in trastuzumab resistant cells increased nuclear expression of β-catenin and transactivated expression of EGFR. The increased Wnt3 in the trastuzumab resistant cells also promoted a parental EMT-like transition (epithelial to mesenchymal transition), increased N-cadherin, Twist, SLUG and decreased E-cadherin. Knockdown of Wnt3 by siRNA restored cytoplasmic expression of β-catenin, and decreased EGFR expression in trastuzumab resistant cells. Furthermore the EMT markers were decreased, E-cadherin was increased and the cell invasiveness was inhibited in response to the Wnt3 down-regulation. Conversely, SKBR3 cells which had been stably transfected with full-length Wnt3 exhibited EMT-like transition. The Wnt3 transfectants, SKBR3/Wnt3-7 and SKBR3/Wnt3-9, showed a significant decrease in E-cadherin and increase in N-cadherin, Twist and SLUG. The cells were less sensitive to trastuzumab compared to parental SKBR3 and vector transfected cells. In summary, our data suggests that Wnt3 overexpression activates Wnt/β-catenin signaling pathway that leads to transactivation of EGFR and promotes EMT-like transition. This could be an important mechanism leading to trastuzumab resistance in HER2 overexpressing breast cancer cells.

  • Expression of Wnt3 activates Wnt/β-catenin pathway and promotes EMT-like phenotype in trastuzumab-resistant HER2-overexpressing breast cancer cells.
    Molecular cancer research : MCR, 2012
    Co-Authors: Charles Ginther, Juri Kim, Nicole Mosher, Seyung Chung, Dennis J. Slamon, Jaydutt V. Vadgama
    Abstract:

    To understand the mechanisms leading to trastuzumab resistance in HER2-overexpressing breast tumors we created trastuzumab insensitive cell lines (SKBR3/100-8 and BT474/100-2). The cell lines maintain HER2 receptor overexpression, and show increase in EGFR. Upon trastuzumab treatment, SKBR3/100-8 and BT474/100-2 cell lines displayed increased growth rate and invasiveness. The trastuzumab resistance in SKBR3/100-8 and BT474/100-2 was accompanied with activation of the Wnt/β-catenin signaling pathway. Further investigation found that Wnt3 overexpression played a key role toward the development of trastuzumab resistance. The expression of Wnt3 in trastuzumab resistant cells increased nuclear expression of β-catenin and transactivated expression of EGFR. The increased Wnt3 in the trastuzumab resistant cells also promoted a parental EMT-like transition (epithelial to mesenchymal transition), increased N-cadherin, Twist, SLUG and decreased E-cadherin. Knockdown of Wnt3 by siRNA restored cytoplasmic expression of β-catenin, and decreased EGFR expression in trastuzumab resistant cells. Furthermore the EMT markers were decreased, E-cadherin was increased and the cell invasiveness was inhibited in response to the Wnt3 down-regulation. Conversely, SKBR3 cells which had been stably transfected with full-length Wnt3 exhibited EMT-like transition. The Wnt3 transfectants, SKBR3/Wnt3-7 and SKBR3/Wnt3-9, showed a significant decrease in E-cadherin and increase in N-cadherin, Twist and SLUG. The cells were less sensitive to trastuzumab compared to parental SKBR3 and vector transfected cells. In summary, our data suggests that Wnt3 overexpression activates Wnt/β-catenin signaling pathway that leads to transactivation of EGFR and promotes EMT-like transition. This could be an important mechanism leading to trastuzumab resistance in HER2 overexpressing breast cancer cells.

  • abstract b31 expression of wnt3 activates wnt β catenin pathway and promotes emt like phenotype in trastuzumab resistant her2 overexpressing breast cancer cells
    Cancer Epidemiology Biomarkers & Prevention, 2012
    Co-Authors: Charles Ginther, Juri Kim, Nicole Mosher, Seyung Chung, Dennis J. Slamon, Jaydutt V. Vadgama
    Abstract:

    To understand the mechanisms leading to trastuzumab resistance in HER2-overexpressing breast tumors we created trastuzumab insensitive cell lines (SKBR3/100-8 and BT474/100-2). The cell lines maintain HER2 receptor overexpression, and show increase in EGFR. Upon trastuzumab treatment, SKBR3/100-8 and BT474/100-2 cell lines displayed increased growth rate and invasiveness. The trastuzumab resistance in SKBR3/100-8 and BT474/100-2 was accompanied with activation of the Wnt/β-catenin signaling pathway. Further investigation found that Wnt3 overexpression played a key role toward the development of trastuzumab resistance. The expression of Wnt3 in trastuzumab resistant cells increased nuclear expression of β-catenin and transactivated expression of EGFR. The increased Wnt3 in the trastuzumab resistant cells also promoted a parental EMT-like transition (epithelial to mesenchymal transition), increased N-cadherin, Twist, SLUG and decreased E-cadherin. Knockdown Wnt3 by siRNA restored cytoplasmic expression of β-catenin, and decreased EGFR expression in trastuzumab resistant cells. Furthermore the EMT markers were decreased, E-cadherin was increased and the cell invasiveness was inhibited in response to the Wnt3 down-regulation. Conversely, SKBR3 cells which had been stably transfected with full-length Wnt3 exhibited EMT-like transition. The Wnt3 transfectants, SKBR3/Wnt3-7 and SKBR3/Wnt3-9, showed significant decrease in E-cadherin and increase in N-cadherin, Twist and SLUG. The cells were less sensitive to trastuzumab compared to parental SKBR3 and vector transfected cells. In summary, our data suggests that Wnt3 overexpression activates Wnt/β-catenin signaling pathway that leads to transactivation of EGFR and promotes EMT-like transition. This could be an important mechanism leading to trastuzumab resistance in HER2 overexpressing breast cancer cells. Citation Format: Yanyuan Wu, Charles Ginther, Juri Kim, Nicole Mosher, Seyung Chung, Dennis Slamon, Jaydutt V. Vadgama. Expression of Wnt3 activates Wnt/β-catenin pathway and promotes EMT-like phenotype in trastuzumab resistant HER2-overexpressing breast cancer cells. [abstract]. In: Proceedings of the Fifth AACR Conference on the Science of Cancer Health Disparities in Racial/Ethnic Minorities and the Medically Underserved; 2012 Oct 27-30; San Diego, CA. Philadelphia (PA): AACR; Cancer Epidemiol Biomarkers Prev 2012;21(10 Suppl):Abstract nr B31.

  • Abstract B31: Expression of Wnt3 activates Wnt/β-catenin pathway and promotes EMT-like phenotype in trastuzumab resistant HER2-overexpressing breast cancer cells.
    Cell Molecular and Tumor Biology, 2012
    Co-Authors: Charles Ginther, Juri Kim, Nicole Mosher, Seyung Chung, Dennis J. Slamon, Jaydutt V. Vadgama
    Abstract:

    To understand the mechanisms leading to trastuzumab resistance in HER2-overexpressing breast tumors we created trastuzumab insensitive cell lines (SKBR3/100-8 and BT474/100-2). The cell lines maintain HER2 receptor overexpression, and show increase in EGFR. Upon trastuzumab treatment, SKBR3/100-8 and BT474/100-2 cell lines displayed increased growth rate and invasiveness. The trastuzumab resistance in SKBR3/100-8 and BT474/100-2 was accompanied with activation of the Wnt/β-catenin signaling pathway. Further investigation found that Wnt3 overexpression played a key role toward the development of trastuzumab resistance. The expression of Wnt3 in trastuzumab resistant cells increased nuclear expression of β-catenin and transactivated expression of EGFR. The increased Wnt3 in the trastuzumab resistant cells also promoted a parental EMT-like transition (epithelial to mesenchymal transition), increased N-cadherin, Twist, SLUG and decreased E-cadherin. Knockdown Wnt3 by siRNA restored cytoplasmic expression of β-catenin, and decreased EGFR expression in trastuzumab resistant cells. Furthermore the EMT markers were decreased, E-cadherin was increased and the cell invasiveness was inhibited in response to the Wnt3 down-regulation. Conversely, SKBR3 cells which had been stably transfected with full-length Wnt3 exhibited EMT-like transition. The Wnt3 transfectants, SKBR3/Wnt3-7 and SKBR3/Wnt3-9, showed significant decrease in E-cadherin and increase in N-cadherin, Twist and SLUG. The cells were less sensitive to trastuzumab compared to parental SKBR3 and vector transfected cells. In summary, our data suggests that Wnt3 overexpression activates Wnt/β-catenin signaling pathway that leads to transactivation of EGFR and promotes EMT-like transition. This could be an important mechanism leading to trastuzumab resistance in HER2 overexpressing breast cancer cells. Citation Format: Yanyuan Wu, Charles Ginther, Juri Kim, Nicole Mosher, Seyung Chung, Dennis Slamon, Jaydutt V. Vadgama. Expression of Wnt3 activates Wnt/β-catenin pathway and promotes EMT-like phenotype in trastuzumab resistant HER2-overexpressing breast cancer cells. [abstract]. In: Proceedings of the Fifth AACR Conference on the Science of Cancer Health Disparities in Racial/Ethnic Minorities and the Medically Underserved; 2012 Oct 27-30; San Diego, CA. Philadelphia (PA): AACR; Cancer Epidemiol Biomarkers Prev 2012;21(10 Suppl):Abstract nr B31.

Eil Sung Chang - One of the best experts on this subject based on the ideXlab platform.

  • fatty acid synthase inhibition by amentoflavone suppresses her2 neu erbb2 oncogene in SKBR3 human breast cancer cells
    Phytotherapy Research, 2013
    Co-Authors: Junbeom Park, In Sang Song, Eil Sung Chang
    Abstract:

    Fatty acid synthase (FASN) is a potential therapeutic target for treatment of cancer and obesity, and is highly elevated in 30% of HER2-overexpressing breast cancers. Considerable interest has developed in searching for novel FASN inhibitors as therapeutic agents in treatment of HER2-overexpressing breast cancers. Amentoflavone was found to be effective in suppressing FASN expression in HER2-positive SKBR3 cells. Pharmacological inhibition of FASN by amentoflavone specifically down-regulated HER2 protein and mRNA, and caused an up-regulation of PEA3, a transcriptional repressor of HER2. In addition, pharmacological blockade of FASN by amentoflavone preferentially decreased cell viability and induced cell death in SKBR3 cells. Palmitate reduced the cytotoxic effect of amentoflavone, as the percentage of viable cells was increased after the addition of exogenous palmitate. Amentoflavone-induced FASN inhibition inhibited the translocation of SREBP-1 in SKBR3 cells. Amentoflavone inhibited phosphorylation of AKT, mTOR, and JNK. The use of pharmacological inhibitors revealed that the modulation of AKT, mTOR, and JNK phosphorylation required synergistic amentoflavone-induced FASN inhibition and HER2 activation in SKBR3 cells. These results suggest that amentoflavone modulated FASN expression by regulation of HER2-pathways, and induced cell death to enhance chemopreventive or chemotherapeutic activity in HER2-positive breast cancers. Copyright © 2012 John Wiley & Sons, Ltd.

  • fatty acid synthase inhibition by amentoflavone suppresses her2 neu erbb2 oncogene in SKBR3 human breast cancer cells
    Phytotherapy Research, 2013
    Co-Authors: Jin Sun Lee, Junbeom Park, In Sang Song, Ji Young Sul, Myung Sun Lee, Eun Young Cha, Je Ryong Kim, Eil Sung Chang
    Abstract:

    Fatty acid synthase (FASN) is a potential therapeutic target for treatment of cancer and obesity, and is highly elevated in 30% of HER2-overexpressing breast cancers. Considerable interest has developed in searching for novel FASN inhibitors as therapeutic agents in treatment of HER2-overexpressing breast cancers. Amentoflavone was found to be effective in suppressing FASN expression in HER2-positive SKBR3 cells. Pharmacological inhibition of FASN by amentoflavone specifically down-regulated HER2 protein and mRNA, and caused an up-regulation of PEA3, a transcriptional repressor of HER2. In addition, pharmacological blockade of FASN by amentoflavone preferentially decreased cell viability and induced cell death in SKBR3 cells. Palmitate reduced the cytotoxic effect of amentoflavone, as the percentage of viable cells was increased after the addition of exogenous palmitate. Amentoflavone-induced FASN inhibition inhibited the translocation of SREBP-1 in SKBR3 cells. Amentoflavone inhibited phosphorylation of AKT, mTOR, and JNK. The use of pharmacological inhibitors revealed that the modulation of AKT, mTOR, and JNK phosphorylation required synergistic amentoflavone-induced FASN inhibition and HER2 activation in SKBR3 cells. These results suggest that amentoflavone modulated FASN expression by regulation of HER2-pathways, and induced cell death to enhance chemopreventive or chemotherapeutic activity in HER2-positive breast cancers.

  • Fatty acid synthase inhibition by amentoflavone suppresses HER2/neu (erbB2) oncogene in SKBR3 human breast cancer cells.
    Phytotherapy Research, 2012
    Co-Authors: Junbeom Park, In Sang Song, Eil Sung Chang
    Abstract:

    Fatty acid synthase (FASN) is a potential therapeutic target for treatment of cancer and obesity, and is highly elevated in 30% of HER2-overexpressing breast cancers. Considerable interest has developed in searching for novel FASN inhibitors as therapeutic agents in treatment of HER2-overexpressing breast cancers. Amentoflavone was found to be effective in suppressing FASN expression in HER2-positive SKBR3 cells. Pharmacological inhibition of FASN by amentoflavone specifically down-regulated HER2 protein and mRNA, and caused an up-regulation of PEA3, a transcriptional repressor of HER2. In addition, pharmacological blockade of FASN by amentoflavone preferentially decreased cell viability and induced cell death in SKBR3 cells. Palmitate reduced the cytotoxic effect of amentoflavone, as the percentage of viable cells was increased after the addition of exogenous palmitate. Amentoflavone-induced FASN inhibition inhibited the translocation of SREBP-1 in SKBR3 cells. Amentoflavone inhibited phosphorylation of AKT, mTOR, and JNK. The use of pharmacological inhibitors revealed that the modulation of AKT, mTOR, and JNK phosphorylation required synergistic amentoflavone-induced FASN inhibition and HER2 activation in SKBR3 cells. These results suggest that amentoflavone modulated FASN expression by regulation of HER2-pathways, and induced cell death to enhance chemopreventive or chemotherapeutic activity in HER2-positive breast cancers. Copyright © 2012 John Wiley & Sons, Ltd.

  • Fatty acid synthase inhibition by amentoflavone suppresses HER2/neu (erbB2) oncogene in SKBR3 human breast cancer cells.
    Phytotherapy research : PTR, 2012
    Co-Authors: Jin Sun Lee, Junbeom Park, In Sang Song, Ji Young Sul, Myung Sun Lee, Eun Young Cha, Je Ryong Kim, Eil Sung Chang
    Abstract:

    Fatty acid synthase (FASN) is a potential therapeutic target for treatment of cancer and obesity, and is highly elevated in 30% of HER2-overexpressing breast cancers. Considerable interest has developed in searching for novel FASN inhibitors as therapeutic agents in treatment of HER2-overexpressing breast cancers. Amentoflavone was found to be effective in suppressing FASN expression in HER2-positive SKBR3 cells. Pharmacological inhibition of FASN by amentoflavone specifically down-regulated HER2 protein and mRNA, and caused an up-regulation of PEA3, a transcriptional repressor of HER2. In addition, pharmacological blockade of FASN by amentoflavone preferentially decreased cell viability and induced cell death in SKBR3 cells. Palmitate reduced the cytotoxic effect of amentoflavone, as the percentage of viable cells was increased after the addition of exogenous palmitate. Amentoflavone-induced FASN inhibition inhibited the translocation of SREBP-1 in SKBR3 cells. Amentoflavone inhibited phosphorylation of AKT, mTOR, and JNK. The use of pharmacological inhibitors revealed that the modulation of AKT, mTOR, and JNK phosphorylation required synergistic amentoflavone-induced FASN inhibition and HER2 activation in SKBR3 cells. These results suggest that amentoflavone modulated FASN expression by regulation of HER2-pathways, and induced cell death to enhance chemopreventive or chemotherapeutic activity in HER2-positive breast cancers.