Specific-Pathogen-Free

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 17447226 Experts worldwide ranked by ideXlab platform

Delfina C Dominguez - One of the best experts on this subject based on the ideXlab platform.

  • multiplexed instrument free bar chart spinchip integrated with nanoparticle mediated magnetic aptasensors for visual quantitative detection of multiple pathogens
    Analytical Chemistry, 2018
    Co-Authors: Xiaofeng Wei, Wan Zhou, Sharma T Sanjay, Jie Zhang, Qijie Jin, Delfina C Dominguez
    Abstract:

    A portable multiplexed bar-chart SpinChip (MB-SpinChip) integrated with nanoparticle-mediated magnetic aptasensors was developed for visual quantitative instrument-free detection of multiple pathogens. This versatile multiplexed SpinChip combines aptamer-specific recognition and nanoparticle-catalyzed pressure amplification to achieve a sample-to-answer output for sensitive point-of-care testing (POCT). This is the first report of pathogen detection using a volumetric bar-chart chip, and it is also the first bar-chart chip using a "spinning" mechanism to achieve multiplexed bar-chart detection. Additionally, the introduction of the spin unit not only enabled convenient sample introduction from one inlet to multiple separate channels in the multiplexed detection, but also elegantly solved the pressure cross-interference problem in the multiplexed volumetric bar-chart chip. This user-friendly MB-SpinChip allows visual quantitative detection of multiple pathogens simultaneously with high sensitivity but without utilizing any specialized instruments. Using this MB-SpinChip, three major foodborne pathogens including Salmonella enterica, Escherichia coli, and Listeria monocytogenes were specifically quantified in apple juice with limits of detection of about 10 CFU/mL. This MB-SpinChip with a bar-chart-based visual quantitative readout has great potential for the rapid simultaneous detection of various pathogens at the point of care and wide applications in food safety, environmental surveillance, and infectious disease diagnosis.

  • Multiplexed Instrument-Free Bar-Chart SpinChip Integrated with Nanoparticle-Mediated Magnetic Aptasensors for Visual Quantitative Detection of Multiple Pathogens
    2018
    Co-Authors: Xiaofeng Wei, Wan Zhou, Sharma T Sanjay, Jie Zhang, Qijie Jin, Delfina C Dominguez
    Abstract:

    A portable multiplexed bar-chart SpinChip (MB-SpinChip) integrated with nanoparticle-mediated magnetic aptasensors was developed for visual quantitative instrument-free detection of multiple pathogens. This versatile multiplexed SpinChip combines aptamer-specific recognition and nanoparticle-catalyzed pressure amplification to achieve a sample-to-answer output for sensitive point-of-care testing (POCT). This is the first report of pathogen detection using a volumetric bar-chart chip, and it is also the first bar-chart chip using a “spinning” mechanism to achieve multiplexed bar-chart detection. Additionally, the introduction of the spin unit not only enabled convenient sample introduction from one inlet to multiple separate channels in the multiplexed detection, but also elegantly solved the pressure cross-interference problem in the multiplexed volumetric bar-chart chip. This user-friendly MB-SpinChip allows visual quantitative detection of multiple pathogens simultaneously with high sensitivity but without utilizing any specialized instruments. Using this MB-SpinChip, three major foodborne pathogens including Salmonella enterica, Escherichia coli, and Listeria monocytogenes were specifically quantified in apple juice with limits of detection of about 10 CFU/mL. This MB-SpinChip with a bar-chart-based visual quantitative readout has great potential for the rapid simultaneous detection of various pathogens at the point of care and wide applications in food safety, environmental surveillance, and infectious disease diagnosis

Satu Pyorala - One of the best experts on this subject based on the ideXlab platform.

  • factors associated with intramammary infection in dairy cows caused by coagulase negative staphylococci staphylococcus aureus streptococcus uberis streptococcus dysgalactiae corynebacterium bovis or escherichia coli
    Journal of Dairy Science, 2017
    Co-Authors: Suvi Taponen, Eero Liski, Annamaija Heikkila, Satu Pyorala
    Abstract:

    The aim of this study was to determine risk factors for bovine intramammary infection (IMI) associated with the most common bacterial species in Finland. Large databases of the Finnish milk-recording system and results of microbiological analyses of mastitic milk samples from Valio Ltd. (Helsinki, Finland) were analyzed. The study group comprised 29,969 cows with IMI from 4,173 dairy herds. A cow with a quarter milk sample in which DNA of target species was detected in the PathoProof Mastitis PCR Assay (Thermo Fisher Scientific, Waltham, MA) was determined to have IMI. Only cows with IMI caused by the 6 most common pathogens or groups of pathogens, coagulase-negative staphylococci (CNS), Staphylococcus aureus, Streptococcus uberis, Streptococcus dysgalactiae, Corynebacterium bovis, and Escherichia coli, were included. The control group comprised 160,176 IMI-free cows from the same herds as the study group. A multilevel logistic regression model was used to study herd- and cow-specific risk factors for incidence of IMI. Pathogen-specific results confirmed those of earlier studies, specifically that increasing parity increases prevalence of IMI regardless of causative pathogen. Holsteins were more susceptible to IMI than Nordic Reds except when the causative pathogen was CNS. Occurrence of IMI caused by C. bovis was not related to milk yield, in contrast to IMI caused by all other pathogens investigated. Organic milk production was associated with IMI only when the causative pathogen of IMI was Staph. aureus; Staph. aureus IMI was more likely to occur in conventional than in organic production. Cows in older freestall barns with parlor milking had an increased probability of contracting an IMI compared with cows in tiestall barns or in new freestall barns with automatic milking. This was the case for all IMI, except those caused by CNS, the prevalence of which was not associated with the milking system, and IMI caused by Staph. aureus, which was most common in cows housed in tiestall barns. A better breeding index for milk somatic cell count was associated with decreased occurrence of IMI, indicating that breeding for improved udder health has been successful in reducing the incidence of IMI caused by the most common pathogens in Finland. In the Finnish dairy sector, the importance of other measures to control IMI will increase as the Holstein breed progressively takes the place of the Nordic Red breed. Attention should be paid to hygiene and cleanliness, especially in old freestall barns. Based on our results, the increasing prevalence of automatic milking is not a reason for special concern.

Xiaofeng Wei - One of the best experts on this subject based on the ideXlab platform.

  • multiplexed instrument free bar chart spinchip integrated with nanoparticle mediated magnetic aptasensors for visual quantitative detection of multiple pathogens
    Analytical Chemistry, 2018
    Co-Authors: Xiaofeng Wei, Wan Zhou, Sharma T Sanjay, Jie Zhang, Qijie Jin, Delfina C Dominguez
    Abstract:

    A portable multiplexed bar-chart SpinChip (MB-SpinChip) integrated with nanoparticle-mediated magnetic aptasensors was developed for visual quantitative instrument-free detection of multiple pathogens. This versatile multiplexed SpinChip combines aptamer-specific recognition and nanoparticle-catalyzed pressure amplification to achieve a sample-to-answer output for sensitive point-of-care testing (POCT). This is the first report of pathogen detection using a volumetric bar-chart chip, and it is also the first bar-chart chip using a "spinning" mechanism to achieve multiplexed bar-chart detection. Additionally, the introduction of the spin unit not only enabled convenient sample introduction from one inlet to multiple separate channels in the multiplexed detection, but also elegantly solved the pressure cross-interference problem in the multiplexed volumetric bar-chart chip. This user-friendly MB-SpinChip allows visual quantitative detection of multiple pathogens simultaneously with high sensitivity but without utilizing any specialized instruments. Using this MB-SpinChip, three major foodborne pathogens including Salmonella enterica, Escherichia coli, and Listeria monocytogenes were specifically quantified in apple juice with limits of detection of about 10 CFU/mL. This MB-SpinChip with a bar-chart-based visual quantitative readout has great potential for the rapid simultaneous detection of various pathogens at the point of care and wide applications in food safety, environmental surveillance, and infectious disease diagnosis.

  • Multiplexed Instrument-Free Bar-Chart SpinChip Integrated with Nanoparticle-Mediated Magnetic Aptasensors for Visual Quantitative Detection of Multiple Pathogens
    2018
    Co-Authors: Xiaofeng Wei, Wan Zhou, Sharma T Sanjay, Jie Zhang, Qijie Jin, Delfina C Dominguez
    Abstract:

    A portable multiplexed bar-chart SpinChip (MB-SpinChip) integrated with nanoparticle-mediated magnetic aptasensors was developed for visual quantitative instrument-free detection of multiple pathogens. This versatile multiplexed SpinChip combines aptamer-specific recognition and nanoparticle-catalyzed pressure amplification to achieve a sample-to-answer output for sensitive point-of-care testing (POCT). This is the first report of pathogen detection using a volumetric bar-chart chip, and it is also the first bar-chart chip using a “spinning” mechanism to achieve multiplexed bar-chart detection. Additionally, the introduction of the spin unit not only enabled convenient sample introduction from one inlet to multiple separate channels in the multiplexed detection, but also elegantly solved the pressure cross-interference problem in the multiplexed volumetric bar-chart chip. This user-friendly MB-SpinChip allows visual quantitative detection of multiple pathogens simultaneously with high sensitivity but without utilizing any specialized instruments. Using this MB-SpinChip, three major foodborne pathogens including Salmonella enterica, Escherichia coli, and Listeria monocytogenes were specifically quantified in apple juice with limits of detection of about 10 CFU/mL. This MB-SpinChip with a bar-chart-based visual quantitative readout has great potential for the rapid simultaneous detection of various pathogens at the point of care and wide applications in food safety, environmental surveillance, and infectious disease diagnosis

Suvi Taponen - One of the best experts on this subject based on the ideXlab platform.

  • factors associated with intramammary infection in dairy cows caused by coagulase negative staphylococci staphylococcus aureus streptococcus uberis streptococcus dysgalactiae corynebacterium bovis or escherichia coli
    Journal of Dairy Science, 2017
    Co-Authors: Suvi Taponen, Eero Liski, Annamaija Heikkila, Satu Pyorala
    Abstract:

    The aim of this study was to determine risk factors for bovine intramammary infection (IMI) associated with the most common bacterial species in Finland. Large databases of the Finnish milk-recording system and results of microbiological analyses of mastitic milk samples from Valio Ltd. (Helsinki, Finland) were analyzed. The study group comprised 29,969 cows with IMI from 4,173 dairy herds. A cow with a quarter milk sample in which DNA of target species was detected in the PathoProof Mastitis PCR Assay (Thermo Fisher Scientific, Waltham, MA) was determined to have IMI. Only cows with IMI caused by the 6 most common pathogens or groups of pathogens, coagulase-negative staphylococci (CNS), Staphylococcus aureus, Streptococcus uberis, Streptococcus dysgalactiae, Corynebacterium bovis, and Escherichia coli, were included. The control group comprised 160,176 IMI-free cows from the same herds as the study group. A multilevel logistic regression model was used to study herd- and cow-specific risk factors for incidence of IMI. Pathogen-specific results confirmed those of earlier studies, specifically that increasing parity increases prevalence of IMI regardless of causative pathogen. Holsteins were more susceptible to IMI than Nordic Reds except when the causative pathogen was CNS. Occurrence of IMI caused by C. bovis was not related to milk yield, in contrast to IMI caused by all other pathogens investigated. Organic milk production was associated with IMI only when the causative pathogen of IMI was Staph. aureus; Staph. aureus IMI was more likely to occur in conventional than in organic production. Cows in older freestall barns with parlor milking had an increased probability of contracting an IMI compared with cows in tiestall barns or in new freestall barns with automatic milking. This was the case for all IMI, except those caused by CNS, the prevalence of which was not associated with the milking system, and IMI caused by Staph. aureus, which was most common in cows housed in tiestall barns. A better breeding index for milk somatic cell count was associated with decreased occurrence of IMI, indicating that breeding for improved udder health has been successful in reducing the incidence of IMI caused by the most common pathogens in Finland. In the Finnish dairy sector, the importance of other measures to control IMI will increase as the Holstein breed progressively takes the place of the Nordic Red breed. Attention should be paid to hygiene and cleanliness, especially in old freestall barns. Based on our results, the increasing prevalence of automatic milking is not a reason for special concern.

Qijie Jin - One of the best experts on this subject based on the ideXlab platform.

  • multiplexed instrument free bar chart spinchip integrated with nanoparticle mediated magnetic aptasensors for visual quantitative detection of multiple pathogens
    Analytical Chemistry, 2018
    Co-Authors: Xiaofeng Wei, Wan Zhou, Sharma T Sanjay, Jie Zhang, Qijie Jin, Delfina C Dominguez
    Abstract:

    A portable multiplexed bar-chart SpinChip (MB-SpinChip) integrated with nanoparticle-mediated magnetic aptasensors was developed for visual quantitative instrument-free detection of multiple pathogens. This versatile multiplexed SpinChip combines aptamer-specific recognition and nanoparticle-catalyzed pressure amplification to achieve a sample-to-answer output for sensitive point-of-care testing (POCT). This is the first report of pathogen detection using a volumetric bar-chart chip, and it is also the first bar-chart chip using a "spinning" mechanism to achieve multiplexed bar-chart detection. Additionally, the introduction of the spin unit not only enabled convenient sample introduction from one inlet to multiple separate channels in the multiplexed detection, but also elegantly solved the pressure cross-interference problem in the multiplexed volumetric bar-chart chip. This user-friendly MB-SpinChip allows visual quantitative detection of multiple pathogens simultaneously with high sensitivity but without utilizing any specialized instruments. Using this MB-SpinChip, three major foodborne pathogens including Salmonella enterica, Escherichia coli, and Listeria monocytogenes were specifically quantified in apple juice with limits of detection of about 10 CFU/mL. This MB-SpinChip with a bar-chart-based visual quantitative readout has great potential for the rapid simultaneous detection of various pathogens at the point of care and wide applications in food safety, environmental surveillance, and infectious disease diagnosis.

  • Multiplexed Instrument-Free Bar-Chart SpinChip Integrated with Nanoparticle-Mediated Magnetic Aptasensors for Visual Quantitative Detection of Multiple Pathogens
    2018
    Co-Authors: Xiaofeng Wei, Wan Zhou, Sharma T Sanjay, Jie Zhang, Qijie Jin, Delfina C Dominguez
    Abstract:

    A portable multiplexed bar-chart SpinChip (MB-SpinChip) integrated with nanoparticle-mediated magnetic aptasensors was developed for visual quantitative instrument-free detection of multiple pathogens. This versatile multiplexed SpinChip combines aptamer-specific recognition and nanoparticle-catalyzed pressure amplification to achieve a sample-to-answer output for sensitive point-of-care testing (POCT). This is the first report of pathogen detection using a volumetric bar-chart chip, and it is also the first bar-chart chip using a “spinning” mechanism to achieve multiplexed bar-chart detection. Additionally, the introduction of the spin unit not only enabled convenient sample introduction from one inlet to multiple separate channels in the multiplexed detection, but also elegantly solved the pressure cross-interference problem in the multiplexed volumetric bar-chart chip. This user-friendly MB-SpinChip allows visual quantitative detection of multiple pathogens simultaneously with high sensitivity but without utilizing any specialized instruments. Using this MB-SpinChip, three major foodborne pathogens including Salmonella enterica, Escherichia coli, and Listeria monocytogenes were specifically quantified in apple juice with limits of detection of about 10 CFU/mL. This MB-SpinChip with a bar-chart-based visual quantitative readout has great potential for the rapid simultaneous detection of various pathogens at the point of care and wide applications in food safety, environmental surveillance, and infectious disease diagnosis