Spinacia oleracea

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 5019 Experts worldwide ranked by ideXlab platform

Rajeev Arora - One of the best experts on this subject based on the ideXlab platform.

  • a metabolomics study of ascorbic acid induced in situ freezing tolerance in spinach Spinacia oleracea l
    2020
    Co-Authors: Kyungwon Min, Keting Chen, Rajeev Arora
    Abstract:

    Freeze-thaw stress is one of the major environmental constraints that limit plant growth and reduce productivity and quality. Plants exhibit a variety of cellular dysfunctions following freeze-thaw stress, including accumulation of reactive oxygen species (ROS). This means that enhancement of antioxidant capacity by exogenous application of antioxidants could potentially be one of the strategies for improving freezing tolerance (FT) of plants. Exogenous application of ascorbic acid (AsA), as an antioxidant, has been shown to improve plant tolerance against abiotic stresses but its effect on FT has not been investigated. We evaluated the effect of AsA-feeding on FT of spinach (Spinacia oleracea L.) at whole plant and excised-leaf level, and conducted metabolite profiling of leaves before and after AsA treatment to explore metabolic explanation for change in FT. AsA application did not impede leaf growth, instead slightly promoted it. Temperature-controlled freeze-thaw tests revealed AsA-fed plants were more freezing tolerant as indicated by: (a) less visual damage/mortality; (b) lower ion leakage; and (c) less oxidative injury, lower abundance of free radicals ( O 2 · - and H2O2). Comparative leaf metabolite profiling revealed clear separation of metabolic phenotypes for control versus AsA-fed leaves. Specifically, AsA-fed leaves had greater abundance of antioxidants (AsA, glutathione, alpha- & gamma-tocopherol) and compatible solutes (proline, galactinol, and myo-inositol). AsA-fed leaves also had higher activity of antioxidant enzymes (superoxide dismutase, ascorbate peroxidase, and catalase). These changes, together, may improve FT via alleviating freeze-induced oxidative stress as well as protecting membranes from freeze desiccation. Additionally, improved FT by AsA-feeding may potentially include enhanced cell wall/lignin augmentation and bolstered secondary metabolism as indicated by diminished level of phenylalanine and increased abundance of branched amino acids, respectively.

  • a metabolomics study of ascorbic acid induced in situ freezing tolerance in spinach Spinacia oleracea l
    2020
    Co-Authors: Rajeev Arora, Kyungwon Min, Keting Chen
    Abstract:

    Freeze-thaw stress is one of the major environmental constraints that limit plant growth and reduces productivity and quality. Plants exhibit a variety of cellular dysfunction following freeze-thaw stress, including accumulation of reactive oxygen species (ROS). This means that enhancement of antioxidant capacity by exogenous application of antioxidants could potentially be one of major strategies for improving freezing tolerance (FT) of plants. Exogenous application of ascorbic acid (AsA), as an antioxidant, has been shown to improve plant tolerance against abiotic stresses but its effect on FT has not been investigated. We evaluated the effect of AsA-feeding on FT of spinach (Spinacia oleracea L.) at whole-plant and excised leaf level, and conducted metabolite profiling of leaves before and after AsA-treatment to explore metabolic explanation for change in FT. AsA-application did not impede leaf-growth; instead slightly promoted it. Temperature-controlled freeze-thaw tests revealed AsA-fed plants were more freezing tolerant as indicated by: 1) less visual damage/mortality; 2) lower ion-leakage; and 3) less oxidative-injury, lower abundance of free radicals (O2•− and H2O2). Comparative leaf metabolic profiling revealed clear separation of metabolic phenotypes for control vs. AsA-fed leaves. Specifically, AsA-fed leaves had greater abundance of antioxidants (AsA, glutathione, alpha- & gamma-tocopherol) and compatible solutes (proline, galactinol, myo-inositol). AsA-fed leaves also had higher activity of antioxidant enzymes (superoxide dismutase, ascorbate peroxidase, catalase). These changes, together, may improve FT via alleviating freeze-induced oxidative stress as well as protecting membranes from freeze-desiccation. Additionally, improved FT by AsA-feeding may potentially include enhanced cell wall/lignin augmentation and bolstered secondary metabolism as indicated by diminished level of phenylalanine and increased abundance of branched amino acids, respectively.

  • salicylic acid induced freezing tolerance in spinach Spinacia oleracea l leaves explored through metabolite profiling
    2018
    Co-Authors: Kyungwon Min, Lucas Showman, Ann Perera, Rajeev Arora
    Abstract:

    Abstract Freezing tolerance and metabolome changes were investigated for spinach (Spinacia oleracea L. ‘Reflect’) seedlings treated with 0.5 mM salicylic acid by sub-fertigation. Experiments included seedlings treated with salicylic acid at both the ambient (non-acclimation; NA) and cold acclimation (CA) temperatures, i.e. NASA and CASA. Except for slight reduction in the leaf size, salicylic acid-fed plants exhibited, in general, similar growth performance as non-treated controls based on the dry weight/fresh weight ratio, percent water content, and dry weight/leaf area. Temperature-controlled in situ freeze-thaw of seedlings revealed NASA plants were more freeze-tolerant (visual estimates and ion-leakage test) and had higher salicylic acid content than NA control. Metabolite profiling revealed NASA had higher trehalose, ascorbic acid, γ-tocopherol, proline, and leucine, whereas lower mannose and aconitic acid than NA tissues. Excised leaf freeze-thaw tests revealed CASA leaves to be the most freeze-tolerant of the four conditions followed, respectively, by CA, NASA, and NA. Principal component analysis distinctly separated metabolic phenotypes for NA, NASA, CA, and CASA, indicating salicylic acid differentially affected metabolism at warm vs. cold. CASA leaves had higher compatible solutes (osmolytes), antioxidants, and salicylic acid than CA control. Our data suggests that altered accumulation of trehalose, ascorbic acid, and aconitic acid was a salicylic acid-specific response. Additionally, 7 metabolites (5-oxoproline, fructose, glucose, maltose, proline, sucrose, and tartaric acid) were quantitatively associated with the freezing tolerance levels across four conditions.

  • Exogenous salicylic acid improves freezing tolerance of spinach (Spinacia oleracea L.) leaves.
    2017
    Co-Authors: Hyunsuk Shin, Rajeev Arora
    Abstract:

    Abstract Salicylic acid (SA)-treatment has been reported to improve plant tolerance to various abiotic stresses. However, its effect on freezing tolerance has not been well investigated. We investigated the effect of exogenous SA on freezing tolerance of spinach (Spinacia oleracea L.) leaves. We also explored if nitric oxide (NO) and/or hydrogen peroxide (H2O2)-mediation was involved in this response, since these are known as primary signaling molecules involved in many physiological processes. A micro-centrifuge tube-based system used to apply SA to petiolate spinach leaves (0.5 mM over 4-d) was effective, as evident by SA content of leaf tissues. SA-treatment did not hamper leaf growth (fresh and dry weight; equatorial and longitudinal length) and was also not significantly different from 25% Hoagland controls vis-a-vis growth. SA application significantly improved freezing tolerance as evidenced by reduced ion-leakage and alleviated oxidative stress (lower accumulation of O2·- and H2O2) following freeze-thaw stress treatments (−6.5, −7.5, and −8.5 °C). Improved freezing tolerance of SA-treated leaves was paralleled by increased proline and ascorbic acid (AsA) accumulation. A 9-d cold acclimation (CA) treatment also improved leaf freezing tolerance (compared to non-acclimated control) and was accompanied by accumulation of SA and proline. Our results indicate that increased freezing tolerance may be associated with accumulation of compatible solutes (proline) and antioxidants (AsA). Notably, the beneficial effect of SA on freezing tolerance was abolished when either H2O2- or NO-scavenger (1 μM N-acetylneuraminic acid, NANA or 100 μM hemoglobin, HB, respectively) was added to SA as pretreatment. Our data suggest that SA-induced freezing tolerance in spinach may be mediated by NO and H2O2 signaling.

  • dehydrin metabolism is altered during seed osmopriming and subsequent germination under chilling and desiccation in Spinacia oleracea l cv bloomsdale possible role in stress tolerance
    2012
    Co-Authors: Keting Chen, Anania Fessehaie, Rajeev Arora
    Abstract:

    Abstract Osmopriming improves seed germination performance as well as stress tolerance. To understand the biochemistry of osmopriming-induced seed stress tolerance, we investigated dehydrin (DHN) accumulation patterns at protein and transcript level (determined by immunoblotting and qPCR) during priming, and subsequent germination under optimal and stress conditions (i.e. chilling and desiccation) in spinach (Spinacia oleracea L. cv. Bloomsdale) seeds. Our data indicate enhanced germination performance of primed seeds is accompanied by increased accumulation of three dehydrin-like proteins (DLPs): 30, 26, and 19-kD. Moreover, 30, 26 and 19-kD DLPs that first only transiently accumulated during priming re-accumulated in response to stresses, suggesting an evidence for ‘cross-tolerance’, which is initially induced by priming and later recruited during post-priming germination under stresses. Study with CAP85, a spinach DHN, corroborates above observations at the gene-expression and protein accumulation level. Additionally, our results suggest that during seed germination and seedling establishment, CAP85 expression may be regulated by the interplay of two factors: seedling development and stress responses. In conclusion, our data suggest that 30, 26, and 19-kD dehydrin-like proteins and CAP85 may be used as potential biochemical/molecular markers for priming-induced stress tolerance in ‘Bloomsdale’ spinach.

Eunok Choe - One of the best experts on this subject based on the ideXlab platform.

  • spinach Spinacia oleracea powder as a natural food grade antioxidant in deep fat fried products
    2002
    Co-Authors: Jiyeun Lee, Sanghwa Lee, Hyeon Gyu Lee, Kwanhwa Park, Eunok Choe
    Abstract:

    The addition of spinach (Spinacia oleracea) powder in flour dough as a natural antioxidant was investigated, and oxidation of frying oil and the lipid in fried products during frying was also studied. Flour dough with spinach powder was rolled into sheets of 0.1 cm thickness and then cut into squares to be fried. Each frying was performed in 160 °C soybean oil for 1 min, repeated every 20 min for 20 h. Fried samples were analyzed immediately or after being stored at 60 °C for 12 days under dark. The lipid content of fried dough was lower in samples with the addition of spinach powder. Spinach in the dough decreased accumulation of the polar compounds in soybean oil during frying but had little effect on the fried dough. It also reduced conjugated diene and aldehyde formation in the lipid of fried dough during storage. Improvement in lipid oxidative stability, presumably due to pigments in spinach, was more noticeable in the fried products during storage than in the frying oil. Keywords: Lipid oxidation; f...

  • spinach Spinacia oleracea powder as a natural food grade antioxidant in deep fat fried products
    2002
    Co-Authors: Jiyeun Lee, Sanghwa Lee, Hyeon Gyu Lee, Kwanhwa Park, Eunok Choe
    Abstract:

    The addition of spinach (Spinacia oleracea) powder in flour dough as a natural antioxidant was investigated, and oxidation of frying oil and the lipid in fried products during frying was also studied. Flour dough with spinach powder was rolled into sheets of 0.1 cm thickness and then cut into squares to be fried. Each frying was performed in 160 degrees C soybean oil for 1 min, repeated every 20 min for 20 h. Fried samples were analyzed immediately or after being stored at 60 degrees C for 12 days under dark. The lipid content of fried dough was lower in samples with the addition of spinach powder. Spinach in the dough decreased accumulation of the polar compounds in soybean oil during frying but had little effect on the fried dough. It also reduced conjugated diene and aldehyde formation in the lipid of fried dough during storage. Improvement in lipid oxidative stability, presumably due to pigments in spinach, was more noticeable in the fried products during storage than in the frying oil.

Jiyeun Lee - One of the best experts on this subject based on the ideXlab platform.

  • spinach Spinacia oleracea powder as a natural food grade antioxidant in deep fat fried products
    2002
    Co-Authors: Jiyeun Lee, Sanghwa Lee, Hyeon Gyu Lee, Kwanhwa Park, Eunok Choe
    Abstract:

    The addition of spinach (Spinacia oleracea) powder in flour dough as a natural antioxidant was investigated, and oxidation of frying oil and the lipid in fried products during frying was also studied. Flour dough with spinach powder was rolled into sheets of 0.1 cm thickness and then cut into squares to be fried. Each frying was performed in 160 °C soybean oil for 1 min, repeated every 20 min for 20 h. Fried samples were analyzed immediately or after being stored at 60 °C for 12 days under dark. The lipid content of fried dough was lower in samples with the addition of spinach powder. Spinach in the dough decreased accumulation of the polar compounds in soybean oil during frying but had little effect on the fried dough. It also reduced conjugated diene and aldehyde formation in the lipid of fried dough during storage. Improvement in lipid oxidative stability, presumably due to pigments in spinach, was more noticeable in the fried products during storage than in the frying oil. Keywords: Lipid oxidation; f...

  • spinach Spinacia oleracea powder as a natural food grade antioxidant in deep fat fried products
    2002
    Co-Authors: Jiyeun Lee, Sanghwa Lee, Hyeon Gyu Lee, Kwanhwa Park, Eunok Choe
    Abstract:

    The addition of spinach (Spinacia oleracea) powder in flour dough as a natural antioxidant was investigated, and oxidation of frying oil and the lipid in fried products during frying was also studied. Flour dough with spinach powder was rolled into sheets of 0.1 cm thickness and then cut into squares to be fried. Each frying was performed in 160 degrees C soybean oil for 1 min, repeated every 20 min for 20 h. Fried samples were analyzed immediately or after being stored at 60 degrees C for 12 days under dark. The lipid content of fried dough was lower in samples with the addition of spinach powder. Spinach in the dough decreased accumulation of the polar compounds in soybean oil during frying but had little effect on the fried dough. It also reduced conjugated diene and aldehyde formation in the lipid of fried dough during storage. Improvement in lipid oxidative stability, presumably due to pigments in spinach, was more noticeable in the fried products during storage than in the frying oil.

Keting Chen - One of the best experts on this subject based on the ideXlab platform.

  • a metabolomics study of ascorbic acid induced in situ freezing tolerance in spinach Spinacia oleracea l
    2020
    Co-Authors: Kyungwon Min, Keting Chen, Rajeev Arora
    Abstract:

    Freeze-thaw stress is one of the major environmental constraints that limit plant growth and reduce productivity and quality. Plants exhibit a variety of cellular dysfunctions following freeze-thaw stress, including accumulation of reactive oxygen species (ROS). This means that enhancement of antioxidant capacity by exogenous application of antioxidants could potentially be one of the strategies for improving freezing tolerance (FT) of plants. Exogenous application of ascorbic acid (AsA), as an antioxidant, has been shown to improve plant tolerance against abiotic stresses but its effect on FT has not been investigated. We evaluated the effect of AsA-feeding on FT of spinach (Spinacia oleracea L.) at whole plant and excised-leaf level, and conducted metabolite profiling of leaves before and after AsA treatment to explore metabolic explanation for change in FT. AsA application did not impede leaf growth, instead slightly promoted it. Temperature-controlled freeze-thaw tests revealed AsA-fed plants were more freezing tolerant as indicated by: (a) less visual damage/mortality; (b) lower ion leakage; and (c) less oxidative injury, lower abundance of free radicals ( O 2 · - and H2O2). Comparative leaf metabolite profiling revealed clear separation of metabolic phenotypes for control versus AsA-fed leaves. Specifically, AsA-fed leaves had greater abundance of antioxidants (AsA, glutathione, alpha- & gamma-tocopherol) and compatible solutes (proline, galactinol, and myo-inositol). AsA-fed leaves also had higher activity of antioxidant enzymes (superoxide dismutase, ascorbate peroxidase, and catalase). These changes, together, may improve FT via alleviating freeze-induced oxidative stress as well as protecting membranes from freeze desiccation. Additionally, improved FT by AsA-feeding may potentially include enhanced cell wall/lignin augmentation and bolstered secondary metabolism as indicated by diminished level of phenylalanine and increased abundance of branched amino acids, respectively.

  • a metabolomics study of ascorbic acid induced in situ freezing tolerance in spinach Spinacia oleracea l
    2020
    Co-Authors: Rajeev Arora, Kyungwon Min, Keting Chen
    Abstract:

    Freeze-thaw stress is one of the major environmental constraints that limit plant growth and reduces productivity and quality. Plants exhibit a variety of cellular dysfunction following freeze-thaw stress, including accumulation of reactive oxygen species (ROS). This means that enhancement of antioxidant capacity by exogenous application of antioxidants could potentially be one of major strategies for improving freezing tolerance (FT) of plants. Exogenous application of ascorbic acid (AsA), as an antioxidant, has been shown to improve plant tolerance against abiotic stresses but its effect on FT has not been investigated. We evaluated the effect of AsA-feeding on FT of spinach (Spinacia oleracea L.) at whole-plant and excised leaf level, and conducted metabolite profiling of leaves before and after AsA-treatment to explore metabolic explanation for change in FT. AsA-application did not impede leaf-growth; instead slightly promoted it. Temperature-controlled freeze-thaw tests revealed AsA-fed plants were more freezing tolerant as indicated by: 1) less visual damage/mortality; 2) lower ion-leakage; and 3) less oxidative-injury, lower abundance of free radicals (O2•− and H2O2). Comparative leaf metabolic profiling revealed clear separation of metabolic phenotypes for control vs. AsA-fed leaves. Specifically, AsA-fed leaves had greater abundance of antioxidants (AsA, glutathione, alpha- & gamma-tocopherol) and compatible solutes (proline, galactinol, myo-inositol). AsA-fed leaves also had higher activity of antioxidant enzymes (superoxide dismutase, ascorbate peroxidase, catalase). These changes, together, may improve FT via alleviating freeze-induced oxidative stress as well as protecting membranes from freeze-desiccation. Additionally, improved FT by AsA-feeding may potentially include enhanced cell wall/lignin augmentation and bolstered secondary metabolism as indicated by diminished level of phenylalanine and increased abundance of branched amino acids, respectively.

  • dehydrin metabolism is altered during seed osmopriming and subsequent germination under chilling and desiccation in Spinacia oleracea l cv bloomsdale possible role in stress tolerance
    2012
    Co-Authors: Keting Chen, Anania Fessehaie, Rajeev Arora
    Abstract:

    Abstract Osmopriming improves seed germination performance as well as stress tolerance. To understand the biochemistry of osmopriming-induced seed stress tolerance, we investigated dehydrin (DHN) accumulation patterns at protein and transcript level (determined by immunoblotting and qPCR) during priming, and subsequent germination under optimal and stress conditions (i.e. chilling and desiccation) in spinach (Spinacia oleracea L. cv. Bloomsdale) seeds. Our data indicate enhanced germination performance of primed seeds is accompanied by increased accumulation of three dehydrin-like proteins (DLPs): 30, 26, and 19-kD. Moreover, 30, 26 and 19-kD DLPs that first only transiently accumulated during priming re-accumulated in response to stresses, suggesting an evidence for ‘cross-tolerance’, which is initially induced by priming and later recruited during post-priming germination under stresses. Study with CAP85, a spinach DHN, corroborates above observations at the gene-expression and protein accumulation level. Additionally, our results suggest that during seed germination and seedling establishment, CAP85 expression may be regulated by the interplay of two factors: seedling development and stress responses. In conclusion, our data suggest that 30, 26, and 19-kD dehydrin-like proteins and CAP85 may be used as potential biochemical/molecular markers for priming-induced stress tolerance in ‘Bloomsdale’ spinach.

  • dynamics of the antioxidant system during seed osmopriming post priming germination and seedling establishment in spinach Spinacia oleracea
    2011
    Co-Authors: Keting Chen, Rajeev Arora
    Abstract:

    Osmopriming is a pre-sowing treatment that improves seed germination performance and stress tolerance. To understand osmopriming physiology, and its association with post-priming stress tolerance, we investigated the antioxidant system dynamics during three stages: during osmopriming, post-priming germination, and seedling establishment. Spinach seeds (Spinacia oleracea L. cv. Bloomsdale) were primed with -0.6 MPa PEG at 15°C for 8 d, and dried at room temperature for 2 d. Unprimed and primed germinating seeds/seedlings were subjected to a chilling and desiccation stresses. Seed/seedling samples were collected for antioxidant assays and germination performance and stress tolerance were evaluated. Our data indicate that: (1) during osmopriming the transition of seeds from dry to germinating state represses the antioxidant pathways (residing in dry seeds) that involve CAT and SOD enzymes but stimulates another pathway (only detectable in imbibed seeds) involving APX; (2) a renewal of antioxidant system, possibly required by seedling establishment, occurs after roughly 5 d of germination; (3) osmopriming strengthens the antioxidant system and increases seed germination potential, resulting in an increased stress tolerance in germinating seeds. Osmopriming-mediated promotive effect on stress tolerance, however, may diminish in relatively older (e.g. ~5-week) seedlings.

Sanghwa Lee - One of the best experts on this subject based on the ideXlab platform.

  • spinach Spinacia oleracea powder as a natural food grade antioxidant in deep fat fried products
    2002
    Co-Authors: Jiyeun Lee, Sanghwa Lee, Hyeon Gyu Lee, Kwanhwa Park, Eunok Choe
    Abstract:

    The addition of spinach (Spinacia oleracea) powder in flour dough as a natural antioxidant was investigated, and oxidation of frying oil and the lipid in fried products during frying was also studied. Flour dough with spinach powder was rolled into sheets of 0.1 cm thickness and then cut into squares to be fried. Each frying was performed in 160 °C soybean oil for 1 min, repeated every 20 min for 20 h. Fried samples were analyzed immediately or after being stored at 60 °C for 12 days under dark. The lipid content of fried dough was lower in samples with the addition of spinach powder. Spinach in the dough decreased accumulation of the polar compounds in soybean oil during frying but had little effect on the fried dough. It also reduced conjugated diene and aldehyde formation in the lipid of fried dough during storage. Improvement in lipid oxidative stability, presumably due to pigments in spinach, was more noticeable in the fried products during storage than in the frying oil. Keywords: Lipid oxidation; f...

  • spinach Spinacia oleracea powder as a natural food grade antioxidant in deep fat fried products
    2002
    Co-Authors: Jiyeun Lee, Sanghwa Lee, Hyeon Gyu Lee, Kwanhwa Park, Eunok Choe
    Abstract:

    The addition of spinach (Spinacia oleracea) powder in flour dough as a natural antioxidant was investigated, and oxidation of frying oil and the lipid in fried products during frying was also studied. Flour dough with spinach powder was rolled into sheets of 0.1 cm thickness and then cut into squares to be fried. Each frying was performed in 160 degrees C soybean oil for 1 min, repeated every 20 min for 20 h. Fried samples were analyzed immediately or after being stored at 60 degrees C for 12 days under dark. The lipid content of fried dough was lower in samples with the addition of spinach powder. Spinach in the dough decreased accumulation of the polar compounds in soybean oil during frying but had little effect on the fried dough. It also reduced conjugated diene and aldehyde formation in the lipid of fried dough during storage. Improvement in lipid oxidative stability, presumably due to pigments in spinach, was more noticeable in the fried products during storage than in the frying oil.