Storage Structure

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 360 Experts worldwide ranked by ideXlab platform

R E Muck - One of the best experts on this subject based on the ideXlab platform.

  • effect of alfalfa silage Storage Structure and rumen protected methionine on production in lactating dairy cows
    Journal of Dairy Science, 2009
    Co-Authors: G A Broderick, R E Muck
    Abstract:

    The objective of this study was to determine whether production and nutrient utilization differed when lactating cows were fed diets based on 1 of 3 sources of alfalfa silage (AS) and whether performance was altered by feeding rumen-protected Met (RPM; fed as Mepron). Thirty-six lactating Holstein cows were blocked by parity and days in milk, then assigned to a randomized complete block design and fed a 3 x 2 arrangement of diets formulated from alfalfa ensiled in bag, bunker, or oxygen-limited silos, and supplemented with either 0 or 8 g of RPM/d. After feeding a covariate diet for 3 wk, treatment diets were fed for the remaining 12 wk of the trial. Experimental diets averaged [dry matter (DM) basis] 41% AS, 24% corn silage, 24% high-moisture corn, 3.7% soybean meal, 4% roasted soybeans, 2% ground shelled corn, 1.0% minerals and vitamins, 16.7% CP, and 31% NDF. Alfalfa from the oxygen-limited silo was lower in ash, higher in lactate, nonfiber carbohydrate, and in vitro NDF digestibility, had lower pH and ammonia content, and gave rise to greater DM intake and ADF digestibility than silage from the other 2 silos, indicating a more effective fermentation that, in turn, resulted in greater nutrient preservation. However, the more favorable composition, intake, and digestibility of alfalfa from the oxygen-limited silo were not reflected in improved milk production, which was not different among alfalfa sources. There was increased apparent N efficiency and trends for improved feed efficiency and protein yield with RPM supplementation across all 3 silages. The National Research Council (2001) model predicted that feeding RPM reduced Lys:Met ratio from 3.5 to 2.9, indicating that the diets were limiting in Met.

  • effect of alfalfa silage Storage Structure and roasting corn on production and ruminal metabolism of lactating dairy cows
    Journal of Dairy Science, 2007
    Co-Authors: S J Krizsan, G A Broderick, R E Muck, C Promkot, S Colombini, A T Randby
    Abstract:

    Abstract The objective of this study was to determine if feeding roasted corn would improve production and nutrient utilization when supplemented to lactating cows fed 1 of 3 different alfalfa silages (AS). Forty-two lactating Holstein cows (6 fitted with ruminal cannulas) averaging 77 d in milk and 43kg of milk/d pretrial were assigned to 2 cyclic changeover designs. Treatments were AS ensiled in bag, bunker, or O 2 -limiting tower silos and supplemented with ground shelled corn (GSC) or roasted GSC (RGSC). Silages were prepared from second-cutting alfalfa, field-wilted an average of 24h, and ensiled over 2 d. Production and N utilization were evaluated in 36 cows during four 28-d periods, and ruminal fermentation was evaluated with 6 cows during five 21-d periods. Experimental diets contained 40% AS, 15% corn silage, and 35% of either GSC or RGSC on a dry matter basis. No significant interactions between AS and corn sources were detected for any production trait. Although the chemical composition of the 3 AS was similar, feeding AS from the O 2 -limited tower silo elicited positive production responses. Yields of 3.5% fat-corrected milk and fat were increased 1.7kg/d and 150g/d, and milk fat content was increased 0.3% when cows were fed diets based on AS from the O 2 -limiting silo compared with the other 2 silages. The responses in milk fat were paralleled by an average increase in acid detergent fiber digestibility of 270g/d for cows fed AS from the O 2 -limiting tower silo. However, ruminal concentrations of lipogenic volatile fatty acids were unchanged with AS source. Cows fed RGSC consumed 0.6kg/d more dry matter and yielded 30g/d more protein and 50g/d more lactose than cows fed GSC diets. There was no evidence of increased total tract digestibility of organic matter or starch, or reduced ruminal NH 3 concentration, when feeding RGSC. Free amino acids increased, and isovalerate decreased in rumen fluid from cows fed RGSC diets. However, responses in production with roasted corn were mainly due to increased dry matter intake, which increased the supply of energy and nutrients available for synthesis of milk and milk components.

G A Broderick - One of the best experts on this subject based on the ideXlab platform.

  • effect of alfalfa silage Storage Structure and rumen protected methionine on production in lactating dairy cows
    Journal of Dairy Science, 2009
    Co-Authors: G A Broderick, R E Muck
    Abstract:

    The objective of this study was to determine whether production and nutrient utilization differed when lactating cows were fed diets based on 1 of 3 sources of alfalfa silage (AS) and whether performance was altered by feeding rumen-protected Met (RPM; fed as Mepron). Thirty-six lactating Holstein cows were blocked by parity and days in milk, then assigned to a randomized complete block design and fed a 3 x 2 arrangement of diets formulated from alfalfa ensiled in bag, bunker, or oxygen-limited silos, and supplemented with either 0 or 8 g of RPM/d. After feeding a covariate diet for 3 wk, treatment diets were fed for the remaining 12 wk of the trial. Experimental diets averaged [dry matter (DM) basis] 41% AS, 24% corn silage, 24% high-moisture corn, 3.7% soybean meal, 4% roasted soybeans, 2% ground shelled corn, 1.0% minerals and vitamins, 16.7% CP, and 31% NDF. Alfalfa from the oxygen-limited silo was lower in ash, higher in lactate, nonfiber carbohydrate, and in vitro NDF digestibility, had lower pH and ammonia content, and gave rise to greater DM intake and ADF digestibility than silage from the other 2 silos, indicating a more effective fermentation that, in turn, resulted in greater nutrient preservation. However, the more favorable composition, intake, and digestibility of alfalfa from the oxygen-limited silo were not reflected in improved milk production, which was not different among alfalfa sources. There was increased apparent N efficiency and trends for improved feed efficiency and protein yield with RPM supplementation across all 3 silages. The National Research Council (2001) model predicted that feeding RPM reduced Lys:Met ratio from 3.5 to 2.9, indicating that the diets were limiting in Met.

  • effect of alfalfa silage Storage Structure and roasting corn on production and ruminal metabolism of lactating dairy cows
    Journal of Dairy Science, 2007
    Co-Authors: S J Krizsan, G A Broderick, R E Muck, C Promkot, S Colombini, A T Randby
    Abstract:

    Abstract The objective of this study was to determine if feeding roasted corn would improve production and nutrient utilization when supplemented to lactating cows fed 1 of 3 different alfalfa silages (AS). Forty-two lactating Holstein cows (6 fitted with ruminal cannulas) averaging 77 d in milk and 43kg of milk/d pretrial were assigned to 2 cyclic changeover designs. Treatments were AS ensiled in bag, bunker, or O 2 -limiting tower silos and supplemented with ground shelled corn (GSC) or roasted GSC (RGSC). Silages were prepared from second-cutting alfalfa, field-wilted an average of 24h, and ensiled over 2 d. Production and N utilization were evaluated in 36 cows during four 28-d periods, and ruminal fermentation was evaluated with 6 cows during five 21-d periods. Experimental diets contained 40% AS, 15% corn silage, and 35% of either GSC or RGSC on a dry matter basis. No significant interactions between AS and corn sources were detected for any production trait. Although the chemical composition of the 3 AS was similar, feeding AS from the O 2 -limited tower silo elicited positive production responses. Yields of 3.5% fat-corrected milk and fat were increased 1.7kg/d and 150g/d, and milk fat content was increased 0.3% when cows were fed diets based on AS from the O 2 -limiting silo compared with the other 2 silages. The responses in milk fat were paralleled by an average increase in acid detergent fiber digestibility of 270g/d for cows fed AS from the O 2 -limiting tower silo. However, ruminal concentrations of lipogenic volatile fatty acids were unchanged with AS source. Cows fed RGSC consumed 0.6kg/d more dry matter and yielded 30g/d more protein and 50g/d more lactose than cows fed GSC diets. There was no evidence of increased total tract digestibility of organic matter or starch, or reduced ruminal NH 3 concentration, when feeding RGSC. Free amino acids increased, and isovalerate decreased in rumen fluid from cows fed RGSC diets. However, responses in production with roasted corn were mainly due to increased dry matter intake, which increased the supply of energy and nutrients available for synthesis of milk and milk components.

A T Randby - One of the best experts on this subject based on the ideXlab platform.

  • effect of alfalfa silage Storage Structure and roasting corn on production and ruminal metabolism of lactating dairy cows
    Journal of Dairy Science, 2007
    Co-Authors: S J Krizsan, G A Broderick, R E Muck, C Promkot, S Colombini, A T Randby
    Abstract:

    Abstract The objective of this study was to determine if feeding roasted corn would improve production and nutrient utilization when supplemented to lactating cows fed 1 of 3 different alfalfa silages (AS). Forty-two lactating Holstein cows (6 fitted with ruminal cannulas) averaging 77 d in milk and 43kg of milk/d pretrial were assigned to 2 cyclic changeover designs. Treatments were AS ensiled in bag, bunker, or O 2 -limiting tower silos and supplemented with ground shelled corn (GSC) or roasted GSC (RGSC). Silages were prepared from second-cutting alfalfa, field-wilted an average of 24h, and ensiled over 2 d. Production and N utilization were evaluated in 36 cows during four 28-d periods, and ruminal fermentation was evaluated with 6 cows during five 21-d periods. Experimental diets contained 40% AS, 15% corn silage, and 35% of either GSC or RGSC on a dry matter basis. No significant interactions between AS and corn sources were detected for any production trait. Although the chemical composition of the 3 AS was similar, feeding AS from the O 2 -limited tower silo elicited positive production responses. Yields of 3.5% fat-corrected milk and fat were increased 1.7kg/d and 150g/d, and milk fat content was increased 0.3% when cows were fed diets based on AS from the O 2 -limiting silo compared with the other 2 silages. The responses in milk fat were paralleled by an average increase in acid detergent fiber digestibility of 270g/d for cows fed AS from the O 2 -limiting tower silo. However, ruminal concentrations of lipogenic volatile fatty acids were unchanged with AS source. Cows fed RGSC consumed 0.6kg/d more dry matter and yielded 30g/d more protein and 50g/d more lactose than cows fed GSC diets. There was no evidence of increased total tract digestibility of organic matter or starch, or reduced ruminal NH 3 concentration, when feeding RGSC. Free amino acids increased, and isovalerate decreased in rumen fluid from cows fed RGSC diets. However, responses in production with roasted corn were mainly due to increased dry matter intake, which increased the supply of energy and nutrients available for synthesis of milk and milk components.

Arbee L P Chen - One of the best experts on this subject based on the ideXlab platform.

  • mining frequent itemsets from data streams with a time sensitive sliding window
    SIAM International Conference on Data Mining, 2005
    Co-Authors: Chihhsiang Lin, Dingying Chiu, Arbee L P Chen
    Abstract:

    Mining frequent itemsets has been widely studied over the last decade. Past research focuses on mining frequent itemsets from static databases. In many of the new applications, data flow through the Internet or sensor networks. It is challenging to extend the mining techniques to such a dynamic environment. The main challenges include a quick response to the continuous request, a compact summary of the data stream, and a mechanism that adapts to the limited resources. In this paper, we develop a novel approach for mining frequent itemsets from data streams based on a time-sensitive sliding window model. Our approach consists of a Storage Structure that captures all possible frequent itemsets and a table providing approximate counts of the expired data items, whose size can be adjusted by the available Storage space. Experiment results show that in our approach both the execution time and the Storage space remain small under various parameter settings. In addition, our approach guarantees no false alarm or no false dismissal to the results yielded.

Peter Baumann - One of the best experts on this subject based on the ideXlab platform.

  • performance evaluation of multidimensional array Storage techniques in databases
    International Database Engineering and Applications Symposium, 1999
    Co-Authors: Norbert Widmann, Peter Baumann
    Abstract:

    Storing multidimensional data in databases is an important topic both in the industrial and scientific database communities. Arrays are offered as a multidimensional data Structure by most programming languages. Conventional database systems, however, do not support arrays of arbitrary dimensionality and base type. RasDaMan is a DBMS integrating arrays as a first class data type offering both a declarative query language and a specialised Storage Structure for arrays. The work presented evaluates the performance of queries on multidimensional array data stored in RasDaMan versus Storage in a conventional RDBMS. In the relational system, the data is both mapped to relations and stored directly as binary data in BLOBs. The queries executed were modelled after queries common in scientific applications and decision support.