Streptomyces

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 54204 Experts worldwide ranked by ideXlab platform

Michael Goodfellow - One of the best experts on this subject based on the ideXlab platform.

  • Streptomyces bullii sp nov isolated from a hyper arid atacama desert soil
    Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology, 2013
    Co-Authors: Rakesh Santhanam, Ying Huang, Xiaoying Rong, Barbara A Andrews, Juan A Asenjo, Michael Goodfellow
    Abstract:

    A Streptomyces strain isolated from a hyper-arid Atacama Desert soil was characterised using a polyphasic taxonomic approach. The strain, designated C2T, had chemical and morphological properties typical of the genus Streptomyces. The isolate formed a branch in the Streptomyces 16S rRNA gene tree together with the type strain of Streptomyces chromofuscus and was also loosely related to Streptomyces fragilis NRRL 2424T. DNA:DNA relatedness values between the isolate and its two phylogenetic neighbours showed that it formed a distinct genomic species. The strain was readily distinguished from these organisms using a combination of morphological and phenotypic data. Based on the genotypic and phenotypic results, isolate C2T represents a novel species in the genus Streptomyces, for which the name Streptomyces bullii sp. nov. is proposed. The type strain is C2T (=CGMCC 4.7019T = KACC 15426T).

  • Streptomyces atacamensis sp nov isolated from an extreme hyper arid soil of the atacama desert chile
    International Journal of Systematic and Evolutionary Microbiology, 2012
    Co-Authors: Rakesh Santhanam, Ying Huang, Xiaoying Rong, Barbara A Andrews, Juan A Asenjo, Chinyere K Okoro, Alan T Bull, Hangyeon Weon, Michael Goodfellow
    Abstract:

    The taxonomic position of a Streptomyces strain isolated from an extreme hyper-arid soil sample collected from the Atacama Desert was determined using a polyphasic approach. The strain, isolate C60T, had chemical and morphological features typical of members of the genus Streptomyces and formed a distinct phyletic line in the Streptomyces 16S rRNA gene tree, together with the type strain of Streptomyces radiopugnans . The two strains were distinguished readily using a combination of phenotypic properties and by a DNA–DNA relatedness value of 23.17 (±0.95) %. On the basis of these genotypic and phenotypic data, it is proposed that isolate C60T ( = CGMCC 4.7018T = KACC 15492T) be classified in the genus Streptomyces as Streptomyces atacamensis sp. nov.

  • reclassification of Streptomyces hygroscopicus strains as Streptomyces aldersoniae sp nov Streptomyces angustmyceticus sp nov comb nov Streptomyces ascomycinicus sp nov Streptomyces decoyicus sp nov comb nov Streptomyces milbemycinicus sp nov and Streptomyces wellingtoniae sp nov
    International Journal of Systematic and Evolutionary Microbiology, 2010
    Co-Authors: Yashawant Kumar, Michael Goodfellow
    Abstract:

    A polyphasic study was undertaken to determine the taxonomic status of six strains received as Streptomyces hygroscopicus. The strains had chemotaxonomic and morphological properties typical of members of the genus Streptomyces and formed distinct phyletic lines in the Streptomyces 16S rRNA gene tree. These strains were distinguished from one another and from phylogenetically close neighbours using a combination of phenotypic properties. The combined genotypic and phenotypic data showed that all six strains form distinct centres of taxonomic variation within the genus Streptomyces. The following novel species are proposed to accommodate the strains: Streptomyces aldersoniae sp. nov. (type strain DSM 41909T =NRRL 18513T), Streptomyces angustmyceticus sp. nov., comb. nov. (type strain DSM 41683T=NRRL B-2347T), Streptomyces ascomycinicus sp. nov. (type strain DSM 40822T =NBRC 13981T), Streptomyces decoyicus sp. nov., comb. nov. (type strain DSM 41427T =NRRL 2666T), Streptomyces milbemycinicus sp. nov. (type strain DSM 41911T =NRRL 5739T) and Streptomyces wellingtoniae sp. nov. (type strain DSM 40632T =NRRL B-1503T).

  • The Streptomyces violaceusniger clade: a home for streptomycetes with rugose ornamented spores
    Antonie van Leeuwenhoek, 2007
    Co-Authors: Michael Goodfellow, David P Labeda, Yashawant Kumar, Langkah Sembiring
    Abstract:

    The taxonomic status of 16 strains received as Streptomyces hygroscopicus , Streptomyces melanosporofaciens , Streptomyces sparsogenes , Streptomyces sporoclivatus and Streptomyces violaceusniger was evaluated in a polyphasic study. Eleven of the organisms formed a distinct clade in the Streptomyces 16S rRNA gene tree with the type strains of Streptomyces asiaticus , Streptomyces cangkringensis , Streptomyces indonesiensis , Streptomyces javensis , Streptomyces malaysiensis , Streptomyces rhizosphaericus , Streptomyces yatensis and Streptomyces yogyakartensis , the members of this group produced rugose ornamented spores in spiral spore chains. The eleven strains were assigned to three established and four novel species, namely Streptomyces albiflaviniger sp. nov., Streptomyces demainii sp. nov., Streptomyces geldanamycininus sp. nov., Streptomyces griseiniger sp. nov., and Streptomyces hygroscopicus , Streptomyces melanosporofaciens and Streptomyces violaceusniger . It is also proposed that S. sporoclivatus becomes a subjective synonym of S. melanosporofaciens . S. sparsogenes NRRL 2940^T, which produced ridged ornamented spores in spiral spore chains, formed a distinct phyletic line in the Streptomyces 16S rRNA gene tree and was readily distinguished from the other strains using a range of phenotypic properties. S. violaceusniger strains NRRL 8097, NRRL B-5799, NRRL 2834 and ISP 5182 fell outside the S. violaceusniger 16S rRNA gene clade and formed either smooth or ridged ornamented spores in either flexuous or spiral spore chains. These organisms were distinguished from one another and from their closest phylogenetic neighbors and were considered to merit species status as Streptomyces auratus sp. nov., Streptomyces phaeoluteichromatogenes sp. nov., Streptomyces phaeogriseichromatogenes sp. nov., and Streptomyces phaeoluteigriseus sp. nov., respectively.

  • Classification of Streptomyces griseus (Krainsky 1914) Waksman and Henrici 1948 and related species and the transfer of ‘Microstreptospora cinerea’ to the genus Streptomyces as Streptomyces yanii sp. nov.
    International Journal of Systematic and Evolutionary Microbiology, 2005
    Co-Authors: Zhiheng Liu, Yanlin Shi, Yamei Zhang, Zhi-hong Zhou, Ying Huang, Carlos Rodríguez, Michael Goodfellow
    Abstract:

    A soil actinomycete, strain 80-133T, with the non-validly published name ‘Microstreptospora cinerea’, was the subject of a polyphasic study designed to clarify its taxonomic status. Comparative 16S rRNA gene sequence studies indicated that the organism belonged to the genus Streptomyces, a result in line with previous chemotaxonomic and morphological data. The strain belonged to the Streptomyces griseus clade, but could be distinguished from representatives of species assigned to this taxon by using DNA–DNA relatedness and phenotypic data. In light of these findings, it is proposed that the organism should be recognized as a novel species of the genus Streptomyces. The name proposed for this taxon is Streptomyces yanii sp. nov., with isolate 80-133T (=AS 4.1146T=JCM 3331T) as the type strain. It was also shown that representative strains of Streptomyces argenteolus, Streptomyces caviscabies, S. griseus and Streptomyces setonii belong to the same genomic species and have key phenotypic properties in common. It is proposed that S. caviscabies and S. setonii should be considered as later heterotypic synonyms of S. griseus and that S. argenteolus AS 4.1693T should also be assigned to this taxon.

Ying Huang - One of the best experts on this subject based on the ideXlab platform.

  • Streptomyces bullii sp nov isolated from a hyper arid atacama desert soil
    Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology, 2013
    Co-Authors: Rakesh Santhanam, Ying Huang, Xiaoying Rong, Barbara A Andrews, Juan A Asenjo, Michael Goodfellow
    Abstract:

    A Streptomyces strain isolated from a hyper-arid Atacama Desert soil was characterised using a polyphasic taxonomic approach. The strain, designated C2T, had chemical and morphological properties typical of the genus Streptomyces. The isolate formed a branch in the Streptomyces 16S rRNA gene tree together with the type strain of Streptomyces chromofuscus and was also loosely related to Streptomyces fragilis NRRL 2424T. DNA:DNA relatedness values between the isolate and its two phylogenetic neighbours showed that it formed a distinct genomic species. The strain was readily distinguished from these organisms using a combination of morphological and phenotypic data. Based on the genotypic and phenotypic results, isolate C2T represents a novel species in the genus Streptomyces, for which the name Streptomyces bullii sp. nov. is proposed. The type strain is C2T (=CGMCC 4.7019T = KACC 15426T).

  • Streptomyces atacamensis sp nov isolated from an extreme hyper arid soil of the atacama desert chile
    International Journal of Systematic and Evolutionary Microbiology, 2012
    Co-Authors: Rakesh Santhanam, Ying Huang, Xiaoying Rong, Barbara A Andrews, Juan A Asenjo, Chinyere K Okoro, Alan T Bull, Hangyeon Weon, Michael Goodfellow
    Abstract:

    The taxonomic position of a Streptomyces strain isolated from an extreme hyper-arid soil sample collected from the Atacama Desert was determined using a polyphasic approach. The strain, isolate C60T, had chemical and morphological features typical of members of the genus Streptomyces and formed a distinct phyletic line in the Streptomyces 16S rRNA gene tree, together with the type strain of Streptomyces radiopugnans . The two strains were distinguished readily using a combination of phenotypic properties and by a DNA–DNA relatedness value of 23.17 (±0.95) %. On the basis of these genotypic and phenotypic data, it is proposed that isolate C60T ( = CGMCC 4.7018T = KACC 15492T) be classified in the genus Streptomyces as Streptomyces atacamensis sp. nov.

  • taxonomic evaluation of the Streptomyces griseus clade using multilocus sequence analysis and dna dna hybridization with proposal to combine 29 species and three subspecies as 11 genomic species
    International Journal of Systematic and Evolutionary Microbiology, 2010
    Co-Authors: Xiaoying Rong, Ying Huang
    Abstract:

    Streptomyces griseus and related species form the biggest but least well-defined clade in the whole Streptomyces 16S rRNA gene tree. Multilocus sequence analysis (MLSA) has shown promising potential for refining Streptomyces systematics. In this investigation, strains of 18 additional S. griseus clade species were analysed and data from a previous pilot study were integrated in a larger MLSA phylogeny. The results demonstrated that MLSA of five housekeeping genes (atpD, gyrB, recA, rpoB and trpB) is better than the previous six-gene scheme, as it provides equally good resolution and stability and is more cost-effective; MLSA using three or four of the genes also shows good resolution and robustness for differentiating most of the strains and is therefore of value for everyday use. MLSA is more suitable for discriminating strains that show >99 % 16S rRNA gene sequence similarity. DNA–DNA hybridization (DDH) between strains with representative MLSA distances revealed a strong correlation between the data of MLSA and DDH. The 70 % DDH value for current species definition corresponds to a five-gene MLSA distance of 0.007, which could be considered as the species cut-off for the S. griseus clade. It is concluded that the MLSA procedure can be a practical, reliable and robust alternative to DDH for the identification and classification of streptomycetes at the species and intraspecies levels. Based on the data from MLSA and DDH, as well as cultural and morphological characteristics, 18 species and three subspecies of the S. griseus clade are considered to be later heterotypic synonyms of 11 genomic species: Streptomyces griseinus and Streptomyces mediolani as synonyms of Streptomyces albovinaceus; Streptomyces praecox as a synonym of Streptomyces anulatus; Streptomyces olivoviridis as a synonym of Streptomyces atroolivaceus; Streptomyces griseobrunneus as a synonym of Streptomyces bacillaris; Streptomyces cavourensis subsp. washingtonensis as a synonym of Streptomyces cyaneofuscatus; Streptomyces acrimycini, Streptomyces baarnensis, Streptomyces caviscabies and Streptomyces flavofuscus as synonyms of Streptomyces fimicarius; Streptomyces flavogriseus as a synonym of Streptomyces flavovirens; Streptomyces erumpens, ‘Streptomyces ornatus’ and Streptomyces setonii as synonyms of Streptomyces griseus; Streptomyces graminofaciens as a synonym of Streptomyces halstedii; Streptomyces alboviridis, Streptomyces griseus subsp. alpha, Streptomyces griseus subsp. cretosus and Streptomyces luridiscabiei as synonyms of Streptomyces microflavus; and Streptomyces californicus and Streptomyces floridae as synonyms of Streptomyces puniceus.

  • Classification of Streptomyces griseus (Krainsky 1914) Waksman and Henrici 1948 and related species and the transfer of ‘Microstreptospora cinerea’ to the genus Streptomyces as Streptomyces yanii sp. nov.
    International Journal of Systematic and Evolutionary Microbiology, 2005
    Co-Authors: Zhiheng Liu, Yanlin Shi, Yamei Zhang, Zhi-hong Zhou, Ying Huang, Carlos Rodríguez, Michael Goodfellow
    Abstract:

    A soil actinomycete, strain 80-133T, with the non-validly published name ‘Microstreptospora cinerea’, was the subject of a polyphasic study designed to clarify its taxonomic status. Comparative 16S rRNA gene sequence studies indicated that the organism belonged to the genus Streptomyces, a result in line with previous chemotaxonomic and morphological data. The strain belonged to the Streptomyces griseus clade, but could be distinguished from representatives of species assigned to this taxon by using DNA–DNA relatedness and phenotypic data. In light of these findings, it is proposed that the organism should be recognized as a novel species of the genus Streptomyces. The name proposed for this taxon is Streptomyces yanii sp. nov., with isolate 80-133T (=AS 4.1146T=JCM 3331T) as the type strain. It was also shown that representative strains of Streptomyces argenteolus, Streptomyces caviscabies, S. griseus and Streptomyces setonii belong to the same genomic species and have key phenotypic properties in common. It is proposed that S. caviscabies and S. setonii should be considered as later heterotypic synonyms of S. griseus and that S. argenteolus AS 4.1693T should also be assigned to this taxon.

Xiaoying Rong - One of the best experts on this subject based on the ideXlab platform.

  • Streptomyces bullii sp nov isolated from a hyper arid atacama desert soil
    Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology, 2013
    Co-Authors: Rakesh Santhanam, Ying Huang, Xiaoying Rong, Barbara A Andrews, Juan A Asenjo, Michael Goodfellow
    Abstract:

    A Streptomyces strain isolated from a hyper-arid Atacama Desert soil was characterised using a polyphasic taxonomic approach. The strain, designated C2T, had chemical and morphological properties typical of the genus Streptomyces. The isolate formed a branch in the Streptomyces 16S rRNA gene tree together with the type strain of Streptomyces chromofuscus and was also loosely related to Streptomyces fragilis NRRL 2424T. DNA:DNA relatedness values between the isolate and its two phylogenetic neighbours showed that it formed a distinct genomic species. The strain was readily distinguished from these organisms using a combination of morphological and phenotypic data. Based on the genotypic and phenotypic results, isolate C2T represents a novel species in the genus Streptomyces, for which the name Streptomyces bullii sp. nov. is proposed. The type strain is C2T (=CGMCC 4.7019T = KACC 15426T).

  • Streptomyces atacamensis sp nov isolated from an extreme hyper arid soil of the atacama desert chile
    International Journal of Systematic and Evolutionary Microbiology, 2012
    Co-Authors: Rakesh Santhanam, Ying Huang, Xiaoying Rong, Barbara A Andrews, Juan A Asenjo, Chinyere K Okoro, Alan T Bull, Hangyeon Weon, Michael Goodfellow
    Abstract:

    The taxonomic position of a Streptomyces strain isolated from an extreme hyper-arid soil sample collected from the Atacama Desert was determined using a polyphasic approach. The strain, isolate C60T, had chemical and morphological features typical of members of the genus Streptomyces and formed a distinct phyletic line in the Streptomyces 16S rRNA gene tree, together with the type strain of Streptomyces radiopugnans . The two strains were distinguished readily using a combination of phenotypic properties and by a DNA–DNA relatedness value of 23.17 (±0.95) %. On the basis of these genotypic and phenotypic data, it is proposed that isolate C60T ( = CGMCC 4.7018T = KACC 15492T) be classified in the genus Streptomyces as Streptomyces atacamensis sp. nov.

  • taxonomic evaluation of the Streptomyces griseus clade using multilocus sequence analysis and dna dna hybridization with proposal to combine 29 species and three subspecies as 11 genomic species
    International Journal of Systematic and Evolutionary Microbiology, 2010
    Co-Authors: Xiaoying Rong, Ying Huang
    Abstract:

    Streptomyces griseus and related species form the biggest but least well-defined clade in the whole Streptomyces 16S rRNA gene tree. Multilocus sequence analysis (MLSA) has shown promising potential for refining Streptomyces systematics. In this investigation, strains of 18 additional S. griseus clade species were analysed and data from a previous pilot study were integrated in a larger MLSA phylogeny. The results demonstrated that MLSA of five housekeeping genes (atpD, gyrB, recA, rpoB and trpB) is better than the previous six-gene scheme, as it provides equally good resolution and stability and is more cost-effective; MLSA using three or four of the genes also shows good resolution and robustness for differentiating most of the strains and is therefore of value for everyday use. MLSA is more suitable for discriminating strains that show >99 % 16S rRNA gene sequence similarity. DNA–DNA hybridization (DDH) between strains with representative MLSA distances revealed a strong correlation between the data of MLSA and DDH. The 70 % DDH value for current species definition corresponds to a five-gene MLSA distance of 0.007, which could be considered as the species cut-off for the S. griseus clade. It is concluded that the MLSA procedure can be a practical, reliable and robust alternative to DDH for the identification and classification of streptomycetes at the species and intraspecies levels. Based on the data from MLSA and DDH, as well as cultural and morphological characteristics, 18 species and three subspecies of the S. griseus clade are considered to be later heterotypic synonyms of 11 genomic species: Streptomyces griseinus and Streptomyces mediolani as synonyms of Streptomyces albovinaceus; Streptomyces praecox as a synonym of Streptomyces anulatus; Streptomyces olivoviridis as a synonym of Streptomyces atroolivaceus; Streptomyces griseobrunneus as a synonym of Streptomyces bacillaris; Streptomyces cavourensis subsp. washingtonensis as a synonym of Streptomyces cyaneofuscatus; Streptomyces acrimycini, Streptomyces baarnensis, Streptomyces caviscabies and Streptomyces flavofuscus as synonyms of Streptomyces fimicarius; Streptomyces flavogriseus as a synonym of Streptomyces flavovirens; Streptomyces erumpens, ‘Streptomyces ornatus’ and Streptomyces setonii as synonyms of Streptomyces griseus; Streptomyces graminofaciens as a synonym of Streptomyces halstedii; Streptomyces alboviridis, Streptomyces griseus subsp. alpha, Streptomyces griseus subsp. cretosus and Streptomyces luridiscabiei as synonyms of Streptomyces microflavus; and Streptomyces californicus and Streptomyces floridae as synonyms of Streptomyces puniceus.

William W Metcalf - One of the best experts on this subject based on the ideXlab platform.

  • taxonomic evaluation of Streptomyces albus and related species using multilocus sequence analysis and proposals to emend the description of Streptomyces albus and describe Streptomyces pathocidini sp nov
    International Journal of Systematic and Evolutionary Microbiology, 2014
    Co-Authors: David P Labeda, James R Doroghazi, William W Metcalf
    Abstract:

    In phylogenetic analyses of the genus Streptomyces using 16S rRNA gene sequences, Streptomyces albus subsp . albus NRRL B-1811T forms a cluster with five other species having identical or nearly identical 16S rRNA gene sequences. Moreover, the morphological and physiological characteristics of these other species, including Streptomyces almquistii NRRL B-1685T, Streptomyces flocculus NRRL B-2465T, Streptomyces gibsonii NRRL B-1335T and Streptomyces rangoonensis NRRL B-12378T are quite similar. This cluster is of particular taxonomic interest because Streptomyces albus is the type species of the genus Streptomyces . The related strains were subjected to multilocus sequence analysis (MLSA) utilizing partial sequences of the housekeeping genes atpD, gyrB, recA, rpoB and trpB and confirmation of previously reported phenotypic characteristics. The five strains formed a coherent cluster supported by a 100 % bootstrap value in phylogenetic trees generated from sequence alignments prepared by concatenating the sequences of the housekeeping genes, and identical tree topology was observed using various different tree-making algorithms. Moreover, all but one strain, S. flocculus NRRL B-2465T, exhibited identical sequences for all of the five housekeeping gene loci sequenced, but NRRL B-2465T still exhibited an MLSA evolutionary distance of 0.005 from the other strains, a value that is lower than the 0.007 MLSA evolutionary distance threshold proposed for species-level relatedness. These data support a proposal to reclassify S. almquistii , S. flocculus , S. gibsonii and S. rangoonensis as later heterotypic synonyms of S. albus with NRRL B-1811T as the type strain. The MLSA sequence database also demonstrated utility for quickly and conclusively confirming that numerous strains within the ARS Culture Collection had been previously misidentified as subspecies of S. albus and that Streptomyces albus subsp. patho cidicus should be redescribed as a novel species, Streptomyces pathocidini sp. nov., with the type strain NRRL B-24287T.

Jean Swings - One of the best experts on this subject based on the ideXlab platform.