Subject Identity

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 114372 Experts worldwide ranked by ideXlab platform

Alison L. Greggor - One of the best experts on this subject based on the ideXlab platform.

  • Effectiveness of animal conditioning interventions in reducing human–wildlife conflict: a systematic map protocol
    Environmental Evidence, 2019
    Co-Authors: Lysanne Snijders, Alison L. Greggor, Femke Hilderink, Carolina Doran
    Abstract:

    Background Human–wildlife conflict (HWC), is currently one of the most pressing conservation challenges. We restrict ourselves here to wildlife behaviour that is perceived to negatively impact social, economic or cultural aspects of human life or to negatively impact species of conservation concern. HWC often involves wild animals consuming anthropogenic resources, such as crops or livestock, either out of necessity (loss of habitat and natural prey) or as consequence of opportunistic behaviour. A variety of interventions are undertaken to reduce HWC, differing in practicability, costs and social acceptance. One such non-lethal intervention is animal conditioning, a technique to reduce conflict by modifying the behaviour of ‘problem’ animals long-term. Conditioning changes associations animals have with resources or behaviours. Both via ‘punishment’ of unwanted behaviour and ‘rewarding’ of alternative behaviour, researchers aim to make expression of unwanted behaviour relatively less desirable to animals. Despite the potential, however, studies testing conditioning interventions have reported seemingly contradictory outcomes. To facilitate reduction of HWC via conditioning, we thus need to better understand if and when conditioning interventions are indeed effective. With this systematic map we intend to make the global evidence base for conditioning of free-ranging vertebrates more accessible to practitioners, to identify potential evidence clusters and effect modifiers for a subsequent systematic review and to highlight evidence gaps for future research. Methods We will compile evidence, including grey literature, from bibliographic databases, online search engines, specialist sites and expert contacts. Where possible, a Boolean-style full search string will be used, including Intervention and Outcome search terms. Searches will be conducted in English. Search comprehensiveness will be evaluated with an a priori list of benchmark articles. We will base inclusion of articles on presence of quantitative data, Subject Identity, comparator and outcome. Inclusion consistency checks will be performed with 10% of the titles, abstracts and full texts. We will assess validity of the literature base on basis of study design and sample size. Finally, we will develop a searchable literature database and an interactive evidence atlas along with a narrative synthesis of the evidence.

  • What evidence exists on the effectiveness of different types of olfactory lures as attractants for invasive mammalian predators? A systematic map protocol
    Environmental Evidence, 2019
    Co-Authors: Catherine J. Price, Peter B. Banks, Alison L. Greggor
    Abstract:

    Background Alien mammalian predators are a major cause of species extinction and decline globally. Baits and lures, usually human-food based (for example meat, nuts or oils), are widely deployed in trapping programs to attract target species, but their effectiveness compared to other types of olfactory lures, for example social odours or prey odours, has never been systematically examined. Depending on the context, there can be high proportions of non-target captures, for example when targeting feral cats using cage traps, or low capture success, for example, when targeting introduced rats on tropical islands. Here we use a systematic process to map evidence on the effectiveness of different categories of olfactory attractants for invasive mammalian predators within different ecological contexts. We aim to look for where evidence clusters and knowledge gaps occur, for example, across different lure types or across different habitat-types, and highlight opportunities for future research into behaviourally-relevant olfactory lures. Methods We will compile evidence from bibliographic databases, online search engines, government websites, specialist sites and expert contacts, and include ‘grey’ literature. Where possible, a Boolean-style full search string will be used, including Population, Intervention and Outcome search terms. Searches will be conducted in English, but a public request to the IUCN SSC Invasive Species Specialist Group (ISSG) will be made for literature including in languages other than English. Search comprehensiveness will be evaluated against 25 benchmark articles known to the authors. We will base inclusion of articles on presence of quantitative data, Subject Identity (invasive mammalian predator species), comparator (more than one type of olfactory lure assessed or lure compared to a control) and outcome (quantified attraction to lures or controls). Inclusion consistency checks will be performed with 10% of the titles and abstracts and 10% of the full texts. We will critically appraise the literature only on the basis of study design (e.g. appropriate controls) and sample size, rather than interpret the results. Finally, we will develop a searchable literature database accompanied by systematic ‘heat’ maps to visually represent knowledge clusters and gaps within different subsets of evidence, and a narrative synthesis of the evidence.

Carolina Doran - One of the best experts on this subject based on the ideXlab platform.

  • Effectiveness of animal conditioning interventions in reducing human–wildlife conflict: a systematic map protocol
    Environmental Evidence, 2019
    Co-Authors: Lysanne Snijders, Alison L. Greggor, Femke Hilderink, Carolina Doran
    Abstract:

    Background Human–wildlife conflict (HWC), is currently one of the most pressing conservation challenges. We restrict ourselves here to wildlife behaviour that is perceived to negatively impact social, economic or cultural aspects of human life or to negatively impact species of conservation concern. HWC often involves wild animals consuming anthropogenic resources, such as crops or livestock, either out of necessity (loss of habitat and natural prey) or as consequence of opportunistic behaviour. A variety of interventions are undertaken to reduce HWC, differing in practicability, costs and social acceptance. One such non-lethal intervention is animal conditioning, a technique to reduce conflict by modifying the behaviour of ‘problem’ animals long-term. Conditioning changes associations animals have with resources or behaviours. Both via ‘punishment’ of unwanted behaviour and ‘rewarding’ of alternative behaviour, researchers aim to make expression of unwanted behaviour relatively less desirable to animals. Despite the potential, however, studies testing conditioning interventions have reported seemingly contradictory outcomes. To facilitate reduction of HWC via conditioning, we thus need to better understand if and when conditioning interventions are indeed effective. With this systematic map we intend to make the global evidence base for conditioning of free-ranging vertebrates more accessible to practitioners, to identify potential evidence clusters and effect modifiers for a subsequent systematic review and to highlight evidence gaps for future research. Methods We will compile evidence, including grey literature, from bibliographic databases, online search engines, specialist sites and expert contacts. Where possible, a Boolean-style full search string will be used, including Intervention and Outcome search terms. Searches will be conducted in English. Search comprehensiveness will be evaluated with an a priori list of benchmark articles. We will base inclusion of articles on presence of quantitative data, Subject Identity, comparator and outcome. Inclusion consistency checks will be performed with 10% of the titles, abstracts and full texts. We will assess validity of the literature base on basis of study design and sample size. Finally, we will develop a searchable literature database and an interactive evidence atlas along with a narrative synthesis of the evidence.

Daniel P Kennedy - One of the best experts on this subject based on the ideXlab platform.

  • accurate prediction of individual Subject Identity and task but not autism diagnosis from functional connectomes
    Human Brain Mapping, 2020
    Co-Authors: Lisa Byrge, Daniel P Kennedy
    Abstract:

    Despite enthusiasm about the potential for using fMRI-based functional connectomes in the development of biomarkers for autism spectrum disorder (ASD), the literature is full of negative findings-failures to distinguish ASD functional connectomes from those of typically developing controls (TD)-and positive findings that are inconsistent across studies. Here, we report on a new study designed to either better differentiate ASD from TD functional connectomes-or, alternatively, to refine our understanding of the factors underlying the current state of affairs. We scanned individuals with ASD and controls both at rest and while watching videos with social content. Using multiband fMRI across repeat sessions, we improved both data quantity and scanning duration by collecting up to 2 hr of data per individual. This is about 50 times the typical number of temporal samples per individual in ASD fcMRI studies. We obtained functional connectomes that were discriminable, allowing for near-perfect individual identification regardless of diagnosis, and equally reliable in both groups. However, contrary to what one might expect, we did not consistently or robustly observe in the ASD group either reductions in similarity to TD functional connectivity (FC) patterns or shared atypical FC patterns. Accordingly, FC-based predictions of diagnosis group achieved accuracy levels around chance. However, using the same approaches to predict scan type (rest vs. video) achieved near-perfect accuracy. Our findings suggest that neither the limitations of resting state as a "task," data resolution, data quantity, or scan duration can be considered solely responsible for failures to differentiate ASD from TD functional connectomes.

Lysanne Snijders - One of the best experts on this subject based on the ideXlab platform.

  • Effectiveness of animal conditioning interventions in reducing human–wildlife conflict: a systematic map protocol
    Environmental Evidence, 2019
    Co-Authors: Lysanne Snijders, Alison L. Greggor, Femke Hilderink, Carolina Doran
    Abstract:

    Background Human–wildlife conflict (HWC), is currently one of the most pressing conservation challenges. We restrict ourselves here to wildlife behaviour that is perceived to negatively impact social, economic or cultural aspects of human life or to negatively impact species of conservation concern. HWC often involves wild animals consuming anthropogenic resources, such as crops or livestock, either out of necessity (loss of habitat and natural prey) or as consequence of opportunistic behaviour. A variety of interventions are undertaken to reduce HWC, differing in practicability, costs and social acceptance. One such non-lethal intervention is animal conditioning, a technique to reduce conflict by modifying the behaviour of ‘problem’ animals long-term. Conditioning changes associations animals have with resources or behaviours. Both via ‘punishment’ of unwanted behaviour and ‘rewarding’ of alternative behaviour, researchers aim to make expression of unwanted behaviour relatively less desirable to animals. Despite the potential, however, studies testing conditioning interventions have reported seemingly contradictory outcomes. To facilitate reduction of HWC via conditioning, we thus need to better understand if and when conditioning interventions are indeed effective. With this systematic map we intend to make the global evidence base for conditioning of free-ranging vertebrates more accessible to practitioners, to identify potential evidence clusters and effect modifiers for a subsequent systematic review and to highlight evidence gaps for future research. Methods We will compile evidence, including grey literature, from bibliographic databases, online search engines, specialist sites and expert contacts. Where possible, a Boolean-style full search string will be used, including Intervention and Outcome search terms. Searches will be conducted in English. Search comprehensiveness will be evaluated with an a priori list of benchmark articles. We will base inclusion of articles on presence of quantitative data, Subject Identity, comparator and outcome. Inclusion consistency checks will be performed with 10% of the titles, abstracts and full texts. We will assess validity of the literature base on basis of study design and sample size. Finally, we will develop a searchable literature database and an interactive evidence atlas along with a narrative synthesis of the evidence.

Lisa Byrge - One of the best experts on this subject based on the ideXlab platform.

  • accurate prediction of individual Subject Identity and task but not autism diagnosis from functional connectomes
    Human Brain Mapping, 2020
    Co-Authors: Lisa Byrge, Daniel P Kennedy
    Abstract:

    Despite enthusiasm about the potential for using fMRI-based functional connectomes in the development of biomarkers for autism spectrum disorder (ASD), the literature is full of negative findings-failures to distinguish ASD functional connectomes from those of typically developing controls (TD)-and positive findings that are inconsistent across studies. Here, we report on a new study designed to either better differentiate ASD from TD functional connectomes-or, alternatively, to refine our understanding of the factors underlying the current state of affairs. We scanned individuals with ASD and controls both at rest and while watching videos with social content. Using multiband fMRI across repeat sessions, we improved both data quantity and scanning duration by collecting up to 2 hr of data per individual. This is about 50 times the typical number of temporal samples per individual in ASD fcMRI studies. We obtained functional connectomes that were discriminable, allowing for near-perfect individual identification regardless of diagnosis, and equally reliable in both groups. However, contrary to what one might expect, we did not consistently or robustly observe in the ASD group either reductions in similarity to TD functional connectivity (FC) patterns or shared atypical FC patterns. Accordingly, FC-based predictions of diagnosis group achieved accuracy levels around chance. However, using the same approaches to predict scan type (rest vs. video) achieved near-perfect accuracy. Our findings suggest that neither the limitations of resting state as a "task," data resolution, data quantity, or scan duration can be considered solely responsible for failures to differentiate ASD from TD functional connectomes.