Syringe Filter

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 927 Experts worldwide ranked by ideXlab platform

Rui Su - One of the best experts on this subject based on the ideXlab platform.

  • coupling of micro solid phase extraction and internal extractive electrospray ionization mass spectrometry for ultra sensitive detection of 1 hydroxypyrene and papaverine in human urine samples
    Analytical and Bioanalytical Chemistry, 2019
    Co-Authors: Rui Su, Debo Wu, Jiaquan Xu, Hua Zhang, Xiaoping Zhang, Shuiping Yang
    Abstract:

    Quantification of ultra-trace analytes in complex biological samples using micro-solid-phase extraction followed by direct detection with internal extractive electrospray ionization mass spectrometry (μSPE–iEESI–MS) was demonstrated. 1-Hydroxypyrene (1-OHP) and papaverine at attomole levels in human raw urine samples were analyzed under negative and positive ion detection mode, respectively. The μSPE was simply prepared by packing a disposable Syringe Filter with octadecyl carbon chain (C18)-bonded micro silica particles, which were then treated as the “bulk sample” after the analytes were efficiently enriched by the C18 particles. Under the optimized experimental conditions, the analytes were readily eluted by isopropanol/water (80/20, V/V) at a high voltage of ± 4.0 kV, producing analyte ions under ambient conditions. The limit of detection (LOD) was 0.02 pg/L (9.2 amol) for 1-hydroxypyrene and 0.02 pg/L (5.9 amol) for papaverine. The acceptable linearity (R2 > 0.99), signal stability (RSD ≤ 10.7%), spike recoveries (91–95%), and comparable results for real urine samples were also achieved, opening up possibilities for quantitative analysis of trace compounds (at attomole levels) in complex bio-samples.

  • fast quantification of fluoroquinolones in environmental water samples using molecularly imprinted polymers coupled with internal extractive electrospray ionization mass spectrometry
    RSC Advances, 2018
    Co-Authors: Hua Zhang, Mufang Ke, Jianliang Xiong, Aisha Bibi, Rui Su, Dapeng Liang
    Abstract:

    In this study, a facile method based on molecularly imprinted polymers (MIPs) combined with internal extractive electrospray ionization tandem mass spectrometry (iEESI-MS/MS) was developed for the quantitative analysis of fluoroquinolones (FQs) in environmental water samples. FQ molecules in water samples were captured by the MIPs, which was retained on a 0.22 μm Syringe Filter. Then, an electrospray solution selected as the elution solution was employed to extract the FQs from the MIPs, getting an eluate of FQs for mass spectrometric interrogation. Under the optimized experimental conditions, low limits of detection (LODs, 0.015–0.026 μg L−1), with relative standard deviations (RSDs) less than 8.81% (n = 6) were obtained. The present method also provides good recoveries (91.14–103.60%) with acceptable precision (RSDs < 6.18%) and have no serious matrix effects for environmental water samples. The experimental results demonstrated that MIPs-iEESI-MS/MS has advantages including easy use, high speed (less than 3 min per sample) and high sensitivity for the analysis of FQs in environmental water samples, showing potential application in environmental science and water safety control.

Hua Zhang - One of the best experts on this subject based on the ideXlab platform.

  • coupling of micro solid phase extraction and internal extractive electrospray ionization mass spectrometry for ultra sensitive detection of 1 hydroxypyrene and papaverine in human urine samples
    Analytical and Bioanalytical Chemistry, 2019
    Co-Authors: Rui Su, Debo Wu, Jiaquan Xu, Hua Zhang, Xiaoping Zhang, Shuiping Yang
    Abstract:

    Quantification of ultra-trace analytes in complex biological samples using micro-solid-phase extraction followed by direct detection with internal extractive electrospray ionization mass spectrometry (μSPE–iEESI–MS) was demonstrated. 1-Hydroxypyrene (1-OHP) and papaverine at attomole levels in human raw urine samples were analyzed under negative and positive ion detection mode, respectively. The μSPE was simply prepared by packing a disposable Syringe Filter with octadecyl carbon chain (C18)-bonded micro silica particles, which were then treated as the “bulk sample” after the analytes were efficiently enriched by the C18 particles. Under the optimized experimental conditions, the analytes were readily eluted by isopropanol/water (80/20, V/V) at a high voltage of ± 4.0 kV, producing analyte ions under ambient conditions. The limit of detection (LOD) was 0.02 pg/L (9.2 amol) for 1-hydroxypyrene and 0.02 pg/L (5.9 amol) for papaverine. The acceptable linearity (R2 > 0.99), signal stability (RSD ≤ 10.7%), spike recoveries (91–95%), and comparable results for real urine samples were also achieved, opening up possibilities for quantitative analysis of trace compounds (at attomole levels) in complex bio-samples.

  • fast quantification of fluoroquinolones in environmental water samples using molecularly imprinted polymers coupled with internal extractive electrospray ionization mass spectrometry
    RSC Advances, 2018
    Co-Authors: Hua Zhang, Mufang Ke, Jianliang Xiong, Aisha Bibi, Rui Su, Dapeng Liang
    Abstract:

    In this study, a facile method based on molecularly imprinted polymers (MIPs) combined with internal extractive electrospray ionization tandem mass spectrometry (iEESI-MS/MS) was developed for the quantitative analysis of fluoroquinolones (FQs) in environmental water samples. FQ molecules in water samples were captured by the MIPs, which was retained on a 0.22 μm Syringe Filter. Then, an electrospray solution selected as the elution solution was employed to extract the FQs from the MIPs, getting an eluate of FQs for mass spectrometric interrogation. Under the optimized experimental conditions, low limits of detection (LODs, 0.015–0.026 μg L−1), with relative standard deviations (RSDs) less than 8.81% (n = 6) were obtained. The present method also provides good recoveries (91.14–103.60%) with acceptable precision (RSDs < 6.18%) and have no serious matrix effects for environmental water samples. The experimental results demonstrated that MIPs-iEESI-MS/MS has advantages including easy use, high speed (less than 3 min per sample) and high sensitivity for the analysis of FQs in environmental water samples, showing potential application in environmental science and water safety control.

Shuiping Yang - One of the best experts on this subject based on the ideXlab platform.

  • coupling of micro solid phase extraction and internal extractive electrospray ionization mass spectrometry for ultra sensitive detection of 1 hydroxypyrene and papaverine in human urine samples
    Analytical and Bioanalytical Chemistry, 2019
    Co-Authors: Rui Su, Debo Wu, Jiaquan Xu, Hua Zhang, Xiaoping Zhang, Shuiping Yang
    Abstract:

    Quantification of ultra-trace analytes in complex biological samples using micro-solid-phase extraction followed by direct detection with internal extractive electrospray ionization mass spectrometry (μSPE–iEESI–MS) was demonstrated. 1-Hydroxypyrene (1-OHP) and papaverine at attomole levels in human raw urine samples were analyzed under negative and positive ion detection mode, respectively. The μSPE was simply prepared by packing a disposable Syringe Filter with octadecyl carbon chain (C18)-bonded micro silica particles, which were then treated as the “bulk sample” after the analytes were efficiently enriched by the C18 particles. Under the optimized experimental conditions, the analytes were readily eluted by isopropanol/water (80/20, V/V) at a high voltage of ± 4.0 kV, producing analyte ions under ambient conditions. The limit of detection (LOD) was 0.02 pg/L (9.2 amol) for 1-hydroxypyrene and 0.02 pg/L (5.9 amol) for papaverine. The acceptable linearity (R2 > 0.99), signal stability (RSD ≤ 10.7%), spike recoveries (91–95%), and comparable results for real urine samples were also achieved, opening up possibilities for quantitative analysis of trace compounds (at attomole levels) in complex bio-samples.

Dapeng Liang - One of the best experts on this subject based on the ideXlab platform.

  • fast quantification of fluoroquinolones in environmental water samples using molecularly imprinted polymers coupled with internal extractive electrospray ionization mass spectrometry
    RSC Advances, 2018
    Co-Authors: Hua Zhang, Mufang Ke, Jianliang Xiong, Aisha Bibi, Rui Su, Dapeng Liang
    Abstract:

    In this study, a facile method based on molecularly imprinted polymers (MIPs) combined with internal extractive electrospray ionization tandem mass spectrometry (iEESI-MS/MS) was developed for the quantitative analysis of fluoroquinolones (FQs) in environmental water samples. FQ molecules in water samples were captured by the MIPs, which was retained on a 0.22 μm Syringe Filter. Then, an electrospray solution selected as the elution solution was employed to extract the FQs from the MIPs, getting an eluate of FQs for mass spectrometric interrogation. Under the optimized experimental conditions, low limits of detection (LODs, 0.015–0.026 μg L−1), with relative standard deviations (RSDs) less than 8.81% (n = 6) were obtained. The present method also provides good recoveries (91.14–103.60%) with acceptable precision (RSDs < 6.18%) and have no serious matrix effects for environmental water samples. The experimental results demonstrated that MIPs-iEESI-MS/MS has advantages including easy use, high speed (less than 3 min per sample) and high sensitivity for the analysis of FQs in environmental water samples, showing potential application in environmental science and water safety control.

Hong Miao - One of the best experts on this subject based on the ideXlab platform.

  • a novel dispersive micro solid phase extraction using pcx as the sorbent for the determination of melamine and cyromazine in milk and milk powder by uhplc hrms ms
    Talanta, 2015
    Co-Authors: Dawei Chen, Yunfeng Zhao, Hong Miao
    Abstract:

    Abstract A novel dispersive micro solid phase extraction (DMSPE) cleanup method based on the PCX sorbent (a kind of cation exchange polymer material) was applied to the analysis of melamine and cyromazine residues in milk and milk powder, and ultra high performance liquid chromatography-high resolution mass spectrometry (UHPLC–HRMS) was used as instrument detection. Milk powder samples were first extracted with 1% formic acid in acetonitrile/water (1:1 v/v), and milk samples were cleaned up directly without any pre-extraction. Then, melamine and cyromazine in the extracts or milk were adsorbed to the PCX powder. Subsequently, the analytes in PCX sorbent were eluted with ammonium hydroxide/acetonitrile (2.5:97.5 v/v) through a simple unit device equipped with 1 mL Syringe and 0.22 μm nylon Syringe Filter. All the samples were analyzed by UHPLC–HRMS/MS on a Waters Acquity BEH HILIC column with 0.1% formic acid and 4 mM ammonium formate in water/acetonitrile as the mobile phase with gradient elution. The matrix effect, recovery, and repeatability, within laboratory reproducibility, CCα and CCβ of the DMSPE cleanup method were investigated. The proposed method provided a significant improvement for the determination of melamine and cyromazine in milk and milk powder in terms of efficient, rapid, economical, and miniaturized sample preparation methods, which yielded fewer matrix effects compared with SPE method. The established cleanup method is expected to be widely applied for the sample preparation of alkaline contaminants at trace levels in the future.

  • Novel Dispersive Micro-Solid-Phase Extraction Combined with Ultrahigh-Performance Liquid Chromatography–High-Resolution Mass Spectrometry To Determine Morpholine Residues in Citrus and Apples
    2015
    Co-Authors: Dawei Chen, Hong Miao, Jianhong Zou, Pei Cao, Yunfeng Zhao
    Abstract:

    This paper presents a new analytical method for the determination of morpholine residues in citrus and apples using a novel dispersive micro-solid-phase extraction (DMSPE), followed by ultrahigh-performance liquid chromatography–high-resolution mass spectrometry (UHPLC–HRMS). Samples were extracted with 1% formic acid in acetonitrile/water (1:1, v/v) and then cleaned up using the DMSPE procedure. Morpholine from the extract was adsorbed to a polymer cation exchange sorbent and eluted with ammonium hydroxide/acetonitrile (3:97, v/v) through a 1 mL Syringe with a 0.22 μm nylon Syringe Filter. All of the samples were analyzed by UHPLC–HRMS/MS on a Waters Acquity BEH hydrophilic interaction chromatography column using 0.1% formic acid and 4 mM ammonium formate in water/acetonitrile as the mobile phase with gradient elution. The method showed good linearity (R2 > 0.999) in the range of 1–100 μg/L for the analyte. The limit of detection and limit of quantitation values of morpholine were 2 and 5 μg/kg, respectively. The average recoveries of morpholine from the citrus and apple samples spiked at three different concentrations (5, 20, and 100 μg/kg) were in a range from 78.4 to 102.7%