Tai Forest Ebolavirus

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 48 Experts worldwide ranked by ideXlab platform

Shane Massey - One of the best experts on this subject based on the ideXlab platform.

  • filovirus virulence in interferon α β and γ double knockout mice and treatment with favipiravir
    Viruses, 2019
    Co-Authors: Jaso E Come, Terry L. Juelich, David Perez, Olivie Escaffre, Natasha Neef, Trevo Asel, Jennife K Smith, Jeano N Smith, Irte Kalveram, Shane Massey
    Abstract:

    The 2014 Ebolavirus outbreak in West Africa highlighted the need for vaccines and therapeutics to prevent and treat filovirus infections. A well-characterized small animal model that is susceptible to wild-type filoviruses would facilitate the screening of anti-filovirus agents. To that end, we characterized knockout mice lacking α/β and γ interferon receptors (IFNAGR KO) as a model for wild-type filovirus infection. Intraperitoneal challenge of IFNAGR KO mice with several known human pathogenic species from the genus Ebolavirus and Marburgvirus, except Bundibugyo Ebolavirus and Tai Forest Ebolavirus, caused variable mortality rate. Further characterization of the prototype Ebola virus Kikwit isolate infection in this KO mouse model showed 100% lethality down to a dilution equivalent to 1.0 × 10−1 pfu with all deaths occurring between 7 and 9 days post-challenge. Viral RNA was detectable in serum after challenge with 1.0 × 102 pfu as early as one day after infection. Changes in hematology and serum chemistry became pronounced as the disease progressed and mirrored the histological changes in the spleen and liver that were also consistent with those described for patients with Ebola virus disease. In a proof-of-principle study, treatment of Ebola virus infected IFNAGR KO mice with favipiravir resulted in 83% protection. Taken together, the data suggest that IFNAGR KO mice may be a useful model for early screening of anti-filovirus medical countermeasures.

  • Filovirus Virulence in Interferon α/β and γ Double Knockout Mice, and Treatment with Favipiravir
    Viruses, 2019
    Co-Authors: Jason E. Comer, Birte Kalveram, Terry L. Juelich, David Perez, Olivie Escaffre, Natasha Neef, Jennife K Smith, Jeano N Smith, Trevor Brasel, Shane Massey
    Abstract:

    The 2014 Ebolavirus outbreak in West Africa highlighted the need for vaccines and therapeutics to prevent and treat filovirus infections. A well-characterized small animal model that is susceptible to wild-type filoviruses would facilitate the screening of anti-filovirus agents. To that end, we characterized knockout mice lacking α/β and γ interferon receptors (IFNAGR KO) as a model for wild-type filovirus infection. Intraperitoneal challenge of IFNAGR KO mice with several known human pathogenic species from the genus Ebolavirus and Marburgvirus, except Bundibugyo Ebolavirus and Tai Forest Ebolavirus, caused variable mortality rate. Further characterization of the prototype Ebola virus Kikwit isolate infection in this KO mouse model showed 100% lethality down to a dilution equivalent to 1.0 × 10-1 pfu with all deaths occurring between 7 and 9 days post-challenge. Viral RNA was detectable in serum after challenge with 1.0 × 10² pfu as early as one day after infection. Changes in hematology and serum chemistry became pronounced as the disease progressed and mirrored the histological changes in the spleen and liver that were also consistent with those described for patients with Ebola virus disease. In a proof-of-principle study, treatment of Ebola virus infected IFNAGR KO mice with favipiravir resulted in 83% protection. Taken together, the data suggest that IFNAGR KO mice may be a useful model for early screening of anti-filovirus medical countermeasures.

Jeano N Smith - One of the best experts on this subject based on the ideXlab platform.

  • filovirus virulence in interferon α β and γ double knockout mice and treatment with favipiravir
    Viruses, 2019
    Co-Authors: Jaso E Come, Terry L. Juelich, David Perez, Olivie Escaffre, Natasha Neef, Trevo Asel, Jennife K Smith, Jeano N Smith, Irte Kalveram, Shane Massey
    Abstract:

    The 2014 Ebolavirus outbreak in West Africa highlighted the need for vaccines and therapeutics to prevent and treat filovirus infections. A well-characterized small animal model that is susceptible to wild-type filoviruses would facilitate the screening of anti-filovirus agents. To that end, we characterized knockout mice lacking α/β and γ interferon receptors (IFNAGR KO) as a model for wild-type filovirus infection. Intraperitoneal challenge of IFNAGR KO mice with several known human pathogenic species from the genus Ebolavirus and Marburgvirus, except Bundibugyo Ebolavirus and Tai Forest Ebolavirus, caused variable mortality rate. Further characterization of the prototype Ebola virus Kikwit isolate infection in this KO mouse model showed 100% lethality down to a dilution equivalent to 1.0 × 10−1 pfu with all deaths occurring between 7 and 9 days post-challenge. Viral RNA was detectable in serum after challenge with 1.0 × 102 pfu as early as one day after infection. Changes in hematology and serum chemistry became pronounced as the disease progressed and mirrored the histological changes in the spleen and liver that were also consistent with those described for patients with Ebola virus disease. In a proof-of-principle study, treatment of Ebola virus infected IFNAGR KO mice with favipiravir resulted in 83% protection. Taken together, the data suggest that IFNAGR KO mice may be a useful model for early screening of anti-filovirus medical countermeasures.

  • Filovirus Virulence in Interferon α/β and γ Double Knockout Mice, and Treatment with Favipiravir
    Viruses, 2019
    Co-Authors: Jason E. Comer, Birte Kalveram, Terry L. Juelich, David Perez, Olivie Escaffre, Natasha Neef, Jennife K Smith, Jeano N Smith, Trevor Brasel, Shane Massey
    Abstract:

    The 2014 Ebolavirus outbreak in West Africa highlighted the need for vaccines and therapeutics to prevent and treat filovirus infections. A well-characterized small animal model that is susceptible to wild-type filoviruses would facilitate the screening of anti-filovirus agents. To that end, we characterized knockout mice lacking α/β and γ interferon receptors (IFNAGR KO) as a model for wild-type filovirus infection. Intraperitoneal challenge of IFNAGR KO mice with several known human pathogenic species from the genus Ebolavirus and Marburgvirus, except Bundibugyo Ebolavirus and Tai Forest Ebolavirus, caused variable mortality rate. Further characterization of the prototype Ebola virus Kikwit isolate infection in this KO mouse model showed 100% lethality down to a dilution equivalent to 1.0 × 10-1 pfu with all deaths occurring between 7 and 9 days post-challenge. Viral RNA was detectable in serum after challenge with 1.0 × 10² pfu as early as one day after infection. Changes in hematology and serum chemistry became pronounced as the disease progressed and mirrored the histological changes in the spleen and liver that were also consistent with those described for patients with Ebola virus disease. In a proof-of-principle study, treatment of Ebola virus infected IFNAGR KO mice with favipiravir resulted in 83% protection. Taken together, the data suggest that IFNAGR KO mice may be a useful model for early screening of anti-filovirus medical countermeasures.

Jennife K Smith - One of the best experts on this subject based on the ideXlab platform.

  • filovirus virulence in interferon α β and γ double knockout mice and treatment with favipiravir
    Viruses, 2019
    Co-Authors: Jaso E Come, Terry L. Juelich, David Perez, Olivie Escaffre, Natasha Neef, Trevo Asel, Jennife K Smith, Jeano N Smith, Irte Kalveram, Shane Massey
    Abstract:

    The 2014 Ebolavirus outbreak in West Africa highlighted the need for vaccines and therapeutics to prevent and treat filovirus infections. A well-characterized small animal model that is susceptible to wild-type filoviruses would facilitate the screening of anti-filovirus agents. To that end, we characterized knockout mice lacking α/β and γ interferon receptors (IFNAGR KO) as a model for wild-type filovirus infection. Intraperitoneal challenge of IFNAGR KO mice with several known human pathogenic species from the genus Ebolavirus and Marburgvirus, except Bundibugyo Ebolavirus and Tai Forest Ebolavirus, caused variable mortality rate. Further characterization of the prototype Ebola virus Kikwit isolate infection in this KO mouse model showed 100% lethality down to a dilution equivalent to 1.0 × 10−1 pfu with all deaths occurring between 7 and 9 days post-challenge. Viral RNA was detectable in serum after challenge with 1.0 × 102 pfu as early as one day after infection. Changes in hematology and serum chemistry became pronounced as the disease progressed and mirrored the histological changes in the spleen and liver that were also consistent with those described for patients with Ebola virus disease. In a proof-of-principle study, treatment of Ebola virus infected IFNAGR KO mice with favipiravir resulted in 83% protection. Taken together, the data suggest that IFNAGR KO mice may be a useful model for early screening of anti-filovirus medical countermeasures.

  • Filovirus Virulence in Interferon α/β and γ Double Knockout Mice, and Treatment with Favipiravir
    Viruses, 2019
    Co-Authors: Jason E. Comer, Birte Kalveram, Terry L. Juelich, David Perez, Olivie Escaffre, Natasha Neef, Jennife K Smith, Jeano N Smith, Trevor Brasel, Shane Massey
    Abstract:

    The 2014 Ebolavirus outbreak in West Africa highlighted the need for vaccines and therapeutics to prevent and treat filovirus infections. A well-characterized small animal model that is susceptible to wild-type filoviruses would facilitate the screening of anti-filovirus agents. To that end, we characterized knockout mice lacking α/β and γ interferon receptors (IFNAGR KO) as a model for wild-type filovirus infection. Intraperitoneal challenge of IFNAGR KO mice with several known human pathogenic species from the genus Ebolavirus and Marburgvirus, except Bundibugyo Ebolavirus and Tai Forest Ebolavirus, caused variable mortality rate. Further characterization of the prototype Ebola virus Kikwit isolate infection in this KO mouse model showed 100% lethality down to a dilution equivalent to 1.0 × 10-1 pfu with all deaths occurring between 7 and 9 days post-challenge. Viral RNA was detectable in serum after challenge with 1.0 × 10² pfu as early as one day after infection. Changes in hematology and serum chemistry became pronounced as the disease progressed and mirrored the histological changes in the spleen and liver that were also consistent with those described for patients with Ebola virus disease. In a proof-of-principle study, treatment of Ebola virus infected IFNAGR KO mice with favipiravir resulted in 83% protection. Taken together, the data suggest that IFNAGR KO mice may be a useful model for early screening of anti-filovirus medical countermeasures.

Natasha Neef - One of the best experts on this subject based on the ideXlab platform.

  • filovirus virulence in interferon α β and γ double knockout mice and treatment with favipiravir
    Viruses, 2019
    Co-Authors: Jaso E Come, Terry L. Juelich, David Perez, Olivie Escaffre, Natasha Neef, Trevo Asel, Jennife K Smith, Jeano N Smith, Irte Kalveram, Shane Massey
    Abstract:

    The 2014 Ebolavirus outbreak in West Africa highlighted the need for vaccines and therapeutics to prevent and treat filovirus infections. A well-characterized small animal model that is susceptible to wild-type filoviruses would facilitate the screening of anti-filovirus agents. To that end, we characterized knockout mice lacking α/β and γ interferon receptors (IFNAGR KO) as a model for wild-type filovirus infection. Intraperitoneal challenge of IFNAGR KO mice with several known human pathogenic species from the genus Ebolavirus and Marburgvirus, except Bundibugyo Ebolavirus and Tai Forest Ebolavirus, caused variable mortality rate. Further characterization of the prototype Ebola virus Kikwit isolate infection in this KO mouse model showed 100% lethality down to a dilution equivalent to 1.0 × 10−1 pfu with all deaths occurring between 7 and 9 days post-challenge. Viral RNA was detectable in serum after challenge with 1.0 × 102 pfu as early as one day after infection. Changes in hematology and serum chemistry became pronounced as the disease progressed and mirrored the histological changes in the spleen and liver that were also consistent with those described for patients with Ebola virus disease. In a proof-of-principle study, treatment of Ebola virus infected IFNAGR KO mice with favipiravir resulted in 83% protection. Taken together, the data suggest that IFNAGR KO mice may be a useful model for early screening of anti-filovirus medical countermeasures.

  • Filovirus Virulence in Interferon α/β and γ Double Knockout Mice, and Treatment with Favipiravir
    Viruses, 2019
    Co-Authors: Jason E. Comer, Birte Kalveram, Terry L. Juelich, David Perez, Olivie Escaffre, Natasha Neef, Jennife K Smith, Jeano N Smith, Trevor Brasel, Shane Massey
    Abstract:

    The 2014 Ebolavirus outbreak in West Africa highlighted the need for vaccines and therapeutics to prevent and treat filovirus infections. A well-characterized small animal model that is susceptible to wild-type filoviruses would facilitate the screening of anti-filovirus agents. To that end, we characterized knockout mice lacking α/β and γ interferon receptors (IFNAGR KO) as a model for wild-type filovirus infection. Intraperitoneal challenge of IFNAGR KO mice with several known human pathogenic species from the genus Ebolavirus and Marburgvirus, except Bundibugyo Ebolavirus and Tai Forest Ebolavirus, caused variable mortality rate. Further characterization of the prototype Ebola virus Kikwit isolate infection in this KO mouse model showed 100% lethality down to a dilution equivalent to 1.0 × 10-1 pfu with all deaths occurring between 7 and 9 days post-challenge. Viral RNA was detectable in serum after challenge with 1.0 × 10² pfu as early as one day after infection. Changes in hematology and serum chemistry became pronounced as the disease progressed and mirrored the histological changes in the spleen and liver that were also consistent with those described for patients with Ebola virus disease. In a proof-of-principle study, treatment of Ebola virus infected IFNAGR KO mice with favipiravir resulted in 83% protection. Taken together, the data suggest that IFNAGR KO mice may be a useful model for early screening of anti-filovirus medical countermeasures.

Olivie Escaffre - One of the best experts on this subject based on the ideXlab platform.

  • filovirus virulence in interferon α β and γ double knockout mice and treatment with favipiravir
    Viruses, 2019
    Co-Authors: Jaso E Come, Terry L. Juelich, David Perez, Olivie Escaffre, Natasha Neef, Trevo Asel, Jennife K Smith, Jeano N Smith, Irte Kalveram, Shane Massey
    Abstract:

    The 2014 Ebolavirus outbreak in West Africa highlighted the need for vaccines and therapeutics to prevent and treat filovirus infections. A well-characterized small animal model that is susceptible to wild-type filoviruses would facilitate the screening of anti-filovirus agents. To that end, we characterized knockout mice lacking α/β and γ interferon receptors (IFNAGR KO) as a model for wild-type filovirus infection. Intraperitoneal challenge of IFNAGR KO mice with several known human pathogenic species from the genus Ebolavirus and Marburgvirus, except Bundibugyo Ebolavirus and Tai Forest Ebolavirus, caused variable mortality rate. Further characterization of the prototype Ebola virus Kikwit isolate infection in this KO mouse model showed 100% lethality down to a dilution equivalent to 1.0 × 10−1 pfu with all deaths occurring between 7 and 9 days post-challenge. Viral RNA was detectable in serum after challenge with 1.0 × 102 pfu as early as one day after infection. Changes in hematology and serum chemistry became pronounced as the disease progressed and mirrored the histological changes in the spleen and liver that were also consistent with those described for patients with Ebola virus disease. In a proof-of-principle study, treatment of Ebola virus infected IFNAGR KO mice with favipiravir resulted in 83% protection. Taken together, the data suggest that IFNAGR KO mice may be a useful model for early screening of anti-filovirus medical countermeasures.

  • Filovirus Virulence in Interferon α/β and γ Double Knockout Mice, and Treatment with Favipiravir
    Viruses, 2019
    Co-Authors: Jason E. Comer, Birte Kalveram, Terry L. Juelich, David Perez, Olivie Escaffre, Natasha Neef, Jennife K Smith, Jeano N Smith, Trevor Brasel, Shane Massey
    Abstract:

    The 2014 Ebolavirus outbreak in West Africa highlighted the need for vaccines and therapeutics to prevent and treat filovirus infections. A well-characterized small animal model that is susceptible to wild-type filoviruses would facilitate the screening of anti-filovirus agents. To that end, we characterized knockout mice lacking α/β and γ interferon receptors (IFNAGR KO) as a model for wild-type filovirus infection. Intraperitoneal challenge of IFNAGR KO mice with several known human pathogenic species from the genus Ebolavirus and Marburgvirus, except Bundibugyo Ebolavirus and Tai Forest Ebolavirus, caused variable mortality rate. Further characterization of the prototype Ebola virus Kikwit isolate infection in this KO mouse model showed 100% lethality down to a dilution equivalent to 1.0 × 10-1 pfu with all deaths occurring between 7 and 9 days post-challenge. Viral RNA was detectable in serum after challenge with 1.0 × 10² pfu as early as one day after infection. Changes in hematology and serum chemistry became pronounced as the disease progressed and mirrored the histological changes in the spleen and liver that were also consistent with those described for patients with Ebola virus disease. In a proof-of-principle study, treatment of Ebola virus infected IFNAGR KO mice with favipiravir resulted in 83% protection. Taken together, the data suggest that IFNAGR KO mice may be a useful model for early screening of anti-filovirus medical countermeasures.