Tetraconata

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 129 Experts worldwide ranked by ideXlab platform

David A T Harper - One of the best experts on this subject based on the ideXlab platform.

  • arthroaspis n gen a common element of the sirius passet lagerstatte cambrian north greenland sheds light on trilobite ancestry
    BMC Evolutionary Biology, 2013
    Co-Authors: Martin Stein, Graham E. Budd, John S Peel, David A T Harper
    Abstract:

    Exceptionally preserved Palaeozoic faunas have yielded a plethora of trilobite-like arthropods, often referred to as lamellipedians. Among these, Artiopoda is supposed to contain taxa united by a distinctive appendage structure. This includes several well supported groups, Helmetiida, Nektaspida, and Trilobita, as well as a number of problematic taxa. Interrelationships remain unclear, and the position of the lamellipedian arthropods as a whole also remains the subject of debate. Arthroaspis bergstroemi n. gen. n. sp., a new arthropod from the early Cambrian Sirius Passet Lagerstatte of North Greenland shows a striking combination of both dorsal and ventral characters of Helmetiida, Nektaspida, and Trilobita. Cladistic analysis with a broad taxon sampling of predominantly early Palaeozoic arthropods yields a monophyletic Lamellipedia as sister taxon to the Crustacea or Tetraconata. Artiopoda is resolved as paraphyletic, giving rise to the Marrellomorpha. Within Lamellipedia, a clade of pygidium bearing taxa is resolved that can be shown to have a broadly helmetiid-like tergite morphology in its ground pattern. This morphology is plesiomorphically retained in Helmetiida and in Arthroaspis, which falls basally into a clade containing Trilobita. The trilobite appendages, though similar to those of other lamellipedians in gross morphology, have a unique outward rotation of the anterior trunk appendages, resulting in a ‘hard wired’ lateral splay, different to that observed in other Lamellipedia. The combination of helmetiid, trilobite, and nektaspid characters in Arthroaspis gives important hints concerning character polarisation within the trilobite-like arthropods. The distinctive tergite morphology of trilobites, with its sophisticated articulating devices, is derived from flanged edge-to-edge articulating tergites forming a shield similar to the helmetiids, previously considered autapomorphic for that group. The stereotypical lateral splay of the appendages of lamellipedians is a homoplastic character shown to be achieved by several groups independently.

Graham E. Budd - One of the best experts on this subject based on the ideXlab platform.

  • arthroaspis n gen a common element of the sirius passet lagerstatte cambrian north greenland sheds light on trilobite ancestry
    BMC Evolutionary Biology, 2013
    Co-Authors: Martin Stein, Graham E. Budd, John S Peel, David A T Harper
    Abstract:

    Exceptionally preserved Palaeozoic faunas have yielded a plethora of trilobite-like arthropods, often referred to as lamellipedians. Among these, Artiopoda is supposed to contain taxa united by a distinctive appendage structure. This includes several well supported groups, Helmetiida, Nektaspida, and Trilobita, as well as a number of problematic taxa. Interrelationships remain unclear, and the position of the lamellipedian arthropods as a whole also remains the subject of debate. Arthroaspis bergstroemi n. gen. n. sp., a new arthropod from the early Cambrian Sirius Passet Lagerstatte of North Greenland shows a striking combination of both dorsal and ventral characters of Helmetiida, Nektaspida, and Trilobita. Cladistic analysis with a broad taxon sampling of predominantly early Palaeozoic arthropods yields a monophyletic Lamellipedia as sister taxon to the Crustacea or Tetraconata. Artiopoda is resolved as paraphyletic, giving rise to the Marrellomorpha. Within Lamellipedia, a clade of pygidium bearing taxa is resolved that can be shown to have a broadly helmetiid-like tergite morphology in its ground pattern. This morphology is plesiomorphically retained in Helmetiida and in Arthroaspis, which falls basally into a clade containing Trilobita. The trilobite appendages, though similar to those of other lamellipedians in gross morphology, have a unique outward rotation of the anterior trunk appendages, resulting in a ‘hard wired’ lateral splay, different to that observed in other Lamellipedia. The combination of helmetiid, trilobite, and nektaspid characters in Arthroaspis gives important hints concerning character polarisation within the trilobite-like arthropods. The distinctive tergite morphology of trilobites, with its sophisticated articulating devices, is derived from flanged edge-to-edge articulating tergites forming a shield similar to the helmetiids, previously considered autapomorphic for that group. The stereotypical lateral splay of the appendages of lamellipedians is a homoplastic character shown to be achieved by several groups independently.

  • Gene expression patterns in an onychophoran reveal that regionalization predates limb segmentation in pan-arthropods
    Evolution & development, 2010
    Co-Authors: Ralf Janssen, Bo Joakim Eriksson, Graham E. Budd, Michael Akam, Nikola-michael Prpic
    Abstract:

    In arthropods, such as Drosophila melanogaster, the leg gap genes homothorax (hth), extradenticle (exd), dachshund (dac), and Distal-less (Dll) regionalize the legs in order to facilitate the subsequent segmentation of the legs. We have isolated homologs of all four leg gap genes from the onychophoran Euperipatoides kanangrensis and have studied their expression. We show that leg regionalization takes place in the legs of onychophorans even though they represent simple and nonsegmented appendages. This implies that leg regionalization evolved for a different function and was only later co-opted for a role in leg segmentation. We also show that the leg gap gene patterns in onychophorans (especially of hth and exd) are similar to the patterns in crustaceans and insects, suggesting that this is the plesiomorphic state in arthropods. The reversed hth and exd patterns in chelicerates and myriapods are therefore an apomorphy for this group, the Myriochelata, lending support to the Myriochelata and Tetraconata clades in arthropod phylogeny.

Gonzalo Giribet - One of the best experts on this subject based on the ideXlab platform.

  • Tetraconatan phylogeny with special focus on malacostraca and branchiopoda highlighting the strength of taxon specific matrices in phylogenomics
    Proceedings of The Royal Society B: Biological Sciences, 2018
    Co-Authors: Stefan Richter, Martin Schwentner, Christopher D Rogers, Gonzalo Giribet
    Abstract:

    Understanding the evolution of Tetraconata or Pancrustacea—the clade that includes crustaceans and insects—requires a well-resolved hypothesis regarding the relationships within and among its const...

  • Figures S1 and S2 from Tetraconatan phylogeny with special focus on Malacostraca and Branchiopoda: highlighting the strength of taxon-specific matrices in phylogenomics
    2018
    Co-Authors: Martin Schwentner, Stefan Richter, Christopher D Rogers, Gonzalo Giribet
    Abstract:

    Figure S1: Work-flow of transcriptome sequencing and phylogenomic analyses.; Figure S2: Phylogenetic relationships within Tetraconata inferred by PhyloBayes CAT-GTR with Matrix 4 (455 decisive genes). Support values for all analyses are depicted as rug plots, with each cell representing a specific combination of matrix and analytical method. Nodes supported in only one of two PhyloBayes chains are marked in yellow (the two PhyloBayes chains did not converge for these nodes). Individuals newly sequenced for this study are highlighted in bold. This is the same phylogenetic tree depicted in Fig. 1, but with all nodes within Malacostraca and Branchiopoda shown

  • reevaluating the arthropod tree of life
    Annual Review of Entomology, 2012
    Co-Authors: Gonzalo Giribet, Gregory D. Edgecombe
    Abstract:

    Arthropods are the most diverse group of animals and have been so since the Cambrian radiation. They belong to the protostome clade Ecdysozoa, with Onychophora (velvet worms) as their most likely sister group and tardigrades (water bears) the next closest relative. The arthropod tree of life can be interpreted as a five-taxon network, containing Pycnogonida, Euchelicerata, Myriapoda, Crustacea, and Hexapoda, the last two forming the clade Tetraconata or Pancrustacea. The unrooted relationship of Tetra- conata to the three other lineages is well established, but of three possible rooting positions the Mandibulata hypothesis receives the most support. Novel approaches to studying anatomy with noninvasive three-dimensional reconstruction techniques, the application of these techniques to new and old fossils, and the so-called next-generation sequencing techniques are at the forefront of understanding arthropod relationships. Cambrian fossils assigned to the arthropod stem group inform on the origin of arthropod characters from a lobopodian ancestry. Monophyly of Pycnogonida, Euche- licerata, Myriapoda, Tetraconata, and Hexapoda is well supported, but the interrelationships of arachnid orders and the details of crustacean paraphyly with respect to Hexapoda remain the major unsolved phylogenetic problems.

  • the position of crustaceans within arthropoda evidence from nine molecular loci and morphology
    2010
    Co-Authors: Gonzalo Giribet, Gregory D. Edgecombe, Stefan Richter, C Wheeler
    Abstract:

    The monophyly of Crustacea, relationships of crustaceans to other arthropods, and internal phylogeny of Crustacea are appraised via parsimony analysis in a total evidence framework. Data include sequences from three nuclear ribosomal genes, four nuclear coding genes, and two mitochondrial genes, together with 352 characters from external morphology, internal anatomy, development, and mitochondrial gene order. Subjecting the combined data set to 20 different parameter sets for variable gap and transversion costs, crustaceans group with hexapods in Tetraconata across nearly all explored parameter space, and are members of a monophyletic Mandibulata across much of the parameter space. Crustacea is non-monophyletic at low indel costs, but monophyly is favored at higher indel costs, at which morphology exerts a greater influence. The most stable higher-level crustacean groupings are Malacostraca, Branchiopoda, Branchiura + Pentastomida, and an ostracod-cirripede group. For combined data, the Thoracopoda and Maxillopoda concepts are unsupported, and Entomostraca is only retrieved under parameter sets of low congruence. Most of the current disagreement over deep divisions in Arthropoda (e.g., Mandibulata versus Paradoxopoda or Cormogonida versus Chelicerata) can be viewed as uncertainty regarding the position of the root in the arthropod cladogram rather than as fundamental topological disagreement as supported in earlier studies (e.g., Schizoramia versus Mandibulata or Atelocerata versus Tetraconata).

Martin Stein - One of the best experts on this subject based on the ideXlab platform.

  • arthroaspis n gen a common element of the sirius passet lagerstatte cambrian north greenland sheds light on trilobite ancestry
    BMC Evolutionary Biology, 2013
    Co-Authors: Martin Stein, Graham E. Budd, John S Peel, David A T Harper
    Abstract:

    Exceptionally preserved Palaeozoic faunas have yielded a plethora of trilobite-like arthropods, often referred to as lamellipedians. Among these, Artiopoda is supposed to contain taxa united by a distinctive appendage structure. This includes several well supported groups, Helmetiida, Nektaspida, and Trilobita, as well as a number of problematic taxa. Interrelationships remain unclear, and the position of the lamellipedian arthropods as a whole also remains the subject of debate. Arthroaspis bergstroemi n. gen. n. sp., a new arthropod from the early Cambrian Sirius Passet Lagerstatte of North Greenland shows a striking combination of both dorsal and ventral characters of Helmetiida, Nektaspida, and Trilobita. Cladistic analysis with a broad taxon sampling of predominantly early Palaeozoic arthropods yields a monophyletic Lamellipedia as sister taxon to the Crustacea or Tetraconata. Artiopoda is resolved as paraphyletic, giving rise to the Marrellomorpha. Within Lamellipedia, a clade of pygidium bearing taxa is resolved that can be shown to have a broadly helmetiid-like tergite morphology in its ground pattern. This morphology is plesiomorphically retained in Helmetiida and in Arthroaspis, which falls basally into a clade containing Trilobita. The trilobite appendages, though similar to those of other lamellipedians in gross morphology, have a unique outward rotation of the anterior trunk appendages, resulting in a ‘hard wired’ lateral splay, different to that observed in other Lamellipedia. The combination of helmetiid, trilobite, and nektaspid characters in Arthroaspis gives important hints concerning character polarisation within the trilobite-like arthropods. The distinctive tergite morphology of trilobites, with its sophisticated articulating devices, is derived from flanged edge-to-edge articulating tergites forming a shield similar to the helmetiids, previously considered autapomorphic for that group. The stereotypical lateral splay of the appendages of lamellipedians is a homoplastic character shown to be achieved by several groups independently.

Gregory D. Edgecombe - One of the best experts on this subject based on the ideXlab platform.

  • reevaluating the arthropod tree of life
    Annual Review of Entomology, 2012
    Co-Authors: Gonzalo Giribet, Gregory D. Edgecombe
    Abstract:

    Arthropods are the most diverse group of animals and have been so since the Cambrian radiation. They belong to the protostome clade Ecdysozoa, with Onychophora (velvet worms) as their most likely sister group and tardigrades (water bears) the next closest relative. The arthropod tree of life can be interpreted as a five-taxon network, containing Pycnogonida, Euchelicerata, Myriapoda, Crustacea, and Hexapoda, the last two forming the clade Tetraconata or Pancrustacea. The unrooted relationship of Tetra- conata to the three other lineages is well established, but of three possible rooting positions the Mandibulata hypothesis receives the most support. Novel approaches to studying anatomy with noninvasive three-dimensional reconstruction techniques, the application of these techniques to new and old fossils, and the so-called next-generation sequencing techniques are at the forefront of understanding arthropod relationships. Cambrian fossils assigned to the arthropod stem group inform on the origin of arthropod characters from a lobopodian ancestry. Monophyly of Pycnogonida, Euche- licerata, Myriapoda, Tetraconata, and Hexapoda is well supported, but the interrelationships of arachnid orders and the details of crustacean paraphyly with respect to Hexapoda remain the major unsolved phylogenetic problems.

  • arthropod phylogeny an overview from the perspectives of morphology molecular data and the fossil record
    Arthropod Structure & Development, 2010
    Co-Authors: Gregory D. Edgecombe
    Abstract:

    Abstract Monophyly of Arthropoda is emphatically supported from both morphological and molecular perspectives. Recent work finds Onychophora rather than Tardigrada to be the closest relatives of arthropods. The status of tardigrades as panarthropods (rather than cycloneuralians) is contentious from the perspective of phylogenomic data. A grade of Cambrian taxa in the arthropod stem group includes gilled lobopodians, dinocaridids (e.g., anomalocaridids), fuxianhuiids and canadaspidids that inform on character acquisition between Onychophora and the arthropod crown group. A sister group relationship between Crustacea (itself likely paraphyletic) and Hexapoda is retrieved by diverse kinds of molecular data and is well supported by neuroanatomy. This clade, Tetraconata, can be dated to the early Cambrian by crown group-type mandibles. The rival Atelocerata hypothesis (Myriapoda + Hexapoda) has no molecular support. The basal node in the arthropod crown group is embroiled in a controversy over whether myriapods unite with chelicerates (Paradoxopoda or Myriochelata) or with crustaceans and hexapods (Mandibulata). Both groups find some molecular and morphological support, though Mandibulata is presently the stronger morphological hypothesis. Either hypothesis forces an unsampled ghost lineage for Myriapoda from the Cambrian to the mid Silurian.

  • the position of crustaceans within arthropoda evidence from nine molecular loci and morphology
    2010
    Co-Authors: Gonzalo Giribet, Gregory D. Edgecombe, Stefan Richter, C Wheeler
    Abstract:

    The monophyly of Crustacea, relationships of crustaceans to other arthropods, and internal phylogeny of Crustacea are appraised via parsimony analysis in a total evidence framework. Data include sequences from three nuclear ribosomal genes, four nuclear coding genes, and two mitochondrial genes, together with 352 characters from external morphology, internal anatomy, development, and mitochondrial gene order. Subjecting the combined data set to 20 different parameter sets for variable gap and transversion costs, crustaceans group with hexapods in Tetraconata across nearly all explored parameter space, and are members of a monophyletic Mandibulata across much of the parameter space. Crustacea is non-monophyletic at low indel costs, but monophyly is favored at higher indel costs, at which morphology exerts a greater influence. The most stable higher-level crustacean groupings are Malacostraca, Branchiopoda, Branchiura + Pentastomida, and an ostracod-cirripede group. For combined data, the Thoracopoda and Maxillopoda concepts are unsupported, and Entomostraca is only retrieved under parameter sets of low congruence. Most of the current disagreement over deep divisions in Arthropoda (e.g., Mandibulata versus Paradoxopoda or Cormogonida versus Chelicerata) can be viewed as uncertainty regarding the position of the root in the arthropod cladogram rather than as fundamental topological disagreement as supported in earlier studies (e.g., Schizoramia versus Mandibulata or Atelocerata versus Tetraconata).

  • Morphological data, extant Myriapoda, and the myriapod stem-group
    Contributions to Zoology, 2004
    Co-Authors: Gregory D. Edgecombe
    Abstract:

    The status of Myriapoda (whether mono-, para- or polyphyletic) and position of myriapods in the Arthropoda are controversial, an impediment to evaluating fossils that may be members of the myriapod stem-group. Parsimony analysis of 319 characters for extant arthropods provides a basis for defending myriapod monophyly and identifying those morphological characters that are necessary to assign a fossil taxon to the Myriapoda. The alliance of hexapods and crustaceans need not relegate myriapods to the arthropod stem-group; the Mandibulata hypothesis accommodates Myriapoda and Tetraconata as sister taxa. No known pre-Silurian fossils have characters that convincingly place them in the Myriapoda or the myriapod stem-group. Because the strongest apomorphies of Myriapoda are details of the mandible and tentorial endoskeleton, exceptional fossil preservation seems necessary to recognise a stem-group myriapod.