Thermal Impact

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 312 Experts worldwide ranked by ideXlab platform

Pieter J. Stuyfzand - One of the best experts on this subject based on the ideXlab platform.

  • The Thermal Impact of aquifer Thermal energy storage (ATES) systems: a case study in the Netherlands, combining monitoring and modeling
    Hydrogeology Journal, 2015
    Co-Authors: Philip W. Visser, Henk Kooi, Pieter J. Stuyfzand
    Abstract:

    ResumoSão apresentados os resultados de um estudo pormenorizado de Impactes termais num sistema de armazenamento de energia termal num aquífero (AETA) em Bilthoven, na Holanda. O estudo envolveu a monitorização do Impacte termal e a modelação tridimensional da evolução da temperatura no interior do aquífero e nas unidades superior e inferior. Uma atenção especial foi dada à não uniformidade da temperatura de base, a qual varia lateral e verticalmente no aquífero. Dois modelos foram aplicados, com diferentes níveis de pormenor em relação às condições iniciais e à heterogeneidade das propriedades hidráulicas e termais: um modelo heterogéneo de escala fina, que interpretou a distribuição lateral e vertical da temperatura mais realisticamente, e um modelo simplificado, que representou o sistema aquífero com apenas um número limitado de camadas homogéneas. A heterogeneidade de escala fina mostrou-se importante para modelar com precisão o Impacte da distribuição de temperatura vertical no AETA, as temperaturas máximas e mínimas no aquífero e a extensão espacial das plumas termais. O modelo heterogéneo de escala fina resultou em maiores áreas termalmente Impactadas e maiores anomalias de temperatura do que o modelo simplificado. Os modelos mostraram que os dados de monitorização dispersos e escassos das temperaturas induzidas pelo AETA podem ser interpretados de um modo útil por modelação de água subterrânea e de transporte de calor, resultando numa avaliação realista dos Impactes termais.抽象摘要:本文论述了荷兰Bilthoven一个含水层热能储存系统综合热影响的研究结果。研究包括对储存含水层及上覆和下伏单元进行热影响监测和三维温度演化模拟。特别注重背景温度的不均匀性,背景温度在含水层垂向和横向上变化很大。对于初始条件及水力和热特性的不均匀性,根据不同水平的详细情况,采用了两个模型:一个是能够更现实地分析横向和垂向温度分布的小尺度不均匀性模型,另一个是只能描述含水层系统有限若干个均匀层的简化模型。小尺度不均匀性显示其在准确模拟含水层热能储存影响的垂直温度分布、储存含水层内最大和最小温度以及热能羽空间分布中非常重要。与简化模型相比,小尺度不均匀性模型的结果显示出较大的热影响区域及较大的温度异常。模型显示,含水层热能储存感应温度方面零星、稀有的监测资料可以通过地下水和热量传输模拟以有益的方式得到解译,从而对热效果进行实事求是的评价.AbstractResults are presented of a comprehensive Thermal Impact study on an aquifer Thermal energy storage (ATES) system in Bilthoven, the Netherlands. The study involved monitoring of the Thermal Impact and modeling of the three-dimensional temperature evolution of the storage aquifer and over- and underlying units. Special attention was paid to non-uniformity of the background temperature, which varies laterally and vertically in the aquifer. Two models were applied with different levels of detail regarding initial conditions and heterogeneity of hydraulic and Thermal properties: a fine-scale heterogeneity model which construed the lateral and vertical temperature distribution more realistically, and a simplified model which represented the aquifer system with only a limited number of homogeneous layers. Fine-scale heterogeneity was shown to be important to accurately model the ATES-Impacted vertical temperature distribution and the maximum and minimum temperatures in the storage aquifer, and the spatial extent of the Thermal plumes. The fine-scale heterogeneity model resulted in larger Thermally Impacted areas and larger temperature anomalies than the simplified model. The models showed that scattered and scarce monitoring data of ATES-induced temperatures can be interpreted in a useful way by groundwater and heat transport modeling, resulting in a realistic assessment of the Thermal Impact.ResumenSe presentan los resultados de un estudio integral del Impacto térmico en un sistema de almacenamiento de energía térmica en un acuífero (ATES) en Bilthoven, Países Bajos. El estudio implicó el monitoreo del Impacto térmico y el modelado tridimensional de la evolución de la temperatura del almacenamiento en el acuífero y en las unidades supra y subyacentes. Se prestó especial atención a la falta de uniformidad de la temperatura de fondo que varía lateral y verticalmente en el acuífero. Se aplicaron dos modelos con diferentes niveles de detalle considerando las condiciones iniciales y la heterogeneidad de las propiedades hidráulicas y térmicas: un modelo de heterogeneidad a escala fina que interpreta la distribución vertical y lateral de la temperatura de manera más realista, y un modelo simplificado que representa el sistema acuífero con sólo un número limitado de capas homogéneas. La heterogeneidad a escala fina mostró ser importante para modelar con precisión la distribución vertical del Impacto de la temperatura del ATES y las temperaturas mínimas y máximas en el almacenamiento del acuífero, y la extensión espacial de la pluma térmica. El modelo a escala fina de la heterogeneidad resultó en áreas térmicamente afectadas más grandes y anomalías de temperatura mayores que el modelo simplificado. Los modelos mostraron que los datos de monitoreo dispersos y escasos de temperaturas inducidas del ATES pueden ser interpretados en una forma útil para el modelado del transporte de agua subterránea y del calor, lo que resulta en una evaluación realista del Impacto térmico.RésuméLes résultats présentés ici sont ceux d'une étude d’Impact thermique complète d’un système de stockage d’énergie thermique en aquifère (ATES) à Bilthoven en Hollande. L'étude a impliqué la surveillance de l'Impact thermique et la modélisation de l'évolution tridimensionnelle de la température de la couche aquifère et des unités sus- et sous-jacentes. Une particulière attention a été prêtée à l'irrégularité de la température de fond qui change latéralement et verticalement dans la couche aquifère. Deux modèles ont été appliqués avec différents niveaux du détail concernant les conditions initiales et l'hétérogénéité des propriétés hydrauliques et thermiques: un modèle d'hétérogénéité détaillé qui interprète la distribution latérale et verticale de la température de manière plus réaliste, et un modèle simplifié qui représente le système aquifère avec seulement un nombre limité de couches homogènes. L’hétérogénéité détaillée s'est avérée importante pour modéliser de manière précise la distribution verticale des températures Impactée par l’ATES et les températures maximum et minimum dans l’aquifère de stockage, ainsi que l'étendue spatiale des panaches thermiques. Le modèle d'hétérogénéité de détail a eu comme conséquence de plus grands secteurs thermiquement affectés et de plus grandes anomalies de température que dans le modèle simplifié. Les modèles ont prouvé que des données dispersées et rares de suivi des températures induites par l’ATES peuvent être interprétées d'une manière utile à l’aide de modèles d’eaux souterraines et du transport de la chaleur avec comme résultat une évaluation réaliste de l'Impact thermique.

  • The Thermal Impact of aquifer Thermal energy storage (ATES) systems: a case study in the Netherlands, combining monitoring and modeling
    Hydrogeology Journal, 2015
    Co-Authors: Philip W. Visser, Henk Kooi, Pieter J. Stuyfzand
    Abstract:

    Les résultats présentés ici sont ceux d'une étude d’Impact thermique complète d’un système de stockage d’énergie thermique en aquifère (ATES) à Bilthoven en Hollande. L'étude a impliqué la surveillance de l'Impact thermique et la modélisation de l'évolution tridimensionnelle de la température de la couche aquifère et des unités sus- et sous-jacentes. Une particulière attention a été prêtée à l'irrégularité de la température de fond qui change latéralement et verticalement dans la couche aquifère. Deux modèles ont été appliqués avec différents niveaux du détail concernant les conditions initiales et l'hétérogénéité des propriétés hydrauliques et thermiques: un modèle d'hétérogénéité détaillé qui interprète la distribution latérale et verticale de la température de manière plus réaliste, et un modèle simplifié qui représente le système aquifère avec seulement un nombre limité de couches homogènes. L’hétérogénéité détaillée s'est avérée importante pour modéliser de manière précise la distribution verticale des températures Impactée par l’ATES et les températures maximum et minimum dans l’aquifère de stockage, ainsi que l'étendue spatiale des panaches thermiques. Le modèle d'hétérogénéité de détail a eu comme conséquence de plus grands secteurs thermiquement affectés et de plus grandes anomalies de température que dans le modèle simplifié. Les modèles ont prouvé que des données dispersées et rares de suivi des températures induites par l’ATES peuvent être interprétées d'une manière utile à l’aide de modèles d’eaux souterraines et du transport de la chaleur avec comme résultat une évaluation réaliste de l'Impact thermique. Results are presented of a comprehensive Thermal Impact study on an aquifer Thermal energy storage (ATES) system in Bilthoven, the Netherlands. The study involved monitoring of the Thermal Impact and modeling of the three-dimensional temperature evolution of the storage aquifer and over- and underlying units. Special attention was paid to non-uniformity of the background temperature, which varies laterally and vertically in the aquifer. Two models were applied with different levels of detail regarding initial conditions and heterogeneity of hydraulic and Thermal properties: a fine-scale heterogeneity model which construed the lateral and vertical temperature distribution more realistically, and a simplified model which represented the aquifer system with only a limited number of homogeneous layers. Fine-scale heterogeneity was shown to be important to accurately model the ATES-Impacted vertical temperature distribution and the maximum and minimum temperatures in the storage aquifer, and the spatial extent of the Thermal plumes. The fine-scale heterogeneity model resulted in larger Thermally Impacted areas and larger temperature anomalies than the simplified model. The models showed that scattered and scarce monitoring data of ATES-induced temperatures can be interpreted in a useful way by groundwater and heat transport modeling, resulting in a realistic assessment of the Thermal Impact. 摘要:本文论述了荷兰Bilthoven一个含水层热能储存系统综合热影响的研究结果。研究包括对储存含水层及上覆和下伏单元进行热影响监测和三维温度演化模拟。特别注重背景温度的不均匀性,背景温度在含水层垂向和横向上变化很大。对于初始条件及水力和热特性的不均匀性,根据不同水平的详细情况,采用了两个模型:一个是能够更现实地分析横向和垂向温度分布的小尺度不均匀性模型,另一个是只能描述含水层系统有限若干个均匀层的简化模型。小尺度不均匀性显示其在准确模拟含水层热能储存影响的垂直温度分布、储存含水层内最大和最小温度以及热能羽空间分布中非常重要。与简化模型相比,小尺度不均匀性模型的结果显示出较大的热影响区域及较大的温度异常。模型显示,含水层热能储存感应温度方面零星、稀有的监测资料可以通过地下水和热量传输模拟以有益的方式得到解译,从而对热效果进行实事求是的评价. Se presentan los resultados de un estudio integral del Impacto térmico en un sistema de almacenamiento de energía térmica en un acuífero (ATES) en Bilthoven, Países Bajos. El estudio implicó el monitoreo del Impacto térmico y el modelado tridimensional de la evolución de la temperatura del almacenamiento en el acuífero y en las unidades supra y subyacentes. Se prestó especial atención a la falta de uniformidad de la temperatura de fondo que varía lateral y verticalmente en el acuífero. Se aplicaron dos modelos con diferentes niveles de detalle considerando las condiciones iniciales y la heterogeneidad de las propiedades hidráulicas y térmicas: un modelo de heterogeneidad a escala fina que interpreta la distribución vertical y lateral de la temperatura de manera más realista, y un modelo simplificado que representa el sistema acuífero con sólo un número limitado de capas homogéneas. La heterogeneidad a escala fina mostró ser importante para modelar con precisión la distribución vertical del Impacto de la temperatura del ATES y las temperaturas mínimas y máximas en el almacenamiento del acuífero, y la extensión espacial de la pluma térmica. El modelo a escala fina de la heterogeneidad resultó en áreas térmicamente afectadas más grandes y anomalías de temperatura mayores que el modelo simplificado. Los modelos mostraron que los datos de monitoreo dispersos y escasos de temperaturas inducidas del ATES pueden ser interpretados en una forma útil para el modelado del transporte de agua subterránea y del calor, lo que resulta en una evaluación realista del Impacto térmico. São apresentados os resultados de um estudo pormenorizado de Impactes termais num sistema de armazenamento de energia termal num aquífero (AETA) em Bilthoven, na Holanda. O estudo envolveu a monitorização do Impacte termal e a modelação tridimensional da evolução da temperatura no interior do aquífero e nas unidades superior e inferior. Uma atenção especial foi dada à não uniformidade da temperatura de base, a qual varia lateral e verticalmente no aquífero. Dois modelos foram aplicados, com diferentes níveis de pormenor em relação às condições iniciais e à heterogeneidade das propriedades hidráulicas e termais: um modelo heterogéneo de escala fina, que interpretou a distribuição lateral e vertical da temperatura mais realisticamente, e um modelo simplificado, que representou o sistema aquífero com apenas um número limitado de camadas homogéneas. A heterogeneidade de escala fina mostrou-se importante para modelar com precisão o Impacte da distribuição de temperatura vertical no AETA, as temperaturas máximas e mínimas no aquífero e a extensão espacial das plumas termais. O modelo heterogéneo de escala fina resultou em maiores áreas termalmente Impactadas e maiores anomalias de temperatura do que o modelo simplificado. Os modelos mostraram que os dados de monitorização dispersos e escassos das temperaturas induzidas pelo AETA podem ser interpretados de um modo útil por modelação de água subterrânea e de transporte de calor, resultando numa avaliação realista dos Impactes termais.

  • The Thermal Impact of aquifer Thermal energy storage (ATES) systems: a case study in the Netherlands, combining monitoring and modeling
    Hydrogeology Journal, 2015
    Co-Authors: Philip W. Visser, Henk Kooi, Pieter J. Stuyfzand
    Abstract:

    Results are presented of a comprehensive Thermal Impact study on an aquifer Thermal energy storage (ATES) system in Bilthoven, the Netherlands. The study involved monitoring of the Thermal Impact and modeling of the three-dimensional temperature evolution of the storage aquifer and over- and underlying units. Special attention was paid to non-uniformity of the background temperature, which varies laterally and vertically in the aquifer. Two models were applied with different levels of detail regarding initial conditions and heterogeneity of hydraulic and Thermal properties: a fine-scale heterogeneity model which construed the lateral and vertical temperature distribution more realistically, and a simplified model which represented the aquifer system with only a limited number of homogeneous layers. Fine-scale heterogeneity was shown to be important to accurately model the ATES-Impacted vertical temperature distribution and the maximum and minimum temperatures in the storage aquifer, and the spatial extent of the Thermal plumes. The fine-scale heterogeneity model resulted in larger Thermally Impacted areas and larger temperature anomalies than the simplified model. The models showed that scattered and scarce monitoring data of ATES-induced temperatures can be interpreted in a useful way by groundwater and heat transport modeling, resulting in a realistic assessment of the Thermal Impact.

Matteo Antelmi - One of the best experts on this subject based on the ideXlab platform.

  • energy performance and Thermal Impact of a borehole heat exchanger in a sandy aquifer influence of the groundwater velocity
    Energy Conversion and Management, 2014
    Co-Authors: Adriana Angelotti, Luca Alberti, Ivana La Licata, Matteo Antelmi
    Abstract:

    Abstract In a saturated soil, the groundwater flow affects both the energy performance and the Thermal Impact on the surrounding soil of Borehole Heat Exchangers linked to Ground-Source Heat Pumps. In this paper a numerical model in MODFLOW/MT3DMS of a single U-pipe in a sandy aquifer is proposed in order to investigate the two issues in a coupled approach. After validating the model, the typical yearly operation of a Borehole Heat Exchanger extracting and injecting heat into the ground is simulated. For 0.1 ⩽ Pe ⩽ 1 cold and warm plumes develop and the heat rate increases non linearly from 11% to 105%.

  • energy performance and Thermal Impact of a borehole heat exchanger in a sandy aquifer influence of the groundwater velocity
    Energy Conversion and Management, 2014
    Co-Authors: Adriana Angelotti, Luca Alberti, Ivana La Licata, Matteo Antelmi
    Abstract:

    Abstract In a saturated soil, the groundwater flow affects both the energy performance and the Thermal Impact on the surrounding soil of Borehole Heat Exchangers linked to Ground-Source Heat Pumps. In this paper a numerical model in MODFLOW/MT3DMS of a single U-pipe in a sandy aquifer is proposed in order to investigate the two issues in a coupled approach. After validating the model, the typical yearly operation of a Borehole Heat Exchanger extracting and injecting heat into the ground is simulated. For 0.1 ⩽ Pe ⩽ 1 cold and warm plumes develop and the heat rate increases non linearly from 11% to 105%.

Philip W. Visser - One of the best experts on this subject based on the ideXlab platform.

  • The Thermal Impact of aquifer Thermal energy storage (ATES) systems: a case study in the Netherlands, combining monitoring and modeling
    Hydrogeology Journal, 2015
    Co-Authors: Philip W. Visser, Henk Kooi, Pieter J. Stuyfzand
    Abstract:

    ResumoSão apresentados os resultados de um estudo pormenorizado de Impactes termais num sistema de armazenamento de energia termal num aquífero (AETA) em Bilthoven, na Holanda. O estudo envolveu a monitorização do Impacte termal e a modelação tridimensional da evolução da temperatura no interior do aquífero e nas unidades superior e inferior. Uma atenção especial foi dada à não uniformidade da temperatura de base, a qual varia lateral e verticalmente no aquífero. Dois modelos foram aplicados, com diferentes níveis de pormenor em relação às condições iniciais e à heterogeneidade das propriedades hidráulicas e termais: um modelo heterogéneo de escala fina, que interpretou a distribuição lateral e vertical da temperatura mais realisticamente, e um modelo simplificado, que representou o sistema aquífero com apenas um número limitado de camadas homogéneas. A heterogeneidade de escala fina mostrou-se importante para modelar com precisão o Impacte da distribuição de temperatura vertical no AETA, as temperaturas máximas e mínimas no aquífero e a extensão espacial das plumas termais. O modelo heterogéneo de escala fina resultou em maiores áreas termalmente Impactadas e maiores anomalias de temperatura do que o modelo simplificado. Os modelos mostraram que os dados de monitorização dispersos e escassos das temperaturas induzidas pelo AETA podem ser interpretados de um modo útil por modelação de água subterrânea e de transporte de calor, resultando numa avaliação realista dos Impactes termais.抽象摘要:本文论述了荷兰Bilthoven一个含水层热能储存系统综合热影响的研究结果。研究包括对储存含水层及上覆和下伏单元进行热影响监测和三维温度演化模拟。特别注重背景温度的不均匀性,背景温度在含水层垂向和横向上变化很大。对于初始条件及水力和热特性的不均匀性,根据不同水平的详细情况,采用了两个模型:一个是能够更现实地分析横向和垂向温度分布的小尺度不均匀性模型,另一个是只能描述含水层系统有限若干个均匀层的简化模型。小尺度不均匀性显示其在准确模拟含水层热能储存影响的垂直温度分布、储存含水层内最大和最小温度以及热能羽空间分布中非常重要。与简化模型相比,小尺度不均匀性模型的结果显示出较大的热影响区域及较大的温度异常。模型显示,含水层热能储存感应温度方面零星、稀有的监测资料可以通过地下水和热量传输模拟以有益的方式得到解译,从而对热效果进行实事求是的评价.AbstractResults are presented of a comprehensive Thermal Impact study on an aquifer Thermal energy storage (ATES) system in Bilthoven, the Netherlands. The study involved monitoring of the Thermal Impact and modeling of the three-dimensional temperature evolution of the storage aquifer and over- and underlying units. Special attention was paid to non-uniformity of the background temperature, which varies laterally and vertically in the aquifer. Two models were applied with different levels of detail regarding initial conditions and heterogeneity of hydraulic and Thermal properties: a fine-scale heterogeneity model which construed the lateral and vertical temperature distribution more realistically, and a simplified model which represented the aquifer system with only a limited number of homogeneous layers. Fine-scale heterogeneity was shown to be important to accurately model the ATES-Impacted vertical temperature distribution and the maximum and minimum temperatures in the storage aquifer, and the spatial extent of the Thermal plumes. The fine-scale heterogeneity model resulted in larger Thermally Impacted areas and larger temperature anomalies than the simplified model. The models showed that scattered and scarce monitoring data of ATES-induced temperatures can be interpreted in a useful way by groundwater and heat transport modeling, resulting in a realistic assessment of the Thermal Impact.ResumenSe presentan los resultados de un estudio integral del Impacto térmico en un sistema de almacenamiento de energía térmica en un acuífero (ATES) en Bilthoven, Países Bajos. El estudio implicó el monitoreo del Impacto térmico y el modelado tridimensional de la evolución de la temperatura del almacenamiento en el acuífero y en las unidades supra y subyacentes. Se prestó especial atención a la falta de uniformidad de la temperatura de fondo que varía lateral y verticalmente en el acuífero. Se aplicaron dos modelos con diferentes niveles de detalle considerando las condiciones iniciales y la heterogeneidad de las propiedades hidráulicas y térmicas: un modelo de heterogeneidad a escala fina que interpreta la distribución vertical y lateral de la temperatura de manera más realista, y un modelo simplificado que representa el sistema acuífero con sólo un número limitado de capas homogéneas. La heterogeneidad a escala fina mostró ser importante para modelar con precisión la distribución vertical del Impacto de la temperatura del ATES y las temperaturas mínimas y máximas en el almacenamiento del acuífero, y la extensión espacial de la pluma térmica. El modelo a escala fina de la heterogeneidad resultó en áreas térmicamente afectadas más grandes y anomalías de temperatura mayores que el modelo simplificado. Los modelos mostraron que los datos de monitoreo dispersos y escasos de temperaturas inducidas del ATES pueden ser interpretados en una forma útil para el modelado del transporte de agua subterránea y del calor, lo que resulta en una evaluación realista del Impacto térmico.RésuméLes résultats présentés ici sont ceux d'une étude d’Impact thermique complète d’un système de stockage d’énergie thermique en aquifère (ATES) à Bilthoven en Hollande. L'étude a impliqué la surveillance de l'Impact thermique et la modélisation de l'évolution tridimensionnelle de la température de la couche aquifère et des unités sus- et sous-jacentes. Une particulière attention a été prêtée à l'irrégularité de la température de fond qui change latéralement et verticalement dans la couche aquifère. Deux modèles ont été appliqués avec différents niveaux du détail concernant les conditions initiales et l'hétérogénéité des propriétés hydrauliques et thermiques: un modèle d'hétérogénéité détaillé qui interprète la distribution latérale et verticale de la température de manière plus réaliste, et un modèle simplifié qui représente le système aquifère avec seulement un nombre limité de couches homogènes. L’hétérogénéité détaillée s'est avérée importante pour modéliser de manière précise la distribution verticale des températures Impactée par l’ATES et les températures maximum et minimum dans l’aquifère de stockage, ainsi que l'étendue spatiale des panaches thermiques. Le modèle d'hétérogénéité de détail a eu comme conséquence de plus grands secteurs thermiquement affectés et de plus grandes anomalies de température que dans le modèle simplifié. Les modèles ont prouvé que des données dispersées et rares de suivi des températures induites par l’ATES peuvent être interprétées d'une manière utile à l’aide de modèles d’eaux souterraines et du transport de la chaleur avec comme résultat une évaluation réaliste de l'Impact thermique.

  • The Thermal Impact of aquifer Thermal energy storage (ATES) systems: a case study in the Netherlands, combining monitoring and modeling
    Hydrogeology Journal, 2015
    Co-Authors: Philip W. Visser, Henk Kooi, Pieter J. Stuyfzand
    Abstract:

    Les résultats présentés ici sont ceux d'une étude d’Impact thermique complète d’un système de stockage d’énergie thermique en aquifère (ATES) à Bilthoven en Hollande. L'étude a impliqué la surveillance de l'Impact thermique et la modélisation de l'évolution tridimensionnelle de la température de la couche aquifère et des unités sus- et sous-jacentes. Une particulière attention a été prêtée à l'irrégularité de la température de fond qui change latéralement et verticalement dans la couche aquifère. Deux modèles ont été appliqués avec différents niveaux du détail concernant les conditions initiales et l'hétérogénéité des propriétés hydrauliques et thermiques: un modèle d'hétérogénéité détaillé qui interprète la distribution latérale et verticale de la température de manière plus réaliste, et un modèle simplifié qui représente le système aquifère avec seulement un nombre limité de couches homogènes. L’hétérogénéité détaillée s'est avérée importante pour modéliser de manière précise la distribution verticale des températures Impactée par l’ATES et les températures maximum et minimum dans l’aquifère de stockage, ainsi que l'étendue spatiale des panaches thermiques. Le modèle d'hétérogénéité de détail a eu comme conséquence de plus grands secteurs thermiquement affectés et de plus grandes anomalies de température que dans le modèle simplifié. Les modèles ont prouvé que des données dispersées et rares de suivi des températures induites par l’ATES peuvent être interprétées d'une manière utile à l’aide de modèles d’eaux souterraines et du transport de la chaleur avec comme résultat une évaluation réaliste de l'Impact thermique. Results are presented of a comprehensive Thermal Impact study on an aquifer Thermal energy storage (ATES) system in Bilthoven, the Netherlands. The study involved monitoring of the Thermal Impact and modeling of the three-dimensional temperature evolution of the storage aquifer and over- and underlying units. Special attention was paid to non-uniformity of the background temperature, which varies laterally and vertically in the aquifer. Two models were applied with different levels of detail regarding initial conditions and heterogeneity of hydraulic and Thermal properties: a fine-scale heterogeneity model which construed the lateral and vertical temperature distribution more realistically, and a simplified model which represented the aquifer system with only a limited number of homogeneous layers. Fine-scale heterogeneity was shown to be important to accurately model the ATES-Impacted vertical temperature distribution and the maximum and minimum temperatures in the storage aquifer, and the spatial extent of the Thermal plumes. The fine-scale heterogeneity model resulted in larger Thermally Impacted areas and larger temperature anomalies than the simplified model. The models showed that scattered and scarce monitoring data of ATES-induced temperatures can be interpreted in a useful way by groundwater and heat transport modeling, resulting in a realistic assessment of the Thermal Impact. 摘要:本文论述了荷兰Bilthoven一个含水层热能储存系统综合热影响的研究结果。研究包括对储存含水层及上覆和下伏单元进行热影响监测和三维温度演化模拟。特别注重背景温度的不均匀性,背景温度在含水层垂向和横向上变化很大。对于初始条件及水力和热特性的不均匀性,根据不同水平的详细情况,采用了两个模型:一个是能够更现实地分析横向和垂向温度分布的小尺度不均匀性模型,另一个是只能描述含水层系统有限若干个均匀层的简化模型。小尺度不均匀性显示其在准确模拟含水层热能储存影响的垂直温度分布、储存含水层内最大和最小温度以及热能羽空间分布中非常重要。与简化模型相比,小尺度不均匀性模型的结果显示出较大的热影响区域及较大的温度异常。模型显示,含水层热能储存感应温度方面零星、稀有的监测资料可以通过地下水和热量传输模拟以有益的方式得到解译,从而对热效果进行实事求是的评价. Se presentan los resultados de un estudio integral del Impacto térmico en un sistema de almacenamiento de energía térmica en un acuífero (ATES) en Bilthoven, Países Bajos. El estudio implicó el monitoreo del Impacto térmico y el modelado tridimensional de la evolución de la temperatura del almacenamiento en el acuífero y en las unidades supra y subyacentes. Se prestó especial atención a la falta de uniformidad de la temperatura de fondo que varía lateral y verticalmente en el acuífero. Se aplicaron dos modelos con diferentes niveles de detalle considerando las condiciones iniciales y la heterogeneidad de las propiedades hidráulicas y térmicas: un modelo de heterogeneidad a escala fina que interpreta la distribución vertical y lateral de la temperatura de manera más realista, y un modelo simplificado que representa el sistema acuífero con sólo un número limitado de capas homogéneas. La heterogeneidad a escala fina mostró ser importante para modelar con precisión la distribución vertical del Impacto de la temperatura del ATES y las temperaturas mínimas y máximas en el almacenamiento del acuífero, y la extensión espacial de la pluma térmica. El modelo a escala fina de la heterogeneidad resultó en áreas térmicamente afectadas más grandes y anomalías de temperatura mayores que el modelo simplificado. Los modelos mostraron que los datos de monitoreo dispersos y escasos de temperaturas inducidas del ATES pueden ser interpretados en una forma útil para el modelado del transporte de agua subterránea y del calor, lo que resulta en una evaluación realista del Impacto térmico. São apresentados os resultados de um estudo pormenorizado de Impactes termais num sistema de armazenamento de energia termal num aquífero (AETA) em Bilthoven, na Holanda. O estudo envolveu a monitorização do Impacte termal e a modelação tridimensional da evolução da temperatura no interior do aquífero e nas unidades superior e inferior. Uma atenção especial foi dada à não uniformidade da temperatura de base, a qual varia lateral e verticalmente no aquífero. Dois modelos foram aplicados, com diferentes níveis de pormenor em relação às condições iniciais e à heterogeneidade das propriedades hidráulicas e termais: um modelo heterogéneo de escala fina, que interpretou a distribuição lateral e vertical da temperatura mais realisticamente, e um modelo simplificado, que representou o sistema aquífero com apenas um número limitado de camadas homogéneas. A heterogeneidade de escala fina mostrou-se importante para modelar com precisão o Impacte da distribuição de temperatura vertical no AETA, as temperaturas máximas e mínimas no aquífero e a extensão espacial das plumas termais. O modelo heterogéneo de escala fina resultou em maiores áreas termalmente Impactadas e maiores anomalias de temperatura do que o modelo simplificado. Os modelos mostraram que os dados de monitorização dispersos e escassos das temperaturas induzidas pelo AETA podem ser interpretados de um modo útil por modelação de água subterrânea e de transporte de calor, resultando numa avaliação realista dos Impactes termais.

  • The Thermal Impact of aquifer Thermal energy storage (ATES) systems: a case study in the Netherlands, combining monitoring and modeling
    Hydrogeology Journal, 2015
    Co-Authors: Philip W. Visser, Henk Kooi, Pieter J. Stuyfzand
    Abstract:

    Results are presented of a comprehensive Thermal Impact study on an aquifer Thermal energy storage (ATES) system in Bilthoven, the Netherlands. The study involved monitoring of the Thermal Impact and modeling of the three-dimensional temperature evolution of the storage aquifer and over- and underlying units. Special attention was paid to non-uniformity of the background temperature, which varies laterally and vertically in the aquifer. Two models were applied with different levels of detail regarding initial conditions and heterogeneity of hydraulic and Thermal properties: a fine-scale heterogeneity model which construed the lateral and vertical temperature distribution more realistically, and a simplified model which represented the aquifer system with only a limited number of homogeneous layers. Fine-scale heterogeneity was shown to be important to accurately model the ATES-Impacted vertical temperature distribution and the maximum and minimum temperatures in the storage aquifer, and the spatial extent of the Thermal plumes. The fine-scale heterogeneity model resulted in larger Thermally Impacted areas and larger temperature anomalies than the simplified model. The models showed that scattered and scarce monitoring data of ATES-induced temperatures can be interpreted in a useful way by groundwater and heat transport modeling, resulting in a realistic assessment of the Thermal Impact.

Adriana Angelotti - One of the best experts on this subject based on the ideXlab platform.

  • energy performance and Thermal Impact of a borehole heat exchanger in a sandy aquifer influence of the groundwater velocity
    Energy Conversion and Management, 2014
    Co-Authors: Adriana Angelotti, Luca Alberti, Ivana La Licata, Matteo Antelmi
    Abstract:

    Abstract In a saturated soil, the groundwater flow affects both the energy performance and the Thermal Impact on the surrounding soil of Borehole Heat Exchangers linked to Ground-Source Heat Pumps. In this paper a numerical model in MODFLOW/MT3DMS of a single U-pipe in a sandy aquifer is proposed in order to investigate the two issues in a coupled approach. After validating the model, the typical yearly operation of a Borehole Heat Exchanger extracting and injecting heat into the ground is simulated. For 0.1 ⩽ Pe ⩽ 1 cold and warm plumes develop and the heat rate increases non linearly from 11% to 105%.

  • energy performance and Thermal Impact of a borehole heat exchanger in a sandy aquifer influence of the groundwater velocity
    Energy Conversion and Management, 2014
    Co-Authors: Adriana Angelotti, Luca Alberti, Ivana La Licata, Matteo Antelmi
    Abstract:

    Abstract In a saturated soil, the groundwater flow affects both the energy performance and the Thermal Impact on the surrounding soil of Borehole Heat Exchangers linked to Ground-Source Heat Pumps. In this paper a numerical model in MODFLOW/MT3DMS of a single U-pipe in a sandy aquifer is proposed in order to investigate the two issues in a coupled approach. After validating the model, the typical yearly operation of a Borehole Heat Exchanger extracting and injecting heat into the ground is simulated. For 0.1 ⩽ Pe ⩽ 1 cold and warm plumes develop and the heat rate increases non linearly from 11% to 105%.

Peter Huggenberger - One of the best experts on this subject based on the ideXlab platform.

  • The Thermal Impact of subsurface building structures on urban groundwater resources - A paradigmatic example.
    The Science of the total environment, 2017
    Co-Authors: Jannis Epting, Stefan Scheidler, Annette Affolter, Paul Borer, Matthias H. Mueller, Lukas Egli, Alejandro García-gil, Peter Huggenberger
    Abstract:

    Shallow subsurface Thermal regimes in urban areas are increasingly Impacted by anthropogenic activities, which include infrastructure development like underground traffic lines as well as industrial and residential subsurface buildings. In combination with the progressive use of shallow geoThermal energy systems, this results in the so-called subsurface urban heat island effect. This article emphasizes the importance of considering the Thermal Impact of subsurface structures, which commonly is underestimated due to missing information and of reliable subsurface temperature data. Based on synthetic heat-transport models different settings of the urban environment were investigated, including: (1) hydraulic gradients and conductivities, which result in different groundwater flow velocities; (2) aquifer properties like groundwater thickness to aquitard and depth to water table; and (3) constructional features, such as building depths and Thermal properties of building structures. Our results demonstrate that with rising groundwater flow velocities, the heat-load from building structures increase, whereas down-gradient groundwater temperatures decrease. Thermal Impacts on subsurface resources therefore have to be related to the permeability of aquifers and hydraulic boundary conditions. In regard to the urban settings of Basel, Switzerland, flow velocities of around 1 md-1 delineate a marker where either down-gradient temperature deviations or heat-loads into the subsurface are more relevant. Furthermore, no direct Thermal influence on groundwater resources should be expected for aquifers with groundwater thicknesses larger 10m and when the distance of the building structure to the groundwater table is higher than around 10m. We demonstrate that measuring temperature changes down-gradient of subsurface structures is insufficient overall to assess Thermal Impacts, particularly in urban areas. Moreover, in areas which are densely urbanized, and where groundwater flow velocities are low, appropriate measures for assessing Thermal Impacts should specifically include a quantification of heat-loads into the subsurface which result in a more diffuse Thermal contamination of urban groundwater resources.