Tidal Wave

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 300 Experts worldwide ranked by ideXlab platform

Marcel J. F. Stive - One of the best experts on this subject based on the ideXlab platform.

  • Tidal Wave propagation along The Mekong deltaic coast
    Estuarine Coastal and Shelf Science, 2019
    Co-Authors: Hung Manh Phan, Ad Reniers, Marcel J. F. Stive
    Abstract:

    Abstract A two-dimensional, barotropic numerical model was employed to investigate the dynamics of Tidal Wave propagation in the South China Sea with a particular interest for its characteristics along the Mekong deltaic coast. The study indicates that Tidal Waves propagate from the Pacific Ocean into the South China Sea mainly through the Luzon Strait (LS), where the K1 diurnal tide dominates due to a quarter Wavelength resonance in this semi-enclosed basin, and that the incoming Tidal Waves from the Celebes open boundary play a more important role than those from the Andaman and Flores open boundaries. Previous studies have not explained why both adjacent seas including the South China Sea and the Gulf of Thailand are dominated by a diurnal tide, while a semidiurnal tide dominates along the eastern Mekong deltaic coast. By means of Green's law, continental shelf Tidal resonance theory and standing Wave theory, this study clarifies that the large amplified M2 semidiurnal amplitude leading to a prevailing mixed semidiurnal tide is caused not only by the shoaling effect and the continental shelf oscillation resonance phenomenon but also by the position on the standing Wave anti-node line. Moreover, the finding of radial Tidal currents occurring along the southern Mekong estuarine coast has not been revealed in earlier studies. Based on a number of numerical, geometrically schematised experiments, we suggest that the interaction between the large amplified amplitude near the shoreline associated with the adjacent low amplitude band system, causing convex hydraulic gradients of Tidal amplitude due to basin geometry as well as sloping topography, is the mechanism for developing these radial Tidal current systems. The results reveal that wind monsoon climate could cause either damped or amplified Tidal amplitudes around the Mekong deltaic coast of which approximately 2–3 cm is due to the changing atmospheric pressure, the tangential stress of wind over the water surface and wind enhanced bottom friction. Also, this study suggests that the Tidal generating forces should be considered to achieve accurate model results depending on the geographical region of interest. Findings achieved from this study contribute to a deeper insight of Tidal Wave propagation from a deep ocean to a shallow flat basin similar to the South China Sea and its Mekong deltaic coast.

  • Tidal Wave Propagation in the Yellow Sea
    Coastal Engineering Journal, 2015
    Co-Authors: Peng Yao, Zheng Bing Wang, Chang K. Zhang, Marcel J. F. Stive
    Abstract:

    To investigate the near-field and far-field hydrodynamic conditions along the Jiangsu Coast in large scale, a two-dimensional Tidal Wave model which covers the Bohai Sea, the Yellow Sea and the East China Sea is developed and validated. After a brief review of previous models, some influencing factors, such as tide generating force, river discharges as well as shoreline changes due to land reclamation, are examined in this study. We suggest that whether these factors should be considered in the model depends on the different purposes and geographical regions of interest. Then, a series of experiments are designed to further investigate the previously proposed important factors of influence [i.e. local bathymetry and the role of Shandong Peninsula (SDP)] on the Tidal motions in the Yellow Sea. The numerical experimental results show that the interaction between the Tidal Wave system in the northern Yellow Sea and the incoming Tidal Wave plays a main role on the formation of the rotating Tidal Wave system in the southern Yellow Sea, whereas the role of geometric position of the SDP is secondary. With respect to the Tidal current, it is found that the radial shape of it is independent of the local bathymetry, but may be generated by the convergent Tidal Wave formed by the meeting of the rotating Tidal Wave in the southern Yellow Sea and the incoming Tidal Wave from the East China Sea. Furthermore, a certain water depth is crucial for the intensity of current velocity to generate the special topography of radial sand ridges.

  • Near-Bottom Currents on the Middle Shoreface in the Presence of the Rhine River Plume
    Coastal Engineering Proceedings, 2014
    Co-Authors: Martijn Henriquez, Saulo Meirelles, Alexander R. Horner-devine, Julie D. Pietrzak, Alejandro J. Souza, Marcel J. F. Stive
    Abstract:

    The South-Holland coast of the Netherlands undergoes the influence of the Rhine river plume released from the Rotterdam waterways. An experiment, STRAINS, was conducted to study the impact of the fresh water on the nearshore hydrodynamics and sand transport. As part of the experiment, an instrumented bottom frame measured the near-bed hydrodynamics at 12 m depth. The flow was decomposed in the Tidal, Wave and turbulent component. During moderate energetic Wave conditions the cross-shore Tidal flow was of similar magnitude as the Wave orbital flow. The cross-shore Tidal flow was asymmetric and larger in the seaward direction. The cross-shore Tidal component may be generated by Tidal straining due to the river plume.

  • Further Research on the Tidal Wave System in the Southern Yellow Sea
    2013
    Co-Authors: Zheng Bing Wang, Peng Yao, Changkuan Zhang, Marcel J. F. Stive
    Abstract:

    A two-dimensional Tidal Wave model for the Chinese marginal seas with high resolution is set up and the verification results demonstrate that it can well simulate the large domain. Based on this model, a series of numerical experiments are constructed to analyze the influence of local bathymetry and reclamation of the Jiangsu coast on the Tidal Wave system. According to the simulation results, the existence of the radial Tidal current pattern have not been obviously influenced by the local bathymetry except the magnitude of the current velocity. However, it effects the Tidal Wave near the Jiangsu coast considerably. The reclamation affects the radial current field slightly, whereas the Tidal Wave near the southern Jiangsu coast is impacted significantly. Besides, further experiments by adding thin dam in the Southern Yellow Sea are studied and discussed. The results illustrate the existence of the Tidal Wave from the Northern Yellow Sea, which is important for the formation of the rotating Tidal Wave system in the Southern Yellow Sea.

  • THE Tidal Wave SYSTEM IN THE CHINESE MARGINAL SEAS
    2013
    Co-Authors: Marcel J. F. Stive, Peng Yao, Chang K. Zhang, Y.p. Chen, Zheng Bing Wang
    Abstract:

    A 2D large-scale Tidal Wave model is set up for the Chinese marginal seas and it is proved to simulate the Tidal motion in this large domain well. Based on the model, sensitivity analyses have been carried out to investigate the influences of various factors on the Tidal Wave system. According to the results, the effect of river discharges and the Tidal generating force on the whole Tidal Wave system is not obvious, but they do have influence in the shallow water area. In addition, the results show that sea level rise will impact on the China coast more than on the west coast of Korea. Furthermore, this paper demonstrates that the Shandong Peninsula is not the crucial reason for the formation of the radial Tidal current off Jiangsu coast. A better insight into the propagation mechanism of the Tidal Wave in the Chinese marginal seas is obtained.

Luc Lebbe - One of the best experts on this subject based on the ideXlab platform.

  • Effects of tides on a sloping shore: groundwater dynamics and propagation of the Tidal Wave
    Hydrogeology Journal, 2007
    Co-Authors: Alexander Vandenbohede, Luc Lebbe
    Abstract:

    L’influence des marées sur un environnement côtier à côte pentue, est étudiée via des observations de terrain et la modélisation de l’écoulement des eaux souterraines. Le littoral belge occidental consiste en une large côte, des dunes et des polders où l’on peut observer des marées diurnes de grandes amplitudes. Les effets des marées sur l’écoulement des eaux souterraines ont été étudiés en utilisant le code MOCDENS3D. En premier lieu, MOCDENS3D a été validé pour simuler précisément la propagation, l’atténuation et le décalage d’une vague de marée dans un aquifère. Par la suite, l’écoulement des eaux souterraines et les influences des marées sont modélisés sur un profil au travers de la frontière franco–belge. Ceci apporte une connaissance poussée et exhaustive des variations spatiales et temporelles de l’écoulement des eaux souterraines et de la propagation de la vague de marée dans l’aquifère. La simulation montre qu’il y a deux cycles interférents. Le premier est un cycle d’écoulement fluctuant, lié aux marées et situé en surface, due à l’interaction de la côte en pente douce et du niveau oscillant des marées marines. Le second est le cycle d’écoulement plus profond, des dunes vers la mer. Ultérieurement, il est montré que la propagation et l’atténuation des vagues de la marée suit un schéma compliqué, comprenant des composantes latérales et verticales. Cette interaction entre les marées et la topographie côtière influence également la distribution de la salinité. The influences of tides on a coastal environment with a sloping shore are investigated by means of field observations and groundwater flow modelling. The Belgian western coastal plain consists of a wide shore, dunes and polders where diurnal tides with large amplitude occur. The effects of tides on the groundwater flow are studied using the MOCDENS3D code. First, MOCDENS3D is validated to accurately simulate the propagation, attenuation and lag of a Tidal Wave in an aquifer. Then groundwater flow and influences of tides are modelled for a cross-section along the French–Belgian border. This gives an exhaustive insight into the spatial and temporal varying groundwater flow and propagation of the Tidal Wave in the aquifer. Simulation shows that there are two interfering flow cycles. The first is a shallow Tidally fluctuating flow cycle on the shore due to the interaction of the gently sloping shore and the Tidally oscillating sea level. The second is a deeper flow cycle from the dunes towards the sea. Further, it is indicated that the propagation and attenuation of the Tidal Wave follows a complex pattern with lateral as well as vertical components. The interaction between tides and shore topography also influences the salinity distribution. Se investiga las influencias de las mareas en un ambiente costero con una playa inclinada mediante observaciones de campo y modelizado de flujo de agua subterránea. La planicie costera occidental de Bélgica consiste de una playa ancha, dunas y tierras bajas ganadas al mar donde ocurren mareas diurnas de gran amplitud. Se estudian los efectos de las mareas en el flujo de agua subterránea usando el código MOCDENS3D. Primero se valida MOCDENS3D para simular con precisión la propagación, atenuación, y el retardo de una onda de marea en un acuífero. Luego se modelan el flujo de agua subterránea y las influencias de las mareas para una sección transversal a lo largo de la frontera entre Bélgica y Francia. Esto aporta un entendimiento exhaustivo acerca de la variación temporal y espacial en el flujo de agua subterránea y la propagación de la onda de marea en el acuífero. La simulación muestra que existen dos ciclos de flujo interferentes. El primero es un flujo cíclico somero que fluctúa con la marea en la playa debido a la interacción de la playa de suave pendiente con el nivel del mar que oscila con la marea. El segundo es un ciclo de flujo más profundo de las dunas hacia el mar. Además, se indica que la propagación y atenuación de la onda de marea sigue un patrón complejo con componentes laterales y verticales. La interacción entre mareas y la topografía de la playa también influye en la distribución de la salinidad.

  • Effects of tides on a sloping shore: groundwater dynamics and propagation of the Tidal Wave
    Hydrogeology Journal, 2006
    Co-Authors: Alexander Vandenbohede, Luc Lebbe
    Abstract:

    The influences of tides on a coastal environment with a sloping shore are investigated by means of field observations and groundwater flow modelling. The Belgian western coastal plain consists of a wide shore, dunes and polders where diurnal tides with large amplitude occur. The effects of tides on the groundwater flow are studied using the MOCDENS3D code. First, MOCDENS3D is validated to accurately simulate the propagation, attenuation and lag of a Tidal Wave in an aquifer. Then groundwater flow and influences of tides are modelled for a cross-section along the French–Belgian border. This gives an exhaustive insight into the spatial and temporal varying groundwater flow and propagation of the Tidal Wave in the aquifer. Simulation shows that there are two interfering flow cycles. The first is a shallow Tidally fluctuating flow cycle on the shore due to the interaction of the gently sloping shore and the Tidally oscillating sea level. The second is a deeper flow cycle from the dunes towards the sea. Further, it is indicated that the propagation and attenuation of the Tidal Wave follows a complex pattern with lateral as well as vertical components. The interaction between tides and shore topography also influences the salinity distribution.

H. Wang - One of the best experts on this subject based on the ideXlab platform.

  • first simulations with a whole atmosphere data assimilation and forecast system the january 2009 major sudden stratospheric warming
    Journal of Geophysical Research, 2011
    Co-Authors: R A Akmaev, Daryl T Kleist, T J Fullerrowell, Ming Hu, H. Wang, M Iredell
    Abstract:

    [1] A Whole atmosphere Data Assimilation System (WDAS) is used to simulate the January 2009 sudden stratospheric warming (SSW). WDAS consists of the Whole Atmosphere Model (WAM) and the 3-dimensional variational (3DVar) analysis system GSI (Grid point Statistical Interpolation), modified to be compatible with the WAM model. An incremental analysis update (IAU) scheme was implemented in the data assimilation cycle to overcome the problem of excessive damping by digital filter in WAM of the important Tidal Waves in the upper atmosphere. IAU updates analysis incrementally into the model, thus avoids the initialization procedure (i.e., digital filter) during the WAM forecast stage. The WDAS simulation of the January 2009 SSW shows a significant increase in TW3 (terdiurnal, westward propagating, zonal Wave number 3) and a decrease in SW2 (semidiurnal, westward propagating, zonal Wave number 2) Wave amplitudes in the E region during the warming, which can be attributed likely to the nonlinear Wave-Wave interactions between SW2, TW3 and DW1 (diurnal, westward propagating, zonal Wave number 1). There is a delayed increase in SW2 in the E region after the warming, indicating a modulation by the changing large-scale planetary Waves in the loweratmosphere during the SSW. These Tidal Wave responses during SSW appeared to be global in scale. An extended WAM forecast initialized from WDAS analysis shows remarkably consistent Tidal Wave responses to SSW, indicating a potential forecasting capability of several days in advance of the effects of the large-scale tropospheric and stratospheric dynamics on the thermospheric and ionospheric variability.

M Iredell - One of the best experts on this subject based on the ideXlab platform.

  • first simulations with a whole atmosphere data assimilation and forecast system the january 2009 major sudden stratospheric warming
    Journal of Geophysical Research, 2011
    Co-Authors: R A Akmaev, Daryl T Kleist, T J Fullerrowell, Ming Hu, H. Wang, M Iredell
    Abstract:

    [1] A Whole atmosphere Data Assimilation System (WDAS) is used to simulate the January 2009 sudden stratospheric warming (SSW). WDAS consists of the Whole Atmosphere Model (WAM) and the 3-dimensional variational (3DVar) analysis system GSI (Grid point Statistical Interpolation), modified to be compatible with the WAM model. An incremental analysis update (IAU) scheme was implemented in the data assimilation cycle to overcome the problem of excessive damping by digital filter in WAM of the important Tidal Waves in the upper atmosphere. IAU updates analysis incrementally into the model, thus avoids the initialization procedure (i.e., digital filter) during the WAM forecast stage. The WDAS simulation of the January 2009 SSW shows a significant increase in TW3 (terdiurnal, westward propagating, zonal Wave number 3) and a decrease in SW2 (semidiurnal, westward propagating, zonal Wave number 2) Wave amplitudes in the E region during the warming, which can be attributed likely to the nonlinear Wave-Wave interactions between SW2, TW3 and DW1 (diurnal, westward propagating, zonal Wave number 1). There is a delayed increase in SW2 in the E region after the warming, indicating a modulation by the changing large-scale planetary Waves in the loweratmosphere during the SSW. These Tidal Wave responses during SSW appeared to be global in scale. An extended WAM forecast initialized from WDAS analysis shows remarkably consistent Tidal Wave responses to SSW, indicating a potential forecasting capability of several days in advance of the effects of the large-scale tropospheric and stratospheric dynamics on the thermospheric and ionospheric variability.

Alexander Vandenbohede - One of the best experts on this subject based on the ideXlab platform.

  • Effects of tides on a sloping shore: groundwater dynamics and propagation of the Tidal Wave
    Hydrogeology Journal, 2007
    Co-Authors: Alexander Vandenbohede, Luc Lebbe
    Abstract:

    L’influence des marées sur un environnement côtier à côte pentue, est étudiée via des observations de terrain et la modélisation de l’écoulement des eaux souterraines. Le littoral belge occidental consiste en une large côte, des dunes et des polders où l’on peut observer des marées diurnes de grandes amplitudes. Les effets des marées sur l’écoulement des eaux souterraines ont été étudiés en utilisant le code MOCDENS3D. En premier lieu, MOCDENS3D a été validé pour simuler précisément la propagation, l’atténuation et le décalage d’une vague de marée dans un aquifère. Par la suite, l’écoulement des eaux souterraines et les influences des marées sont modélisés sur un profil au travers de la frontière franco–belge. Ceci apporte une connaissance poussée et exhaustive des variations spatiales et temporelles de l’écoulement des eaux souterraines et de la propagation de la vague de marée dans l’aquifère. La simulation montre qu’il y a deux cycles interférents. Le premier est un cycle d’écoulement fluctuant, lié aux marées et situé en surface, due à l’interaction de la côte en pente douce et du niveau oscillant des marées marines. Le second est le cycle d’écoulement plus profond, des dunes vers la mer. Ultérieurement, il est montré que la propagation et l’atténuation des vagues de la marée suit un schéma compliqué, comprenant des composantes latérales et verticales. Cette interaction entre les marées et la topographie côtière influence également la distribution de la salinité. The influences of tides on a coastal environment with a sloping shore are investigated by means of field observations and groundwater flow modelling. The Belgian western coastal plain consists of a wide shore, dunes and polders where diurnal tides with large amplitude occur. The effects of tides on the groundwater flow are studied using the MOCDENS3D code. First, MOCDENS3D is validated to accurately simulate the propagation, attenuation and lag of a Tidal Wave in an aquifer. Then groundwater flow and influences of tides are modelled for a cross-section along the French–Belgian border. This gives an exhaustive insight into the spatial and temporal varying groundwater flow and propagation of the Tidal Wave in the aquifer. Simulation shows that there are two interfering flow cycles. The first is a shallow Tidally fluctuating flow cycle on the shore due to the interaction of the gently sloping shore and the Tidally oscillating sea level. The second is a deeper flow cycle from the dunes towards the sea. Further, it is indicated that the propagation and attenuation of the Tidal Wave follows a complex pattern with lateral as well as vertical components. The interaction between tides and shore topography also influences the salinity distribution. Se investiga las influencias de las mareas en un ambiente costero con una playa inclinada mediante observaciones de campo y modelizado de flujo de agua subterránea. La planicie costera occidental de Bélgica consiste de una playa ancha, dunas y tierras bajas ganadas al mar donde ocurren mareas diurnas de gran amplitud. Se estudian los efectos de las mareas en el flujo de agua subterránea usando el código MOCDENS3D. Primero se valida MOCDENS3D para simular con precisión la propagación, atenuación, y el retardo de una onda de marea en un acuífero. Luego se modelan el flujo de agua subterránea y las influencias de las mareas para una sección transversal a lo largo de la frontera entre Bélgica y Francia. Esto aporta un entendimiento exhaustivo acerca de la variación temporal y espacial en el flujo de agua subterránea y la propagación de la onda de marea en el acuífero. La simulación muestra que existen dos ciclos de flujo interferentes. El primero es un flujo cíclico somero que fluctúa con la marea en la playa debido a la interacción de la playa de suave pendiente con el nivel del mar que oscila con la marea. El segundo es un ciclo de flujo más profundo de las dunas hacia el mar. Además, se indica que la propagación y atenuación de la onda de marea sigue un patrón complejo con componentes laterales y verticales. La interacción entre mareas y la topografía de la playa también influye en la distribución de la salinidad.

  • Effects of tides on a sloping shore: groundwater dynamics and propagation of the Tidal Wave
    Hydrogeology Journal, 2006
    Co-Authors: Alexander Vandenbohede, Luc Lebbe
    Abstract:

    The influences of tides on a coastal environment with a sloping shore are investigated by means of field observations and groundwater flow modelling. The Belgian western coastal plain consists of a wide shore, dunes and polders where diurnal tides with large amplitude occur. The effects of tides on the groundwater flow are studied using the MOCDENS3D code. First, MOCDENS3D is validated to accurately simulate the propagation, attenuation and lag of a Tidal Wave in an aquifer. Then groundwater flow and influences of tides are modelled for a cross-section along the French–Belgian border. This gives an exhaustive insight into the spatial and temporal varying groundwater flow and propagation of the Tidal Wave in the aquifer. Simulation shows that there are two interfering flow cycles. The first is a shallow Tidally fluctuating flow cycle on the shore due to the interaction of the gently sloping shore and the Tidally oscillating sea level. The second is a deeper flow cycle from the dunes towards the sea. Further, it is indicated that the propagation and attenuation of the Tidal Wave follows a complex pattern with lateral as well as vertical components. The interaction between tides and shore topography also influences the salinity distribution.