Transmissometers

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 168 Experts worldwide ranked by ideXlab platform

R J Collier - One of the best experts on this subject based on the ideXlab platform.

  • predicting secchi disk depth from average beam attenuation in a deep ultra clear lake
    Hydrobiologia, 2007
    Co-Authors: Gary L. Larson, Robert L Hoffman, Bruce R Hargreaves, R J Collier
    Abstract:

    We addressed potential sources of error in estimating the water clarity of mountain lakes by investigating the use of beam transmissometer measurements to estimate Secchi disk depth. The optical properties Secchi disk depth (SD) and beam transmissometer attenuation (BA) were measured in Crater Lake (Crater Lake National Park, Oregon, USA) at a designated sampling station near the maximum depth of the lake. A standard 20 cm black and white disk was used to measure SD. The transmissometer light source had a nearly monochromatic wavelength of 660 nm and a path length of 25 cm. We created a SD prediction model by regression of the inverse SD of 13 measurements recorded on days when environmental conditions were acceptable for disk deployment with BA averaged over the same depth range as the measured SD. The relationship between inverse SD and averaged BA was significant and the average 95% confidence interval for predicted SD relative to the measured SD was ±1.6 m (range = −4.6 to 5.5 m) or ±5.0%. Eleven additional sample dates tested the accuracy of the predictive model. The average 95% confidence interval for these sample dates was ±0.7 m (range = −3.5 to 3.8 m) or ±2.2%. The 1996–2000 time-series means for measured and predicted SD varied by 0.1 m, and the medians varied by 0.5 m. The time-series mean annual measured and predicted SD’s also varied little, with intra-annual differences between measured and predicted mean annual SD ranging from −2.1 to 0.1 m. The results demonstrated that this prediction model reliably estimated Secchi disk depths and can be used to significantly expand optical observations in an environment where the conditions for standardized SD deployments are limited.

  • predicting secchi disk depth from average beam attenuation in a deep ultra clear lake
    Hydrobiologia, 2007
    Co-Authors: Gary L. Larson, Robert L Hoffman, Bruce R Hargreaves, R J Collier
    Abstract:

    We addressed potential sources of error in estimating the water clarity of mountain lakes by investigating the use of beam transmissometer measurements to estimate Secchi disk depth. The optical properties Secchi disk depth (SD) and beam transmissometer attenuation (BA) were measured in Crater Lake (Crater Lake National Park, Oregon, USA) at a designated sampling station near the maximum depth of the lake. A standard 20 cm black and white disk was used to measure SD. The transmissometer light source had a nearly monochromatic wavelength of 660 nm and a path length of 25 cm. We created a SD prediction model by regression of the inverse SD of 13 measurements recorded on days when environmental conditions were acceptable for disk deployment with BA averaged over the same depth range as the measured SD. The relationship between inverse SD and averaged BA was significant and the average 95% confidence interval for predicted SD relative to the measured SD was ±1.6 m (range = −4.6 to 5.5 m) or ±5.0%. Eleven additional sample dates tested the accuracy of the predictive model. The average 95% confidence interval for these sample dates was ±0.7 m (range = −3.5 to 3.8 m) or ±2.2%. The 1996–2000 time-series means for measured and predicted SD varied by 0.1 m, and the medians varied by 0.5 m. The time-series mean annual measured and predicted SD’s also varied little, with intra-annual differences between measured and predicted mean annual SD ranging from −2.1 to 0.1 m. The results demonstrated that this prediction model reliably estimated Secchi disk depths and can be used to significantly expand optical observations in an environment where the conditions for standardized SD deployments are limited.

Gary L. Larson - One of the best experts on this subject based on the ideXlab platform.

  • predicting secchi disk depth from average beam attenuation in a deep ultra clear lake
    Hydrobiologia, 2007
    Co-Authors: Gary L. Larson, Robert L Hoffman, Bruce R Hargreaves, R J Collier
    Abstract:

    We addressed potential sources of error in estimating the water clarity of mountain lakes by investigating the use of beam transmissometer measurements to estimate Secchi disk depth. The optical properties Secchi disk depth (SD) and beam transmissometer attenuation (BA) were measured in Crater Lake (Crater Lake National Park, Oregon, USA) at a designated sampling station near the maximum depth of the lake. A standard 20 cm black and white disk was used to measure SD. The transmissometer light source had a nearly monochromatic wavelength of 660 nm and a path length of 25 cm. We created a SD prediction model by regression of the inverse SD of 13 measurements recorded on days when environmental conditions were acceptable for disk deployment with BA averaged over the same depth range as the measured SD. The relationship between inverse SD and averaged BA was significant and the average 95% confidence interval for predicted SD relative to the measured SD was ±1.6 m (range = −4.6 to 5.5 m) or ±5.0%. Eleven additional sample dates tested the accuracy of the predictive model. The average 95% confidence interval for these sample dates was ±0.7 m (range = −3.5 to 3.8 m) or ±2.2%. The 1996–2000 time-series means for measured and predicted SD varied by 0.1 m, and the medians varied by 0.5 m. The time-series mean annual measured and predicted SD’s also varied little, with intra-annual differences between measured and predicted mean annual SD ranging from −2.1 to 0.1 m. The results demonstrated that this prediction model reliably estimated Secchi disk depths and can be used to significantly expand optical observations in an environment where the conditions for standardized SD deployments are limited.

  • predicting secchi disk depth from average beam attenuation in a deep ultra clear lake
    Hydrobiologia, 2007
    Co-Authors: Gary L. Larson, Robert L Hoffman, Bruce R Hargreaves, R J Collier
    Abstract:

    We addressed potential sources of error in estimating the water clarity of mountain lakes by investigating the use of beam transmissometer measurements to estimate Secchi disk depth. The optical properties Secchi disk depth (SD) and beam transmissometer attenuation (BA) were measured in Crater Lake (Crater Lake National Park, Oregon, USA) at a designated sampling station near the maximum depth of the lake. A standard 20 cm black and white disk was used to measure SD. The transmissometer light source had a nearly monochromatic wavelength of 660 nm and a path length of 25 cm. We created a SD prediction model by regression of the inverse SD of 13 measurements recorded on days when environmental conditions were acceptable for disk deployment with BA averaged over the same depth range as the measured SD. The relationship between inverse SD and averaged BA was significant and the average 95% confidence interval for predicted SD relative to the measured SD was ±1.6 m (range = −4.6 to 5.5 m) or ±5.0%. Eleven additional sample dates tested the accuracy of the predictive model. The average 95% confidence interval for these sample dates was ±0.7 m (range = −3.5 to 3.8 m) or ±2.2%. The 1996–2000 time-series means for measured and predicted SD varied by 0.1 m, and the medians varied by 0.5 m. The time-series mean annual measured and predicted SD’s also varied little, with intra-annual differences between measured and predicted mean annual SD ranging from −2.1 to 0.1 m. The results demonstrated that this prediction model reliably estimated Secchi disk depths and can be used to significantly expand optical observations in an environment where the conditions for standardized SD deployments are limited.

Robert L Hoffman - One of the best experts on this subject based on the ideXlab platform.

  • predicting secchi disk depth from average beam attenuation in a deep ultra clear lake
    Hydrobiologia, 2007
    Co-Authors: Gary L. Larson, Robert L Hoffman, Bruce R Hargreaves, R J Collier
    Abstract:

    We addressed potential sources of error in estimating the water clarity of mountain lakes by investigating the use of beam transmissometer measurements to estimate Secchi disk depth. The optical properties Secchi disk depth (SD) and beam transmissometer attenuation (BA) were measured in Crater Lake (Crater Lake National Park, Oregon, USA) at a designated sampling station near the maximum depth of the lake. A standard 20 cm black and white disk was used to measure SD. The transmissometer light source had a nearly monochromatic wavelength of 660 nm and a path length of 25 cm. We created a SD prediction model by regression of the inverse SD of 13 measurements recorded on days when environmental conditions were acceptable for disk deployment with BA averaged over the same depth range as the measured SD. The relationship between inverse SD and averaged BA was significant and the average 95% confidence interval for predicted SD relative to the measured SD was ±1.6 m (range = −4.6 to 5.5 m) or ±5.0%. Eleven additional sample dates tested the accuracy of the predictive model. The average 95% confidence interval for these sample dates was ±0.7 m (range = −3.5 to 3.8 m) or ±2.2%. The 1996–2000 time-series means for measured and predicted SD varied by 0.1 m, and the medians varied by 0.5 m. The time-series mean annual measured and predicted SD’s also varied little, with intra-annual differences between measured and predicted mean annual SD ranging from −2.1 to 0.1 m. The results demonstrated that this prediction model reliably estimated Secchi disk depths and can be used to significantly expand optical observations in an environment where the conditions for standardized SD deployments are limited.

  • predicting secchi disk depth from average beam attenuation in a deep ultra clear lake
    Hydrobiologia, 2007
    Co-Authors: Gary L. Larson, Robert L Hoffman, Bruce R Hargreaves, R J Collier
    Abstract:

    We addressed potential sources of error in estimating the water clarity of mountain lakes by investigating the use of beam transmissometer measurements to estimate Secchi disk depth. The optical properties Secchi disk depth (SD) and beam transmissometer attenuation (BA) were measured in Crater Lake (Crater Lake National Park, Oregon, USA) at a designated sampling station near the maximum depth of the lake. A standard 20 cm black and white disk was used to measure SD. The transmissometer light source had a nearly monochromatic wavelength of 660 nm and a path length of 25 cm. We created a SD prediction model by regression of the inverse SD of 13 measurements recorded on days when environmental conditions were acceptable for disk deployment with BA averaged over the same depth range as the measured SD. The relationship between inverse SD and averaged BA was significant and the average 95% confidence interval for predicted SD relative to the measured SD was ±1.6 m (range = −4.6 to 5.5 m) or ±5.0%. Eleven additional sample dates tested the accuracy of the predictive model. The average 95% confidence interval for these sample dates was ±0.7 m (range = −3.5 to 3.8 m) or ±2.2%. The 1996–2000 time-series means for measured and predicted SD varied by 0.1 m, and the medians varied by 0.5 m. The time-series mean annual measured and predicted SD’s also varied little, with intra-annual differences between measured and predicted mean annual SD ranging from −2.1 to 0.1 m. The results demonstrated that this prediction model reliably estimated Secchi disk depths and can be used to significantly expand optical observations in an environment where the conditions for standardized SD deployments are limited.

Bruce R Hargreaves - One of the best experts on this subject based on the ideXlab platform.

  • predicting secchi disk depth from average beam attenuation in a deep ultra clear lake
    Hydrobiologia, 2007
    Co-Authors: Gary L. Larson, Robert L Hoffman, Bruce R Hargreaves, R J Collier
    Abstract:

    We addressed potential sources of error in estimating the water clarity of mountain lakes by investigating the use of beam transmissometer measurements to estimate Secchi disk depth. The optical properties Secchi disk depth (SD) and beam transmissometer attenuation (BA) were measured in Crater Lake (Crater Lake National Park, Oregon, USA) at a designated sampling station near the maximum depth of the lake. A standard 20 cm black and white disk was used to measure SD. The transmissometer light source had a nearly monochromatic wavelength of 660 nm and a path length of 25 cm. We created a SD prediction model by regression of the inverse SD of 13 measurements recorded on days when environmental conditions were acceptable for disk deployment with BA averaged over the same depth range as the measured SD. The relationship between inverse SD and averaged BA was significant and the average 95% confidence interval for predicted SD relative to the measured SD was ±1.6 m (range = −4.6 to 5.5 m) or ±5.0%. Eleven additional sample dates tested the accuracy of the predictive model. The average 95% confidence interval for these sample dates was ±0.7 m (range = −3.5 to 3.8 m) or ±2.2%. The 1996–2000 time-series means for measured and predicted SD varied by 0.1 m, and the medians varied by 0.5 m. The time-series mean annual measured and predicted SD’s also varied little, with intra-annual differences between measured and predicted mean annual SD ranging from −2.1 to 0.1 m. The results demonstrated that this prediction model reliably estimated Secchi disk depths and can be used to significantly expand optical observations in an environment where the conditions for standardized SD deployments are limited.

  • predicting secchi disk depth from average beam attenuation in a deep ultra clear lake
    Hydrobiologia, 2007
    Co-Authors: Gary L. Larson, Robert L Hoffman, Bruce R Hargreaves, R J Collier
    Abstract:

    We addressed potential sources of error in estimating the water clarity of mountain lakes by investigating the use of beam transmissometer measurements to estimate Secchi disk depth. The optical properties Secchi disk depth (SD) and beam transmissometer attenuation (BA) were measured in Crater Lake (Crater Lake National Park, Oregon, USA) at a designated sampling station near the maximum depth of the lake. A standard 20 cm black and white disk was used to measure SD. The transmissometer light source had a nearly monochromatic wavelength of 660 nm and a path length of 25 cm. We created a SD prediction model by regression of the inverse SD of 13 measurements recorded on days when environmental conditions were acceptable for disk deployment with BA averaged over the same depth range as the measured SD. The relationship between inverse SD and averaged BA was significant and the average 95% confidence interval for predicted SD relative to the measured SD was ±1.6 m (range = −4.6 to 5.5 m) or ±5.0%. Eleven additional sample dates tested the accuracy of the predictive model. The average 95% confidence interval for these sample dates was ±0.7 m (range = −3.5 to 3.8 m) or ±2.2%. The 1996–2000 time-series means for measured and predicted SD varied by 0.1 m, and the medians varied by 0.5 m. The time-series mean annual measured and predicted SD’s also varied little, with intra-annual differences between measured and predicted mean annual SD ranging from −2.1 to 0.1 m. The results demonstrated that this prediction model reliably estimated Secchi disk depths and can be used to significantly expand optical observations in an environment where the conditions for standardized SD deployments are limited.

D. Prandle - One of the best experts on this subject based on the ideXlab platform.

  • Comparison between ADCP and transmissometer measurements of suspended sediment concentration
    Continental Shelf Research, 1999
    Co-Authors: Glenn P. Holdaway, Peter D. Thorne, David Flatt, S.e. Jones, D. Prandle
    Abstract:

    Abstract For more than a decade, acoustic Doppler current profilers, ADCPs, have been in common use measuring current profiles. It has been recognised over this period that the backscattered ADCP signal could be used to not only evaluate the Doppler shift, but also offered the possibility to extract information on the scatterers. The present work reports on an analysis of opportunistic backscatter measurements collected using a 1 MHz ADCP system, to assess the potential of ADCPs to measure suspended sediment concentration quantitatively. The data were gathered during a water monitoring campaign which deployed ADCPs, near-bed and profiling Transmissometers, and in situ bottle samplers. Although the original study was not specifically designed to test the capability of ADCPs to evaluate suspended sediment concentration, sufficient data were collected to examine the use of ADCPs for such measurements. The backscattered amplitude from one ADCP beam was recorded for quality control to assess the accuracy of velocity measurements. However, in this study these data have also been used to examine the potential of ADCPs for suspended sediment measurements. To investigate ADCPs in this role, the backscattered signals from one range cell has been calibrated against in situ bottle samples of the suspended material. Using this calibration, the backscattered signals have been inverted to give time series profiles of suspended particulate matter. To assess these profiles, comparisons have been made with in-situ calibrated profiling and moored Transmissometers. The outcome from the present study shows ADCP results which are comparable with the transmissometer observations, and clearly demonstrate the potential of ADCPs for directly measuring suspended sediment profiles.