Trematomus

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 1284 Experts worldwide ranked by ideXlab platform

J. Auvinet - One of the best experts on this subject based on the ideXlab platform.

  • multiple independent chromosomal fusions accompanied the radiation of the antarctic teleost genus Trematomus notothenioidei nototheniidae
    BMC Evolutionary Biology, 2020
    Co-Authors: J. Auvinet, P. Graça, W. Detrich, Catherine Ozoufcostaz, Agnes Dettai, Angel Amores, John H. Postlethwait, Olivier Coriton, D. Higuet
    Abstract:

    Chromosomal rearrangements are thought to be an important driving force underlying lineage diversification, but their link to speciation continues to be debated. Antarctic teleost fish of the family Nototheniidae (Notothenioidei) diversified in a changing environmental context, which led to ecological, morphological, and genetic differentiation among populations. In addition, extensive chromosomal repatterning accompanied species divergence in several clades. The most striking karyotypic changes involved the recent species radiation (about 10 My) of the genus Trematomus, with chromosomal pair numbers ranging between 29 and 12. These dramatic reductions in chromosome number resulted mostly from large-scale chromosome fusions. Multiple centric and/or tandem fusions have been hypothesized in at least seven of the twelve recognized Trematomus species. To reconstruct their evolutionary history, we employed comparative cytogenomics (BAC-FISH and chromosome painting) to reveal patterns of interspecific chromosomal orthologies across several notothenioid clades. We defined orthologous chromosomal segments of reference, termed Structural Units (SUs). SUs were identified in a total of 18 notothenioid species. We demonstrated for the first time that SUs were strongly conserved across every specimen examined, with chromosomal syntenies highlighting a paucity of intrachromosomal macro-rearrangements. Multiple independent fusions of these SUs were inferred in the Trematomus species, in contrast to the shared SU fusions in species of the sister lineage Notothenia. The SU segments were defined units of chromosomal rearrangement in the entire family Nototheiidae, which diverged from the other notothenioid families 20 My ago. Some of the identified chromosomal syntenies within the SUs were even conserved in their closest relatives, the family Eleginopsidae. Comparing the timing of acquisition of the fusions in the closely related genera Notothenia and Trematomus of the nototheniid species family, we conclude that they exhibit distinct chromosomal evolutionary histories, which may be relevant to different speciation scenarios.

  • Multiple independent chromosomal fusions accompanied the radiation of the Antarctic teleost genus Trematomus (Notothenioidei:Nototheniidae)
    BMC Evolutionary Biology, 2020
    Co-Authors: J. Auvinet, P. Graça, Agnes Dettai, Angel Amores, John H. Postlethwait, H. William Detrich, Catherine Ozouf-costaz, Olivier Coriton, D. Higuet
    Abstract:

    Background: Chromosomal rearrangements are thought to be an important driving force underlying lineage diversification, but their link to speciation continues to be debated. Antarctic teleost fish of the family Nototheniidae (Notothenioidei) diversified in a changing environmental context, which led to ecological, morphological, and genetic differentiation among populations. In addition, extensive chromosomal repatterning accompanied species divergence in several clades. The most striking karyotypic changes involved the recent species radiation (about 10 My) of the genus Trematomus, with chromosomal pair numbers ranging between 29 and 12. These dramatic reductions in chromosome number resulted mostly from large-scale chromosome fusions. Multiple centric and/or tandem fusions have been hypothesized in at least seven of the twelve recognized Trematomus species. To reconstruct their evolutionary history, we employed comparative cytogenomics (BAC-FISH and chromosome painting) to reveal patterns of interspecific chromosomal orthologies across several notothenioid clades.Results: We defined orthologous chromosomal segments of reference, termed Structural Units (SUs). SUs were identified in a total of 18 notothenioid species. We demonstrated for the first time that SUs were strongly conserved across every specimen examined, with chromosomal syntenies highlighting a paucity of intrachromosomal macro-rearrangements. Multiple independent fusions of these SUs were inferred in the Trematomus species, in contrast to the shared SU fusions in species of the sister lineage Notothenia.Conclusions: The SU segments were defined units of chromosomal rearrangement in the entire family Nototheiidae, which diverged from the other notothenioid families 20 My ago. Some of the identified chromosomal syntenies within the SUs were even conserved in their closest relatives, the family Eleginopsidae. Comparing the timing of acquisition of the fusions in the closely related genera Notothenia and Trematomus of the nototheniid species family, we conclude that they exhibit distinct chromosomal evolutionary histories, which may be relevant to different speciation scenarios.

  • histoire evolutive des remaniements chromosomiques en liaison avec la mobilisation d elements transposables chez les teleosteens antarctiques nototheniidae la radiation adaptative du groupe Trematomus
    2018
    Co-Authors: J. Auvinet
    Abstract:

    L’alternance de periodes glaciaires et interglaciaires durant les 20 derniers Ma a mene a des changements environnementaux repetes au niveau du plateau continental antarctique. C’est dans ce contexte que les teleosteens de la famille des Nototheniidae se sont adaptes et diversifies a travers plusieurs vagues de radiations (dont les Trematominae), dominant l’Ichtyofaune australe. Parmi les Nototheniidae, le groupe « Trematomus » (genres Cryothenia, Pagothenia, Trematomus et Indonotothenia) est celui ou l’on observe la plus grande diversite chromosomique, avec des nombres diploides de chromosomes allant de 24 a 58, impliquant de nombreux rearrangements ayant accompagne les speciations. Nous avons cherche a caracteriser ces remaniements chromosomiques. Avec un caryotype ancestral infere de 2n = 48, une conservation des unites chromosomiques entre especes, et une constance des tailles de genome, l’hypothese de rearrangements structuraux sans polyploidisation prealable est la plus probable. Afin de reconstruire l’histoire evolutive de ces evenements, nous avons recherche les homologies chromosomiques interspecifiques. Ceci nous a permis de reconstituer les remaniements (majoritairement des fusions) que nous avons repositionnes sur la phylogenie resolue des « Trematomus ». Contrairement a ce qui a ete publie pour le genre Notothenia, nos resultats suggerent des acquisitions multiples et independantes. Les elements transposables (ETs) peuvent etre impliques dans les remaniements chromosomiques par le biais de recombinaisons ectopiques. Ils participent alors a la diversification des lignees au cours de l’evolution. En raison de leur regulation epigenetique, leur mobilisation massive peut etre induite en cas de variations environnementales importantes. Nous nous sommes interesses a trois super-familles d’ETs (DIRS, Gypsy and Copia) dans ces genomes. Les DIRS1 ont montre des patrons d’insertions en points chauds dans les regions centromeriques et pericentromeriques. Etant donne leur mode de transposition decrit et leur propension a s’inserer dans des copies preexistantes, nous proposons un role des elements DIRS1 comme facilitateurs des fusions observees lors de la diversification des « Trematomus ».

  • Mobilization of retrotransposons as a cause of chromosomal diversification and rapid speciation: the case for the Antarctic teleost genus Trematomus
    BMC Genomics, 2018
    Co-Authors: J. Auvinet, P. Graça, L. Belkadi, L. Petit, E. Bonnivard, A. Dettaï, W. Detrich, C. Ozouf-costaz, D. Higuet
    Abstract:

    Background The importance of transposable elements (TEs) in the genomic remodeling and chromosomal rearrangements that accompany lineage diversification in vertebrates remains the subject of debate. The major impediment to understanding the roles of TEs in genome evolution is the lack of comparative and integrative analyses on complete taxonomic groups. To help overcome this problem, we have focused on the Antarctic teleost genus Trematomus (Notothenioidei: Nototheniidae), as they experienced rapid speciation accompanied by dramatic chromosomal diversity. Here we apply a multi-strategy approach to determine the role of large-scale TE mobilization in chromosomal diversification within Trematomus species. Results Despite the extensive chromosomal rearrangements observed in Trematomus species, our measurements revealed strong interspecific genome size conservation. After identifying the DIRS1 , Gypsy and Copia retrotransposon superfamilies in genomes of 13 nototheniid species, we evaluated their diversity, abundance (copy numbers) and chromosomal distribution. Four families of DIRS1 , nine of Gypsy , and two of Copia were highly conserved in these genomes; DIRS1 being the most represented within Trematomus genomes. Fluorescence in situ hybridization mapping showed preferential accumulation of DIRS1 in centromeric and pericentromeric regions, both in Trematomus and other nototheniid species, but not in outgroups: species of the Sub-Antarctic notothenioid families Bovichtidae and Eleginopsidae, and the non-notothenioid family Percidae. Conclusions In contrast to the outgroups, High-Antarctic notothenioid species, including the genus Trematomus , were subjected to strong environmental stresses involving repeated bouts of warming above the freezing point of seawater and cooling to sub-zero temperatures on the Antarctic continental shelf during the past 40 millions of years (My) . As a consequence of these repetitive environmental changes, including thermal shocks; a breakdown of epigenetic regulation that normally represses TE activity may have led to sequential waves of TE activation within their genomes. The predominance of DIRS1 in Trematomus species, their transposition mechanism, and their strategic location in “hot spots” of insertion on chromosomes are likely to have facilitated nonhomologous recombination, thereby increasing genomic rearrangements. The resulting centric and tandem fusions and fissions would favor the rapid lineage diversification, characteristic of the nototheniid adaptive radiation.

  • mobilization of retrotransposons as a cause of chromosomal diversification and rapid speciation the case for the antarctic teleost genus Trematomus
    BMC Genomics, 2018
    Co-Authors: J. Auvinet, P. Graça, L. Belkadi, L. Petit, E. Bonnivard, W. Detrich, Catherine Ozoufcostaz, Agnes Dettai, D. Higuet
    Abstract:

    The importance of transposable elements (TEs) in the genomic remodeling and chromosomal rearrangements that accompany lineage diversification in vertebrates remains the subject of debate. The major impediment to understanding the roles of TEs in genome evolution is the lack of comparative and integrative analyses on complete taxonomic groups. To help overcome this problem, we have focused on the Antarctic teleost genus Trematomus (Notothenioidei: Nototheniidae), as they experienced rapid speciation accompanied by dramatic chromosomal diversity. Here we apply a multi-strategy approach to determine the role of large-scale TE mobilization in chromosomal diversification within Trematomus species. Despite the extensive chromosomal rearrangements observed in Trematomus species, our measurements revealed strong interspecific genome size conservation. After identifying the DIRS1, Gypsy and Copia retrotransposon superfamilies in genomes of 13 nototheniid species, we evaluated their diversity, abundance (copy numbers) and chromosomal distribution. Four families of DIRS1, nine of Gypsy, and two of Copia were highly conserved in these genomes; DIRS1 being the most represented within Trematomus genomes. Fluorescence in situ hybridization mapping showed preferential accumulation of DIRS1 in centromeric and pericentromeric regions, both in Trematomus and other nototheniid species, but not in outgroups: species of the Sub-Antarctic notothenioid families Bovichtidae and Eleginopsidae, and the non-notothenioid family Percidae. In contrast to the outgroups, High-Antarctic notothenioid species, including the genus Trematomus, were subjected to strong environmental stresses involving repeated bouts of warming above the freezing point of seawater and cooling to sub-zero temperatures on the Antarctic continental shelf during the past 40 millions of years (My). As a consequence of these repetitive environmental changes, including thermal shocks; a breakdown of epigenetic regulation that normally represses TE activity may have led to sequential waves of TE activation within their genomes. The predominance of DIRS1 in Trematomus species, their transposition mechanism, and their strategic location in “hot spots” of insertion on chromosomes are likely to have facilitated nonhomologous recombination, thereby increasing genomic rearrangements. The resulting centric and tandem fusions and fissions would favor the rapid lineage diversification, characteristic of the nototheniid adaptive radiation.

D. Higuet - One of the best experts on this subject based on the ideXlab platform.

  • multiple independent chromosomal fusions accompanied the radiation of the antarctic teleost genus Trematomus notothenioidei nototheniidae
    BMC Evolutionary Biology, 2020
    Co-Authors: J. Auvinet, P. Graça, W. Detrich, Catherine Ozoufcostaz, Agnes Dettai, Angel Amores, John H. Postlethwait, Olivier Coriton, D. Higuet
    Abstract:

    Chromosomal rearrangements are thought to be an important driving force underlying lineage diversification, but their link to speciation continues to be debated. Antarctic teleost fish of the family Nototheniidae (Notothenioidei) diversified in a changing environmental context, which led to ecological, morphological, and genetic differentiation among populations. In addition, extensive chromosomal repatterning accompanied species divergence in several clades. The most striking karyotypic changes involved the recent species radiation (about 10 My) of the genus Trematomus, with chromosomal pair numbers ranging between 29 and 12. These dramatic reductions in chromosome number resulted mostly from large-scale chromosome fusions. Multiple centric and/or tandem fusions have been hypothesized in at least seven of the twelve recognized Trematomus species. To reconstruct their evolutionary history, we employed comparative cytogenomics (BAC-FISH and chromosome painting) to reveal patterns of interspecific chromosomal orthologies across several notothenioid clades. We defined orthologous chromosomal segments of reference, termed Structural Units (SUs). SUs were identified in a total of 18 notothenioid species. We demonstrated for the first time that SUs were strongly conserved across every specimen examined, with chromosomal syntenies highlighting a paucity of intrachromosomal macro-rearrangements. Multiple independent fusions of these SUs were inferred in the Trematomus species, in contrast to the shared SU fusions in species of the sister lineage Notothenia. The SU segments were defined units of chromosomal rearrangement in the entire family Nototheiidae, which diverged from the other notothenioid families 20 My ago. Some of the identified chromosomal syntenies within the SUs were even conserved in their closest relatives, the family Eleginopsidae. Comparing the timing of acquisition of the fusions in the closely related genera Notothenia and Trematomus of the nototheniid species family, we conclude that they exhibit distinct chromosomal evolutionary histories, which may be relevant to different speciation scenarios.

  • Multiple independent chromosomal fusions accompanied the radiation of the Antarctic teleost genus Trematomus (Notothenioidei:Nototheniidae)
    BMC Evolutionary Biology, 2020
    Co-Authors: J. Auvinet, P. Graça, Agnes Dettai, Angel Amores, John H. Postlethwait, H. William Detrich, Catherine Ozouf-costaz, Olivier Coriton, D. Higuet
    Abstract:

    Background: Chromosomal rearrangements are thought to be an important driving force underlying lineage diversification, but their link to speciation continues to be debated. Antarctic teleost fish of the family Nototheniidae (Notothenioidei) diversified in a changing environmental context, which led to ecological, morphological, and genetic differentiation among populations. In addition, extensive chromosomal repatterning accompanied species divergence in several clades. The most striking karyotypic changes involved the recent species radiation (about 10 My) of the genus Trematomus, with chromosomal pair numbers ranging between 29 and 12. These dramatic reductions in chromosome number resulted mostly from large-scale chromosome fusions. Multiple centric and/or tandem fusions have been hypothesized in at least seven of the twelve recognized Trematomus species. To reconstruct their evolutionary history, we employed comparative cytogenomics (BAC-FISH and chromosome painting) to reveal patterns of interspecific chromosomal orthologies across several notothenioid clades.Results: We defined orthologous chromosomal segments of reference, termed Structural Units (SUs). SUs were identified in a total of 18 notothenioid species. We demonstrated for the first time that SUs were strongly conserved across every specimen examined, with chromosomal syntenies highlighting a paucity of intrachromosomal macro-rearrangements. Multiple independent fusions of these SUs were inferred in the Trematomus species, in contrast to the shared SU fusions in species of the sister lineage Notothenia.Conclusions: The SU segments were defined units of chromosomal rearrangement in the entire family Nototheiidae, which diverged from the other notothenioid families 20 My ago. Some of the identified chromosomal syntenies within the SUs were even conserved in their closest relatives, the family Eleginopsidae. Comparing the timing of acquisition of the fusions in the closely related genera Notothenia and Trematomus of the nototheniid species family, we conclude that they exhibit distinct chromosomal evolutionary histories, which may be relevant to different speciation scenarios.

  • mobilization of retrotransposons as a cause of chromosomal diversification and rapid speciation the case for the antarctic teleost genus Trematomus
    BMC Genomics, 2018
    Co-Authors: J. Auvinet, P. Graça, L. Belkadi, L. Petit, E. Bonnivard, W. Detrich, Catherine Ozoufcostaz, Agnes Dettai, D. Higuet
    Abstract:

    The importance of transposable elements (TEs) in the genomic remodeling and chromosomal rearrangements that accompany lineage diversification in vertebrates remains the subject of debate. The major impediment to understanding the roles of TEs in genome evolution is the lack of comparative and integrative analyses on complete taxonomic groups. To help overcome this problem, we have focused on the Antarctic teleost genus Trematomus (Notothenioidei: Nototheniidae), as they experienced rapid speciation accompanied by dramatic chromosomal diversity. Here we apply a multi-strategy approach to determine the role of large-scale TE mobilization in chromosomal diversification within Trematomus species. Despite the extensive chromosomal rearrangements observed in Trematomus species, our measurements revealed strong interspecific genome size conservation. After identifying the DIRS1, Gypsy and Copia retrotransposon superfamilies in genomes of 13 nototheniid species, we evaluated their diversity, abundance (copy numbers) and chromosomal distribution. Four families of DIRS1, nine of Gypsy, and two of Copia were highly conserved in these genomes; DIRS1 being the most represented within Trematomus genomes. Fluorescence in situ hybridization mapping showed preferential accumulation of DIRS1 in centromeric and pericentromeric regions, both in Trematomus and other nototheniid species, but not in outgroups: species of the Sub-Antarctic notothenioid families Bovichtidae and Eleginopsidae, and the non-notothenioid family Percidae. In contrast to the outgroups, High-Antarctic notothenioid species, including the genus Trematomus, were subjected to strong environmental stresses involving repeated bouts of warming above the freezing point of seawater and cooling to sub-zero temperatures on the Antarctic continental shelf during the past 40 millions of years (My). As a consequence of these repetitive environmental changes, including thermal shocks; a breakdown of epigenetic regulation that normally represses TE activity may have led to sequential waves of TE activation within their genomes. The predominance of DIRS1 in Trematomus species, their transposition mechanism, and their strategic location in “hot spots” of insertion on chromosomes are likely to have facilitated nonhomologous recombination, thereby increasing genomic rearrangements. The resulting centric and tandem fusions and fissions would favor the rapid lineage diversification, characteristic of the nototheniid adaptive radiation.

  • Mobilization of retrotransposons as a cause of chromosomal diversification and rapid speciation: the case for the Antarctic teleost genus Trematomus
    BMC Genomics, 2018
    Co-Authors: J. Auvinet, P. Graça, L. Belkadi, L. Petit, E. Bonnivard, A. Dettaï, W. Detrich, C. Ozouf-costaz, D. Higuet
    Abstract:

    Background The importance of transposable elements (TEs) in the genomic remodeling and chromosomal rearrangements that accompany lineage diversification in vertebrates remains the subject of debate. The major impediment to understanding the roles of TEs in genome evolution is the lack of comparative and integrative analyses on complete taxonomic groups. To help overcome this problem, we have focused on the Antarctic teleost genus Trematomus (Notothenioidei: Nototheniidae), as they experienced rapid speciation accompanied by dramatic chromosomal diversity. Here we apply a multi-strategy approach to determine the role of large-scale TE mobilization in chromosomal diversification within Trematomus species. Results Despite the extensive chromosomal rearrangements observed in Trematomus species, our measurements revealed strong interspecific genome size conservation. After identifying the DIRS1 , Gypsy and Copia retrotransposon superfamilies in genomes of 13 nototheniid species, we evaluated their diversity, abundance (copy numbers) and chromosomal distribution. Four families of DIRS1 , nine of Gypsy , and two of Copia were highly conserved in these genomes; DIRS1 being the most represented within Trematomus genomes. Fluorescence in situ hybridization mapping showed preferential accumulation of DIRS1 in centromeric and pericentromeric regions, both in Trematomus and other nototheniid species, but not in outgroups: species of the Sub-Antarctic notothenioid families Bovichtidae and Eleginopsidae, and the non-notothenioid family Percidae. Conclusions In contrast to the outgroups, High-Antarctic notothenioid species, including the genus Trematomus , were subjected to strong environmental stresses involving repeated bouts of warming above the freezing point of seawater and cooling to sub-zero temperatures on the Antarctic continental shelf during the past 40 millions of years (My) . As a consequence of these repetitive environmental changes, including thermal shocks; a breakdown of epigenetic regulation that normally represses TE activity may have led to sequential waves of TE activation within their genomes. The predominance of DIRS1 in Trematomus species, their transposition mechanism, and their strategic location in “hot spots” of insertion on chromosomes are likely to have facilitated nonhomologous recombination, thereby increasing genomic rearrangements. The resulting centric and tandem fusions and fissions would favor the rapid lineage diversification, characteristic of the nototheniid adaptive radiation.

  • Additional file 2: of Mobilization of retrotransposons as a cause of chromosomal diversification and rapid speciation: the case for the Antarctic teleost genus Trematomus
    2018
    Co-Authors: J. Auvinet, P. Graça, L. Belkadi, L. Petit, E. Bonnivard, A. Dettaï, W. Detrich, C. Ozouf-costaz, D. Higuet
    Abstract:

    Detection of identified TEs among Trematomus, N. coriiceps and D. mawsoni genomes. Distribution of DIRS1, Gypsy and Copia TEs identified in Trematomus and nototheniid sister species. (PDF 105 kb

P. Graça - One of the best experts on this subject based on the ideXlab platform.

  • multiple independent chromosomal fusions accompanied the radiation of the antarctic teleost genus Trematomus notothenioidei nototheniidae
    BMC Evolutionary Biology, 2020
    Co-Authors: J. Auvinet, P. Graça, W. Detrich, Catherine Ozoufcostaz, Agnes Dettai, Angel Amores, John H. Postlethwait, Olivier Coriton, D. Higuet
    Abstract:

    Chromosomal rearrangements are thought to be an important driving force underlying lineage diversification, but their link to speciation continues to be debated. Antarctic teleost fish of the family Nototheniidae (Notothenioidei) diversified in a changing environmental context, which led to ecological, morphological, and genetic differentiation among populations. In addition, extensive chromosomal repatterning accompanied species divergence in several clades. The most striking karyotypic changes involved the recent species radiation (about 10 My) of the genus Trematomus, with chromosomal pair numbers ranging between 29 and 12. These dramatic reductions in chromosome number resulted mostly from large-scale chromosome fusions. Multiple centric and/or tandem fusions have been hypothesized in at least seven of the twelve recognized Trematomus species. To reconstruct their evolutionary history, we employed comparative cytogenomics (BAC-FISH and chromosome painting) to reveal patterns of interspecific chromosomal orthologies across several notothenioid clades. We defined orthologous chromosomal segments of reference, termed Structural Units (SUs). SUs were identified in a total of 18 notothenioid species. We demonstrated for the first time that SUs were strongly conserved across every specimen examined, with chromosomal syntenies highlighting a paucity of intrachromosomal macro-rearrangements. Multiple independent fusions of these SUs were inferred in the Trematomus species, in contrast to the shared SU fusions in species of the sister lineage Notothenia. The SU segments were defined units of chromosomal rearrangement in the entire family Nototheiidae, which diverged from the other notothenioid families 20 My ago. Some of the identified chromosomal syntenies within the SUs were even conserved in their closest relatives, the family Eleginopsidae. Comparing the timing of acquisition of the fusions in the closely related genera Notothenia and Trematomus of the nototheniid species family, we conclude that they exhibit distinct chromosomal evolutionary histories, which may be relevant to different speciation scenarios.

  • Multiple independent chromosomal fusions accompanied the radiation of the Antarctic teleost genus Trematomus (Notothenioidei:Nototheniidae)
    BMC Evolutionary Biology, 2020
    Co-Authors: J. Auvinet, P. Graça, Agnes Dettai, Angel Amores, John H. Postlethwait, H. William Detrich, Catherine Ozouf-costaz, Olivier Coriton, D. Higuet
    Abstract:

    Background: Chromosomal rearrangements are thought to be an important driving force underlying lineage diversification, but their link to speciation continues to be debated. Antarctic teleost fish of the family Nototheniidae (Notothenioidei) diversified in a changing environmental context, which led to ecological, morphological, and genetic differentiation among populations. In addition, extensive chromosomal repatterning accompanied species divergence in several clades. The most striking karyotypic changes involved the recent species radiation (about 10 My) of the genus Trematomus, with chromosomal pair numbers ranging between 29 and 12. These dramatic reductions in chromosome number resulted mostly from large-scale chromosome fusions. Multiple centric and/or tandem fusions have been hypothesized in at least seven of the twelve recognized Trematomus species. To reconstruct their evolutionary history, we employed comparative cytogenomics (BAC-FISH and chromosome painting) to reveal patterns of interspecific chromosomal orthologies across several notothenioid clades.Results: We defined orthologous chromosomal segments of reference, termed Structural Units (SUs). SUs were identified in a total of 18 notothenioid species. We demonstrated for the first time that SUs were strongly conserved across every specimen examined, with chromosomal syntenies highlighting a paucity of intrachromosomal macro-rearrangements. Multiple independent fusions of these SUs were inferred in the Trematomus species, in contrast to the shared SU fusions in species of the sister lineage Notothenia.Conclusions: The SU segments were defined units of chromosomal rearrangement in the entire family Nototheiidae, which diverged from the other notothenioid families 20 My ago. Some of the identified chromosomal syntenies within the SUs were even conserved in their closest relatives, the family Eleginopsidae. Comparing the timing of acquisition of the fusions in the closely related genera Notothenia and Trematomus of the nototheniid species family, we conclude that they exhibit distinct chromosomal evolutionary histories, which may be relevant to different speciation scenarios.

  • mobilization of retrotransposons as a cause of chromosomal diversification and rapid speciation the case for the antarctic teleost genus Trematomus
    BMC Genomics, 2018
    Co-Authors: J. Auvinet, P. Graça, L. Belkadi, L. Petit, E. Bonnivard, W. Detrich, Catherine Ozoufcostaz, Agnes Dettai, D. Higuet
    Abstract:

    The importance of transposable elements (TEs) in the genomic remodeling and chromosomal rearrangements that accompany lineage diversification in vertebrates remains the subject of debate. The major impediment to understanding the roles of TEs in genome evolution is the lack of comparative and integrative analyses on complete taxonomic groups. To help overcome this problem, we have focused on the Antarctic teleost genus Trematomus (Notothenioidei: Nototheniidae), as they experienced rapid speciation accompanied by dramatic chromosomal diversity. Here we apply a multi-strategy approach to determine the role of large-scale TE mobilization in chromosomal diversification within Trematomus species. Despite the extensive chromosomal rearrangements observed in Trematomus species, our measurements revealed strong interspecific genome size conservation. After identifying the DIRS1, Gypsy and Copia retrotransposon superfamilies in genomes of 13 nototheniid species, we evaluated their diversity, abundance (copy numbers) and chromosomal distribution. Four families of DIRS1, nine of Gypsy, and two of Copia were highly conserved in these genomes; DIRS1 being the most represented within Trematomus genomes. Fluorescence in situ hybridization mapping showed preferential accumulation of DIRS1 in centromeric and pericentromeric regions, both in Trematomus and other nototheniid species, but not in outgroups: species of the Sub-Antarctic notothenioid families Bovichtidae and Eleginopsidae, and the non-notothenioid family Percidae. In contrast to the outgroups, High-Antarctic notothenioid species, including the genus Trematomus, were subjected to strong environmental stresses involving repeated bouts of warming above the freezing point of seawater and cooling to sub-zero temperatures on the Antarctic continental shelf during the past 40 millions of years (My). As a consequence of these repetitive environmental changes, including thermal shocks; a breakdown of epigenetic regulation that normally represses TE activity may have led to sequential waves of TE activation within their genomes. The predominance of DIRS1 in Trematomus species, their transposition mechanism, and their strategic location in “hot spots” of insertion on chromosomes are likely to have facilitated nonhomologous recombination, thereby increasing genomic rearrangements. The resulting centric and tandem fusions and fissions would favor the rapid lineage diversification, characteristic of the nototheniid adaptive radiation.

  • Mobilization of retrotransposons as a cause of chromosomal diversification and rapid speciation: the case for the Antarctic teleost genus Trematomus
    BMC Genomics, 2018
    Co-Authors: J. Auvinet, P. Graça, L. Belkadi, L. Petit, E. Bonnivard, A. Dettaï, W. Detrich, C. Ozouf-costaz, D. Higuet
    Abstract:

    Background The importance of transposable elements (TEs) in the genomic remodeling and chromosomal rearrangements that accompany lineage diversification in vertebrates remains the subject of debate. The major impediment to understanding the roles of TEs in genome evolution is the lack of comparative and integrative analyses on complete taxonomic groups. To help overcome this problem, we have focused on the Antarctic teleost genus Trematomus (Notothenioidei: Nototheniidae), as they experienced rapid speciation accompanied by dramatic chromosomal diversity. Here we apply a multi-strategy approach to determine the role of large-scale TE mobilization in chromosomal diversification within Trematomus species. Results Despite the extensive chromosomal rearrangements observed in Trematomus species, our measurements revealed strong interspecific genome size conservation. After identifying the DIRS1 , Gypsy and Copia retrotransposon superfamilies in genomes of 13 nototheniid species, we evaluated their diversity, abundance (copy numbers) and chromosomal distribution. Four families of DIRS1 , nine of Gypsy , and two of Copia were highly conserved in these genomes; DIRS1 being the most represented within Trematomus genomes. Fluorescence in situ hybridization mapping showed preferential accumulation of DIRS1 in centromeric and pericentromeric regions, both in Trematomus and other nototheniid species, but not in outgroups: species of the Sub-Antarctic notothenioid families Bovichtidae and Eleginopsidae, and the non-notothenioid family Percidae. Conclusions In contrast to the outgroups, High-Antarctic notothenioid species, including the genus Trematomus , were subjected to strong environmental stresses involving repeated bouts of warming above the freezing point of seawater and cooling to sub-zero temperatures on the Antarctic continental shelf during the past 40 millions of years (My) . As a consequence of these repetitive environmental changes, including thermal shocks; a breakdown of epigenetic regulation that normally represses TE activity may have led to sequential waves of TE activation within their genomes. The predominance of DIRS1 in Trematomus species, their transposition mechanism, and their strategic location in “hot spots” of insertion on chromosomes are likely to have facilitated nonhomologous recombination, thereby increasing genomic rearrangements. The resulting centric and tandem fusions and fissions would favor the rapid lineage diversification, characteristic of the nototheniid adaptive radiation.

  • Additional file 2: of Mobilization of retrotransposons as a cause of chromosomal diversification and rapid speciation: the case for the Antarctic teleost genus Trematomus
    2018
    Co-Authors: J. Auvinet, P. Graça, L. Belkadi, L. Petit, E. Bonnivard, A. Dettaï, W. Detrich, C. Ozouf-costaz, D. Higuet
    Abstract:

    Detection of identified TEs among Trematomus, N. coriiceps and D. mawsoni genomes. Distribution of DIRS1, Gypsy and Copia TEs identified in Trematomus and nototheniid sister species. (PDF 105 kb

Arvind Varsani - One of the best experts on this subject based on the ideXlab platform.

  • Identification of a polyomavirus in Weddell seal (Leptonychotes weddellii) from the Ross Sea (Antarctica)
    Archives of Virology, 2017
    Co-Authors: Arvind Varsani, Greg Frankfurter, Maketalena F Male, Daisy Stainton, Simona Kraberger, Jennifer M. Burns
    Abstract:

    Viruses are ubiquitous in nature, however, very few have been identified that are associated with Antarctic animals. Here we report the identification of a polyomavirus in the kidney tissue of a deceased Weddell seal from the Ross Sea, Antarctica. The circular genome (5186 nt) has typical features of polyomaviruses with a small and larger T-antigen open reading frames (ORFs) and three ORFs encoding VP1, VP2 and VP3 capsid proteins. The genome of the Weddell seal polyomavirus (WsPyV) shares 85.4% genome-wide pairwise identity with a polyomavirus identified in a California sea lion. To our knowledge WsPyV is the first viral genome identified in Antarctic pinnipeds and the third polyomavirus to be identified from an Antarctic animal, the other two being from Adélie penguin ( Pygoscelis adeliae ) and a sharp-spined notothen ( Trematomus pennellii ), both sampled in the Ross sea. The GenBank accession number: KX533457.

  • identification of a polyomavirus in weddell seal leptonychotes weddellii from the ross sea antarctica
    Archives of Virology, 2017
    Co-Authors: Greg Frankfurter, Maketalena F Male, Daisy Stainton, Simona Kraberger, Arvind Varsani, Jennifer M. Burns
    Abstract:

    Viruses are ubiquitous in nature, however, very few have been identified that are associated with Antarctic animals. Here we report the identification of a polyomavirus in the kidney tissue of a deceased Weddell seal from the Ross Sea, Antarctica. The circular genome (5186 nt) has typical features of polyomaviruses with a small and larger T-antigen open reading frames (ORFs) and three ORFs encoding VP1, VP2 and VP3 capsid proteins. The genome of the Weddell seal polyomavirus (WsPyV) shares 85.4% genome-wide pairwise identity with a polyomavirus identified in a California sea lion. To our knowledge WsPyV is the first viral genome identified in Antarctic pinnipeds and the third polyomavirus to be identified from an Antarctic animal, the other two being from Adelie penguin (Pygoscelis adeliae) and a sharp-spined notothen (Trematomus pennellii), both sampled in the Ross sea. The GenBank accession number: KX533457.

Agnes Dettai - One of the best experts on this subject based on the ideXlab platform.

  • multiple independent chromosomal fusions accompanied the radiation of the antarctic teleost genus Trematomus notothenioidei nototheniidae
    BMC Evolutionary Biology, 2020
    Co-Authors: J. Auvinet, P. Graça, W. Detrich, Catherine Ozoufcostaz, Agnes Dettai, Angel Amores, John H. Postlethwait, Olivier Coriton, D. Higuet
    Abstract:

    Chromosomal rearrangements are thought to be an important driving force underlying lineage diversification, but their link to speciation continues to be debated. Antarctic teleost fish of the family Nototheniidae (Notothenioidei) diversified in a changing environmental context, which led to ecological, morphological, and genetic differentiation among populations. In addition, extensive chromosomal repatterning accompanied species divergence in several clades. The most striking karyotypic changes involved the recent species radiation (about 10 My) of the genus Trematomus, with chromosomal pair numbers ranging between 29 and 12. These dramatic reductions in chromosome number resulted mostly from large-scale chromosome fusions. Multiple centric and/or tandem fusions have been hypothesized in at least seven of the twelve recognized Trematomus species. To reconstruct their evolutionary history, we employed comparative cytogenomics (BAC-FISH and chromosome painting) to reveal patterns of interspecific chromosomal orthologies across several notothenioid clades. We defined orthologous chromosomal segments of reference, termed Structural Units (SUs). SUs were identified in a total of 18 notothenioid species. We demonstrated for the first time that SUs were strongly conserved across every specimen examined, with chromosomal syntenies highlighting a paucity of intrachromosomal macro-rearrangements. Multiple independent fusions of these SUs were inferred in the Trematomus species, in contrast to the shared SU fusions in species of the sister lineage Notothenia. The SU segments were defined units of chromosomal rearrangement in the entire family Nototheiidae, which diverged from the other notothenioid families 20 My ago. Some of the identified chromosomal syntenies within the SUs were even conserved in their closest relatives, the family Eleginopsidae. Comparing the timing of acquisition of the fusions in the closely related genera Notothenia and Trematomus of the nototheniid species family, we conclude that they exhibit distinct chromosomal evolutionary histories, which may be relevant to different speciation scenarios.

  • Multiple independent chromosomal fusions accompanied the radiation of the Antarctic teleost genus Trematomus (Notothenioidei:Nototheniidae)
    BMC Evolutionary Biology, 2020
    Co-Authors: J. Auvinet, P. Graça, Agnes Dettai, Angel Amores, John H. Postlethwait, H. William Detrich, Catherine Ozouf-costaz, Olivier Coriton, D. Higuet
    Abstract:

    Background: Chromosomal rearrangements are thought to be an important driving force underlying lineage diversification, but their link to speciation continues to be debated. Antarctic teleost fish of the family Nototheniidae (Notothenioidei) diversified in a changing environmental context, which led to ecological, morphological, and genetic differentiation among populations. In addition, extensive chromosomal repatterning accompanied species divergence in several clades. The most striking karyotypic changes involved the recent species radiation (about 10 My) of the genus Trematomus, with chromosomal pair numbers ranging between 29 and 12. These dramatic reductions in chromosome number resulted mostly from large-scale chromosome fusions. Multiple centric and/or tandem fusions have been hypothesized in at least seven of the twelve recognized Trematomus species. To reconstruct their evolutionary history, we employed comparative cytogenomics (BAC-FISH and chromosome painting) to reveal patterns of interspecific chromosomal orthologies across several notothenioid clades.Results: We defined orthologous chromosomal segments of reference, termed Structural Units (SUs). SUs were identified in a total of 18 notothenioid species. We demonstrated for the first time that SUs were strongly conserved across every specimen examined, with chromosomal syntenies highlighting a paucity of intrachromosomal macro-rearrangements. Multiple independent fusions of these SUs were inferred in the Trematomus species, in contrast to the shared SU fusions in species of the sister lineage Notothenia.Conclusions: The SU segments were defined units of chromosomal rearrangement in the entire family Nototheiidae, which diverged from the other notothenioid families 20 My ago. Some of the identified chromosomal syntenies within the SUs were even conserved in their closest relatives, the family Eleginopsidae. Comparing the timing of acquisition of the fusions in the closely related genera Notothenia and Trematomus of the nototheniid species family, we conclude that they exhibit distinct chromosomal evolutionary histories, which may be relevant to different speciation scenarios.

  • mobilization of retrotransposons as a cause of chromosomal diversification and rapid speciation the case for the antarctic teleost genus Trematomus
    BMC Genomics, 2018
    Co-Authors: J. Auvinet, P. Graça, L. Belkadi, L. Petit, E. Bonnivard, W. Detrich, Catherine Ozoufcostaz, Agnes Dettai, D. Higuet
    Abstract:

    The importance of transposable elements (TEs) in the genomic remodeling and chromosomal rearrangements that accompany lineage diversification in vertebrates remains the subject of debate. The major impediment to understanding the roles of TEs in genome evolution is the lack of comparative and integrative analyses on complete taxonomic groups. To help overcome this problem, we have focused on the Antarctic teleost genus Trematomus (Notothenioidei: Nototheniidae), as they experienced rapid speciation accompanied by dramatic chromosomal diversity. Here we apply a multi-strategy approach to determine the role of large-scale TE mobilization in chromosomal diversification within Trematomus species. Despite the extensive chromosomal rearrangements observed in Trematomus species, our measurements revealed strong interspecific genome size conservation. After identifying the DIRS1, Gypsy and Copia retrotransposon superfamilies in genomes of 13 nototheniid species, we evaluated their diversity, abundance (copy numbers) and chromosomal distribution. Four families of DIRS1, nine of Gypsy, and two of Copia were highly conserved in these genomes; DIRS1 being the most represented within Trematomus genomes. Fluorescence in situ hybridization mapping showed preferential accumulation of DIRS1 in centromeric and pericentromeric regions, both in Trematomus and other nototheniid species, but not in outgroups: species of the Sub-Antarctic notothenioid families Bovichtidae and Eleginopsidae, and the non-notothenioid family Percidae. In contrast to the outgroups, High-Antarctic notothenioid species, including the genus Trematomus, were subjected to strong environmental stresses involving repeated bouts of warming above the freezing point of seawater and cooling to sub-zero temperatures on the Antarctic continental shelf during the past 40 millions of years (My). As a consequence of these repetitive environmental changes, including thermal shocks; a breakdown of epigenetic regulation that normally represses TE activity may have led to sequential waves of TE activation within their genomes. The predominance of DIRS1 in Trematomus species, their transposition mechanism, and their strategic location in “hot spots” of insertion on chromosomes are likely to have facilitated nonhomologous recombination, thereby increasing genomic rearrangements. The resulting centric and tandem fusions and fissions would favor the rapid lineage diversification, characteristic of the nototheniid adaptive radiation.

  • Data_Sheet_1_Historical DNA Metabarcoding of the Prey and Microbiome of Trematomid Fishes Using Museum Samples.docx
    2018
    Co-Authors: Franz M. Heindler, Anton P. Van De Putte, Agnes Dettai, Gregory E Maes, Henrik Christiansen, Bruno Frédérich, Gilles Lepoint, Filip A M Volckaert
    Abstract:

    Antarctic specimens collected during various research expeditions are preserved in natural history collections around the world potentially offering a cornucopia of morphological and molecular data. Historical samples of marine species are, however, often preserved in formaldehyde which may render them useless for genetic analysis. We sampled stomachs and hindguts from 225 Trematomus specimens from the Natural History Museum London. These samples were initially collected between 20 and 100 years ago and fixed in either formaldehyde or ethanol. A 313 bp fragment of the cytochrome c oxidase subunit I (COI) was amplified and sequenced for prey item identification in the stomach and a 450 bp region of the 16S rRNA gene to investigate microbiome composition in the gut system. Both data sets were characterized by large dropout rates during extensive quality controls. Eventually, no unambiguous results regarding stomach content (COI) were retained, possibly due to degraded DNA, inefficient primers and contamination. In contrast, reliable microbiome composition data (16S rRNA) was obtained from 26 samples. These data showed a correlation in change of microbiome composition with fish size as well as year of the catch, indicating a microbiome shift throughout ontogeny and between samples from different decades. A comparison with contemporary samples indicated that the intestinal microbiome of Trematomus may have drastically changed within the last century. Further extensive studies are needed to confirm these patterns with higher sample numbers. Molecular analyses of museum stored fish can provide novel micro evolutionary insights that may benefit current efforts to prioritize conservation units in the Southern Ocean.

  • Historical DNA Metabarcoding of the Prey and Microbiome of Trematomid Fishes Using Museum Samples
    'Frontiers Media SA', 2018
    Co-Authors: Franz M. Heindler, Anton P. Van De Putte, Agnes Dettai, Gregory E Maes, Henrik Christiansen, Bruno Frédérich, Gilles Lepoint, Filip A M Volckaert
    Abstract:

    Antarctic specimens collected during various research expeditions are preserved in natural history collections around the world potentially offering a cornucopia of morphological and molecular data. Historical samples of marine species are, however, often preserved in formaldehyde which may render them useless for genetic analysis. We sampled stomachs and hindguts from 225 Trematomus specimens from the Natural History Museum London. These samples were initially collected between 20 and 100 years ago and fixed in either formaldehyde or ethanol. A 313 bp fragment of the cytochrome c oxidase subunit I (COI) was amplified and sequenced for prey item identification in the stomach and a 450 bp region of the 16S rRNA gene to investigate microbiome composition in the gut system. Both data sets were characterized by large dropout rates during extensive quality controls. Eventually, no unambiguous results regarding stomach content (COI) were retained, possibly due to degraded DNA, inefficient primers and contamination. In contrast, reliable microbiome composition data (16S rRNA) was obtained from 26 samples. These data showed a correlation in change of microbiome composition with fish size as well as year of the catch, indicating a microbiome shift throughout ontogeny and between samples from different decades. A comparison with contemporary samples indicated that the intestinal microbiome of Trematomus may have drastically changed within the last century. Further extensive studies are needed to confirm these patterns with higher sample numbers. Molecular analyses of museum stored fish can provide novel micro evolutionary insights that may benefit current efforts to prioritize conservation units in the Southern Ocean