Trichoderma pseudokoningii

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 315 Experts worldwide ranked by ideXlab platform

Yu-zhong Zhang - One of the best experts on this subject based on the ideXlab platform.

  • ww w s p m
    2015
    Co-Authors: Lushan Wang, Jie Liu, Yu-zhong Zhang, Yue Zhao, Peiji Gao
    Abstract:

    Comparison of domains function between cellobiohydrolase I and endoglucanase I from Trichoderma pseudokoningii S-38 by limited proteolysi

  • trichokonins from Trichoderma pseudokoningii smf2 induce resistance against gram negative pectobacterium carotovorum subsp carotovorum in chinese cabbage
    Fems Microbiology Letters, 2014
    Co-Authors: Yu-zhong Zhang, Xiu-lan Chen, Lei-lei Chen, Haiyun Li, Xiusheng Zhang, Zhiting Gong, Xiao-yan Song
    Abstract:

    : Peptaibols, mainly produced by Trichoderma, play a pivotal role in controlling plant disease caused by fungi, virus, and Gram-positive bacteria. In the current study, we evaluated the control effect of Trichokonins, antimicrobial peptaibols from Trichoderma pseudokoningii SMF2, on soft rot disease of Chinese cabbage caused by a Gram-negative bacterium Pectobacterium carotovorum subsp. carotovorum and analyzed the mechanism involved. Trichokonins treatment (0.3 mg L(-1) ) enhanced the resistance of Chinese cabbage against Pcc infection. However, Trichokonins could hardly inhibit the growth of Pcc in vitro, even at high concentration (500 mg L(-1) ). Therefore, the direct effect of Trichokonins on Pcc may not the main reason why Trichokonins could control soft rot of Chinese cabbage. Trichokonin treatment led to an obvious increase in the production of reactive oxygen species hydrogen peroxide and superoxide radical, a significant enhance of the activities of pathogenesis-related enzymes catalase, polyphenoloxidase and peroxidase, and upregulation of the expression of salicylic acid - responsive pathogenesis-related protein gene acidic PR-1a in Chinese cabbage. These results indicate that Trichokonins induce resistance in Chinese cabbage against Pcc infection through the activation of salicylic acid signaling pathway, which imply the potential of Trichoderma and peptaibols in controlling plant disease caused by Gram-negative bacteria.

  • Antimicrobial Peptide Trichokonin VI-Induced Alterations in the Morphological and Nanomechanical Properties of Bacillus subtilis
    PloS one, 2012
    Co-Authors: Zhi-hua Chen, Mei Shi, Xiao-yan Song, Xiu-lan Chen, Bai-cheng Zhou, Xian Zhao, Yu-zhong Zhang
    Abstract:

    Antimicrobial peptides are promising alternative antimicrobial agents compared to conventional antibiotics. Understanding the mode of action is important for their further application. We examined the interaction between trichokonin VI, a peptaibol isolated from Trichoderma pseudokoningii, and Bacillus subtilis, a representative Gram-positive bacterium. Trichokonin VI was effective against B. subtilis with a minimal inhibitory concentration of 25 µM. Trichokonin VI exhibited a concentration- and time-dependent effect against B. subtilis, which was studied using atomic force microscopy. The cell wall of B. subtilis collapsed and the roughness increased upon treatment with trichokonin VI. Nanoindentation experiments revealed a progressive decrease in the stiffness of the cells. Furthermore, the membrane permeabilization effect of trichokonin VI on B. subtilis was monitored, and the results suggest that the leakage of intracellular materials is a possible mechanism of action for trichokonin VI, which led to alterations in the morphological and nanomechanical properties of B. subtilis.

  • Antimicrobial peptaibols from Trichoderma pseudokoningii induce programmed cell death in plant fungal pathogens
    Microbiology, 2012
    Co-Authors: Mei Shi, Lei Chen, Xiao-wei Wang, Tian Zhang, Pei-bao Zhao, Xiao-yan Song, Cai-yun Sun, Xiu-lan Chen, Bai-cheng Zhou, Yu-zhong Zhang
    Abstract:

    Antibiosis is one of the widespread strategies used by Trichoderma spp. against plant fungal pathogens, the mechanism of which, however, remains poorly understood. Peptaibols are a large family of antimicrobial peptides produced by Trichoderma spp. Our previous study showed that trichokonins, a type of peptaibol from Trichoderma pseudokoningii SMF2, exhibited antibiotic activities against plant fungal pathogens. In this study, we first demonstrated that trichokonin VI (TK VI) induced extensive apoptotic programmed cell death in plant fungal pathogens. For a deeper insight into the apoptotic mechanism involved in the action of TK VI, Fusarium oxysporum was used as a model. Cells of F. oxysporum treated with TK VI showed apoptotic hallmarks, such as exposure of phosphatidylserine, the appearance of reactive oxygen species and fragmentation of nuclear DNA. Moreover, TK VI-treated cells exhibited an accumulation of cytoplasmic vacuoles with loss of the mitochondrial transmembrane potential, and this process was independent of metacaspases. Therefore, TK VI induces metacaspase-independent apoptotic cell death in F. oxysporum. This represents what is believed to be the first report to reveal the antibiotic mechanism of peptaibols against plant fungal pathogens.

  • characterization and gene cloning of a novel serine protease with nematicidal activity from Trichoderma pseudokoningii smf2
    Fems Microbiology Letters, 2009
    Co-Authors: Lei-lei Chen, Mei Shi, Xiao-yan Song, Xiu-lan Chen, Li-jun Liu, Chang-ying Zheng, Yu-zhong Zhang
    Abstract:

    Trichoderma pseudokoningii SMF2 is a biocontrol fungus with inhibitory ability against phytopathogenic fungi. Here, a crude extract of strain SMF2 in a solid ferment exhibited strong nematicidal activity against Meloidogyne incognita, and a novel serine protease SprT with nematicidal activity was purified from the crude extract. Protease SprT has a molecular mass of 31 kDa, a pH optimum of 8.5, and a temperature optimum of 60-65 degrees C. It had good thermostability, and was stable in an alkaline environment. SprT could degrade bovine serum albumin, lysozyme, and gelatin, and its activity was enhanced by many metal ions. The cuticles of nematodes treated by protease SprT obviously crimpled. Purified protease SprT could kill juveniles of M. incognita and inhibit egg hatch, suggesting that it is involved in the nematicidal process of T. pseudokoningii SMF2. The full-length cDNA gene-encoding protease SprT was cloned by rapid amplification of cDNA ends. Sequence analysis showed that SprT is a monodomain subtilase containing 284 amino acid residues. It had higher identities and a closer relation to the nematicidal serine proteases (59-69%) from nematode parasitic fungi than to the serine proteases (<50%) from Trichoderma. Protease SprT represents the first well-characterized subtilase with nematicidal activity from Trichoderma.

Xiao-yan Song - One of the best experts on this subject based on the ideXlab platform.

  • trichokonins from Trichoderma pseudokoningii smf2 induce resistance against gram negative pectobacterium carotovorum subsp carotovorum in chinese cabbage
    Fems Microbiology Letters, 2014
    Co-Authors: Yu-zhong Zhang, Xiu-lan Chen, Lei-lei Chen, Haiyun Li, Xiusheng Zhang, Zhiting Gong, Xiao-yan Song
    Abstract:

    : Peptaibols, mainly produced by Trichoderma, play a pivotal role in controlling plant disease caused by fungi, virus, and Gram-positive bacteria. In the current study, we evaluated the control effect of Trichokonins, antimicrobial peptaibols from Trichoderma pseudokoningii SMF2, on soft rot disease of Chinese cabbage caused by a Gram-negative bacterium Pectobacterium carotovorum subsp. carotovorum and analyzed the mechanism involved. Trichokonins treatment (0.3 mg L(-1) ) enhanced the resistance of Chinese cabbage against Pcc infection. However, Trichokonins could hardly inhibit the growth of Pcc in vitro, even at high concentration (500 mg L(-1) ). Therefore, the direct effect of Trichokonins on Pcc may not the main reason why Trichokonins could control soft rot of Chinese cabbage. Trichokonin treatment led to an obvious increase in the production of reactive oxygen species hydrogen peroxide and superoxide radical, a significant enhance of the activities of pathogenesis-related enzymes catalase, polyphenoloxidase and peroxidase, and upregulation of the expression of salicylic acid - responsive pathogenesis-related protein gene acidic PR-1a in Chinese cabbage. These results indicate that Trichokonins induce resistance in Chinese cabbage against Pcc infection through the activation of salicylic acid signaling pathway, which imply the potential of Trichoderma and peptaibols in controlling plant disease caused by Gram-negative bacteria.

  • Antimicrobial Peptide Trichokonin VI-Induced Alterations in the Morphological and Nanomechanical Properties of Bacillus subtilis
    PloS one, 2012
    Co-Authors: Zhi-hua Chen, Mei Shi, Xiao-yan Song, Xiu-lan Chen, Bai-cheng Zhou, Xian Zhao, Yu-zhong Zhang
    Abstract:

    Antimicrobial peptides are promising alternative antimicrobial agents compared to conventional antibiotics. Understanding the mode of action is important for their further application. We examined the interaction between trichokonin VI, a peptaibol isolated from Trichoderma pseudokoningii, and Bacillus subtilis, a representative Gram-positive bacterium. Trichokonin VI was effective against B. subtilis with a minimal inhibitory concentration of 25 µM. Trichokonin VI exhibited a concentration- and time-dependent effect against B. subtilis, which was studied using atomic force microscopy. The cell wall of B. subtilis collapsed and the roughness increased upon treatment with trichokonin VI. Nanoindentation experiments revealed a progressive decrease in the stiffness of the cells. Furthermore, the membrane permeabilization effect of trichokonin VI on B. subtilis was monitored, and the results suggest that the leakage of intracellular materials is a possible mechanism of action for trichokonin VI, which led to alterations in the morphological and nanomechanical properties of B. subtilis.

  • Antimicrobial peptaibols from Trichoderma pseudokoningii induce programmed cell death in plant fungal pathogens
    Microbiology, 2012
    Co-Authors: Mei Shi, Lei Chen, Xiao-wei Wang, Tian Zhang, Pei-bao Zhao, Xiao-yan Song, Cai-yun Sun, Xiu-lan Chen, Bai-cheng Zhou, Yu-zhong Zhang
    Abstract:

    Antibiosis is one of the widespread strategies used by Trichoderma spp. against plant fungal pathogens, the mechanism of which, however, remains poorly understood. Peptaibols are a large family of antimicrobial peptides produced by Trichoderma spp. Our previous study showed that trichokonins, a type of peptaibol from Trichoderma pseudokoningii SMF2, exhibited antibiotic activities against plant fungal pathogens. In this study, we first demonstrated that trichokonin VI (TK VI) induced extensive apoptotic programmed cell death in plant fungal pathogens. For a deeper insight into the apoptotic mechanism involved in the action of TK VI, Fusarium oxysporum was used as a model. Cells of F. oxysporum treated with TK VI showed apoptotic hallmarks, such as exposure of phosphatidylserine, the appearance of reactive oxygen species and fragmentation of nuclear DNA. Moreover, TK VI-treated cells exhibited an accumulation of cytoplasmic vacuoles with loss of the mitochondrial transmembrane potential, and this process was independent of metacaspases. Therefore, TK VI induces metacaspase-independent apoptotic cell death in F. oxysporum. This represents what is believed to be the first report to reveal the antibiotic mechanism of peptaibols against plant fungal pathogens.

  • characterization and gene cloning of a novel serine protease with nematicidal activity from Trichoderma pseudokoningii smf2
    Fems Microbiology Letters, 2009
    Co-Authors: Lei-lei Chen, Mei Shi, Xiao-yan Song, Xiu-lan Chen, Li-jun Liu, Chang-ying Zheng, Yu-zhong Zhang
    Abstract:

    Trichoderma pseudokoningii SMF2 is a biocontrol fungus with inhibitory ability against phytopathogenic fungi. Here, a crude extract of strain SMF2 in a solid ferment exhibited strong nematicidal activity against Meloidogyne incognita, and a novel serine protease SprT with nematicidal activity was purified from the crude extract. Protease SprT has a molecular mass of 31 kDa, a pH optimum of 8.5, and a temperature optimum of 60-65 degrees C. It had good thermostability, and was stable in an alkaline environment. SprT could degrade bovine serum albumin, lysozyme, and gelatin, and its activity was enhanced by many metal ions. The cuticles of nematodes treated by protease SprT obviously crimpled. Purified protease SprT could kill juveniles of M. incognita and inhibit egg hatch, suggesting that it is involved in the nematicidal process of T. pseudokoningii SMF2. The full-length cDNA gene-encoding protease SprT was cloned by rapid amplification of cDNA ends. Sequence analysis showed that SprT is a monodomain subtilase containing 284 amino acid residues. It had higher identities and a closer relation to the nematicidal serine proteases (59-69%) from nematode parasitic fungi than to the serine proteases (<50%) from Trichoderma. Protease SprT represents the first well-characterized subtilase with nematicidal activity from Trichoderma.

  • Characterization and gene cloning of a novel serine protease with nematicidal activity from Trichoderma pseudokoningii SMF2.
    FEMS microbiology letters, 2009
    Co-Authors: Lei-lei Chen, Mei Shi, Xiao-yan Song, Xiu-lan Chen, Li-jun Liu, Chang-ying Zheng, Yu-zhong Zhang
    Abstract:

    Trichoderma pseudokoningii SMF2 is a biocontrol fungus with inhibitory ability against phytopathogenic fungi. Here, a crude extract of strain SMF2 in a solid ferment exhibited strong nematicidal activity against Meloidogyne incognita, and a novel serine protease SprT with nematicidal activity was purified from the crude extract. Protease SprT has a molecular mass of 31 kDa, a pH optimum of 8.5, and a temperature optimum of 60-65 degrees C. It had good thermostability, and was stable in an alkaline environment. SprT could degrade bovine serum albumin, lysozyme, and gelatin, and its activity was enhanced by many metal ions. The cuticles of nematodes treated by protease SprT obviously crimpled. Purified protease SprT could kill juveniles of M. incognita and inhibit egg hatch, suggesting that it is involved in the nematicidal process of T. pseudokoningii SMF2. The full-length cDNA gene-encoding protease SprT was cloned by rapid amplification of cDNA ends. Sequence analysis showed that SprT is a monodomain subtilase containing 284 amino acid residues. It had higher identities and a closer relation to the nematicidal serine proteases (59-69%) from nematode parasitic fungi than to the serine proteases (

Xiu-lan Chen - One of the best experts on this subject based on the ideXlab platform.

  • trichokonins from Trichoderma pseudokoningii smf2 induce resistance against gram negative pectobacterium carotovorum subsp carotovorum in chinese cabbage
    Fems Microbiology Letters, 2014
    Co-Authors: Yu-zhong Zhang, Xiu-lan Chen, Lei-lei Chen, Haiyun Li, Xiusheng Zhang, Zhiting Gong, Xiao-yan Song
    Abstract:

    : Peptaibols, mainly produced by Trichoderma, play a pivotal role in controlling plant disease caused by fungi, virus, and Gram-positive bacteria. In the current study, we evaluated the control effect of Trichokonins, antimicrobial peptaibols from Trichoderma pseudokoningii SMF2, on soft rot disease of Chinese cabbage caused by a Gram-negative bacterium Pectobacterium carotovorum subsp. carotovorum and analyzed the mechanism involved. Trichokonins treatment (0.3 mg L(-1) ) enhanced the resistance of Chinese cabbage against Pcc infection. However, Trichokonins could hardly inhibit the growth of Pcc in vitro, even at high concentration (500 mg L(-1) ). Therefore, the direct effect of Trichokonins on Pcc may not the main reason why Trichokonins could control soft rot of Chinese cabbage. Trichokonin treatment led to an obvious increase in the production of reactive oxygen species hydrogen peroxide and superoxide radical, a significant enhance of the activities of pathogenesis-related enzymes catalase, polyphenoloxidase and peroxidase, and upregulation of the expression of salicylic acid - responsive pathogenesis-related protein gene acidic PR-1a in Chinese cabbage. These results indicate that Trichokonins induce resistance in Chinese cabbage against Pcc infection through the activation of salicylic acid signaling pathway, which imply the potential of Trichoderma and peptaibols in controlling plant disease caused by Gram-negative bacteria.

  • Antimicrobial Peptide Trichokonin VI-Induced Alterations in the Morphological and Nanomechanical Properties of Bacillus subtilis
    PloS one, 2012
    Co-Authors: Zhi-hua Chen, Mei Shi, Xiao-yan Song, Xiu-lan Chen, Bai-cheng Zhou, Xian Zhao, Yu-zhong Zhang
    Abstract:

    Antimicrobial peptides are promising alternative antimicrobial agents compared to conventional antibiotics. Understanding the mode of action is important for their further application. We examined the interaction between trichokonin VI, a peptaibol isolated from Trichoderma pseudokoningii, and Bacillus subtilis, a representative Gram-positive bacterium. Trichokonin VI was effective against B. subtilis with a minimal inhibitory concentration of 25 µM. Trichokonin VI exhibited a concentration- and time-dependent effect against B. subtilis, which was studied using atomic force microscopy. The cell wall of B. subtilis collapsed and the roughness increased upon treatment with trichokonin VI. Nanoindentation experiments revealed a progressive decrease in the stiffness of the cells. Furthermore, the membrane permeabilization effect of trichokonin VI on B. subtilis was monitored, and the results suggest that the leakage of intracellular materials is a possible mechanism of action for trichokonin VI, which led to alterations in the morphological and nanomechanical properties of B. subtilis.

  • Antimicrobial peptaibols from Trichoderma pseudokoningii induce programmed cell death in plant fungal pathogens
    Microbiology, 2012
    Co-Authors: Mei Shi, Lei Chen, Xiao-wei Wang, Tian Zhang, Pei-bao Zhao, Xiao-yan Song, Cai-yun Sun, Xiu-lan Chen, Bai-cheng Zhou, Yu-zhong Zhang
    Abstract:

    Antibiosis is one of the widespread strategies used by Trichoderma spp. against plant fungal pathogens, the mechanism of which, however, remains poorly understood. Peptaibols are a large family of antimicrobial peptides produced by Trichoderma spp. Our previous study showed that trichokonins, a type of peptaibol from Trichoderma pseudokoningii SMF2, exhibited antibiotic activities against plant fungal pathogens. In this study, we first demonstrated that trichokonin VI (TK VI) induced extensive apoptotic programmed cell death in plant fungal pathogens. For a deeper insight into the apoptotic mechanism involved in the action of TK VI, Fusarium oxysporum was used as a model. Cells of F. oxysporum treated with TK VI showed apoptotic hallmarks, such as exposure of phosphatidylserine, the appearance of reactive oxygen species and fragmentation of nuclear DNA. Moreover, TK VI-treated cells exhibited an accumulation of cytoplasmic vacuoles with loss of the mitochondrial transmembrane potential, and this process was independent of metacaspases. Therefore, TK VI induces metacaspase-independent apoptotic cell death in F. oxysporum. This represents what is believed to be the first report to reveal the antibiotic mechanism of peptaibols against plant fungal pathogens.

  • characterization and gene cloning of a novel serine protease with nematicidal activity from Trichoderma pseudokoningii smf2
    Fems Microbiology Letters, 2009
    Co-Authors: Lei-lei Chen, Mei Shi, Xiao-yan Song, Xiu-lan Chen, Li-jun Liu, Chang-ying Zheng, Yu-zhong Zhang
    Abstract:

    Trichoderma pseudokoningii SMF2 is a biocontrol fungus with inhibitory ability against phytopathogenic fungi. Here, a crude extract of strain SMF2 in a solid ferment exhibited strong nematicidal activity against Meloidogyne incognita, and a novel serine protease SprT with nematicidal activity was purified from the crude extract. Protease SprT has a molecular mass of 31 kDa, a pH optimum of 8.5, and a temperature optimum of 60-65 degrees C. It had good thermostability, and was stable in an alkaline environment. SprT could degrade bovine serum albumin, lysozyme, and gelatin, and its activity was enhanced by many metal ions. The cuticles of nematodes treated by protease SprT obviously crimpled. Purified protease SprT could kill juveniles of M. incognita and inhibit egg hatch, suggesting that it is involved in the nematicidal process of T. pseudokoningii SMF2. The full-length cDNA gene-encoding protease SprT was cloned by rapid amplification of cDNA ends. Sequence analysis showed that SprT is a monodomain subtilase containing 284 amino acid residues. It had higher identities and a closer relation to the nematicidal serine proteases (59-69%) from nematode parasitic fungi than to the serine proteases (<50%) from Trichoderma. Protease SprT represents the first well-characterized subtilase with nematicidal activity from Trichoderma.

  • Characterization and gene cloning of a novel serine protease with nematicidal activity from Trichoderma pseudokoningii SMF2.
    FEMS microbiology letters, 2009
    Co-Authors: Lei-lei Chen, Mei Shi, Xiao-yan Song, Xiu-lan Chen, Li-jun Liu, Chang-ying Zheng, Yu-zhong Zhang
    Abstract:

    Trichoderma pseudokoningii SMF2 is a biocontrol fungus with inhibitory ability against phytopathogenic fungi. Here, a crude extract of strain SMF2 in a solid ferment exhibited strong nematicidal activity against Meloidogyne incognita, and a novel serine protease SprT with nematicidal activity was purified from the crude extract. Protease SprT has a molecular mass of 31 kDa, a pH optimum of 8.5, and a temperature optimum of 60-65 degrees C. It had good thermostability, and was stable in an alkaline environment. SprT could degrade bovine serum albumin, lysozyme, and gelatin, and its activity was enhanced by many metal ions. The cuticles of nematodes treated by protease SprT obviously crimpled. Purified protease SprT could kill juveniles of M. incognita and inhibit egg hatch, suggesting that it is involved in the nematicidal process of T. pseudokoningii SMF2. The full-length cDNA gene-encoding protease SprT was cloned by rapid amplification of cDNA ends. Sequence analysis showed that SprT is a monodomain subtilase containing 284 amino acid residues. It had higher identities and a closer relation to the nematicidal serine proteases (59-69%) from nematode parasitic fungi than to the serine proteases (

Bernard Bodo - One of the best experts on this subject based on the ideXlab platform.

  • two unprecedented natural aib peptides with the xaa yaa aib pro motif and an unusual c terminus structures membrane modifying and antibacterial properties of pseudokonins kl iii and kl vi from the fungus Trichoderma pseudokoningii
    Journal of Peptide Science, 2000
    Co-Authors: Sylvie Rebuffat, Christophe Goulard, Sanae Hlimi, Bernard Bodo
    Abstract:

    Pseudokonins KL III and KL VI are two natural ten-residue peptides, which both contain the (Xaa-Yaa-Aib-Pro) motif and exhibit an unusual C-terminus. They have been isolated from the fungus Trichoderma pseudokoningii by intensive reversed-phase HPLC, beside peptaibols classically C-ended by a beta-amino alcohol. The amino acid sequences and the chemical structures of the C-ends have been determined by the combined use of positive ion LSI-MS and two-dimensional homo- and heteronuclear NMR, including COSY, TOCSY, ROESY, 13C heteronuclear single quantum correlation (HSQC) and heteronuclear multiple bond correlation (HMBC). Instead of one of the amino alcohols usually found as C-terminal residue in peptaibols, pseudokonins KL III and KL VI are characterized by -Pro-NH2 and cyclo-(Aib-L-Proal) (Proal, prolinal), respectively. Such backbone modifications are described here for the first time for peptaibol antibiotics. The unusual cyclo-(Aib-L-Proal) C-terminus is probably the result of an intramolecular cyclization of the two last Aib and Pro residues of a ten-amino acid precursor, via a Proal intermediate. A secondary structure stabilized by -C=O...H-N-hydrogen bonds of the 1<--4 type has been deduced for both peptides from ROESY data, 3JNHCalphaH couplings and amide proton temperature coefficient values. The (Xaa-Yaa-Aib-Pro) beta-bend ribbon spiral, which has been described for the first time in the case of a 14-residue peptaibol containing three repetitive (Xaa-Yaa-Aib-Pro) motifs (Segalas G et al. Biopolymers 1999; 50: 71-85) appears to be maintained in the two shortened modified peptides. The beta-bend ribbon structure thus appears to be initiated by a single (Xaa-Yaa-Aib-Pro) motif and unaffected by the C-terminal modifications. However, the membrane and antibiotic properties of pseudokonins KL III and KL VI, point to the unfavourable effect of both shortening and cyclization of the peptide chain.

  • Two unprecedented natural Aib-peptides with the (Xaa-Yaa-Aib-Pro) motif and an unusual C-terminus: structures, membrane-modifying and antibacterial properties of pseudokonins KL III and KL VI from the fungus Trichoderma pseudokoningii.
    Journal of peptide science : an official publication of the European Peptide Society, 2000
    Co-Authors: Sylvie Rebuffat, Christophe Goulard, Sanae Hlimi, Bernard Bodo
    Abstract:

    Pseudokonins KL III and KL VI are two natural ten-residue peptides, which both contain the (Xaa-Yaa-Aib-Pro) motif and exhibit an unusual C-terminus. They have been isolated from the fungus Trichoderma pseudokoningii by intensive reversed-phase HPLC, beside peptaibols classically C-ended by a beta-amino alcohol. The amino acid sequences and the chemical structures of the C-ends have been determined by the combined use of positive ion LSI-MS and two-dimensional homo- and heteronuclear NMR, including COSY, TOCSY, ROESY, 13C heteronuclear single quantum correlation (HSQC) and heteronuclear multiple bond correlation (HMBC). Instead of one of the amino alcohols usually found as C-terminal residue in peptaibols, pseudokonins KL III and KL VI are characterized by -Pro-NH2 and cyclo-(Aib-L-Proal) (Proal, prolinal), respectively. Such backbone modifications are described here for the first time for peptaibol antibiotics. The unusual cyclo-(Aib-L-Proal) C-terminus is probably the result of an intramolecular cyclization of the two last Aib and Pro residues of a ten-amino acid precursor, via a Proal intermediate. A secondary structure stabilized by -C=O...H-N-hydrogen bonds of the 1

Lei-lei Chen - One of the best experts on this subject based on the ideXlab platform.

  • trichokonins from Trichoderma pseudokoningii smf2 induce resistance against gram negative pectobacterium carotovorum subsp carotovorum in chinese cabbage
    Fems Microbiology Letters, 2014
    Co-Authors: Yu-zhong Zhang, Xiu-lan Chen, Lei-lei Chen, Haiyun Li, Xiusheng Zhang, Zhiting Gong, Xiao-yan Song
    Abstract:

    : Peptaibols, mainly produced by Trichoderma, play a pivotal role in controlling plant disease caused by fungi, virus, and Gram-positive bacteria. In the current study, we evaluated the control effect of Trichokonins, antimicrobial peptaibols from Trichoderma pseudokoningii SMF2, on soft rot disease of Chinese cabbage caused by a Gram-negative bacterium Pectobacterium carotovorum subsp. carotovorum and analyzed the mechanism involved. Trichokonins treatment (0.3 mg L(-1) ) enhanced the resistance of Chinese cabbage against Pcc infection. However, Trichokonins could hardly inhibit the growth of Pcc in vitro, even at high concentration (500 mg L(-1) ). Therefore, the direct effect of Trichokonins on Pcc may not the main reason why Trichokonins could control soft rot of Chinese cabbage. Trichokonin treatment led to an obvious increase in the production of reactive oxygen species hydrogen peroxide and superoxide radical, a significant enhance of the activities of pathogenesis-related enzymes catalase, polyphenoloxidase and peroxidase, and upregulation of the expression of salicylic acid - responsive pathogenesis-related protein gene acidic PR-1a in Chinese cabbage. These results indicate that Trichokonins induce resistance in Chinese cabbage against Pcc infection through the activation of salicylic acid signaling pathway, which imply the potential of Trichoderma and peptaibols in controlling plant disease caused by Gram-negative bacteria.

  • characterization and gene cloning of a novel serine protease with nematicidal activity from Trichoderma pseudokoningii smf2
    Fems Microbiology Letters, 2009
    Co-Authors: Lei-lei Chen, Mei Shi, Xiao-yan Song, Xiu-lan Chen, Li-jun Liu, Chang-ying Zheng, Yu-zhong Zhang
    Abstract:

    Trichoderma pseudokoningii SMF2 is a biocontrol fungus with inhibitory ability against phytopathogenic fungi. Here, a crude extract of strain SMF2 in a solid ferment exhibited strong nematicidal activity against Meloidogyne incognita, and a novel serine protease SprT with nematicidal activity was purified from the crude extract. Protease SprT has a molecular mass of 31 kDa, a pH optimum of 8.5, and a temperature optimum of 60-65 degrees C. It had good thermostability, and was stable in an alkaline environment. SprT could degrade bovine serum albumin, lysozyme, and gelatin, and its activity was enhanced by many metal ions. The cuticles of nematodes treated by protease SprT obviously crimpled. Purified protease SprT could kill juveniles of M. incognita and inhibit egg hatch, suggesting that it is involved in the nematicidal process of T. pseudokoningii SMF2. The full-length cDNA gene-encoding protease SprT was cloned by rapid amplification of cDNA ends. Sequence analysis showed that SprT is a monodomain subtilase containing 284 amino acid residues. It had higher identities and a closer relation to the nematicidal serine proteases (59-69%) from nematode parasitic fungi than to the serine proteases (<50%) from Trichoderma. Protease SprT represents the first well-characterized subtilase with nematicidal activity from Trichoderma.

  • Characterization and gene cloning of a novel serine protease with nematicidal activity from Trichoderma pseudokoningii SMF2.
    FEMS microbiology letters, 2009
    Co-Authors: Lei-lei Chen, Mei Shi, Xiao-yan Song, Xiu-lan Chen, Li-jun Liu, Chang-ying Zheng, Yu-zhong Zhang
    Abstract:

    Trichoderma pseudokoningii SMF2 is a biocontrol fungus with inhibitory ability against phytopathogenic fungi. Here, a crude extract of strain SMF2 in a solid ferment exhibited strong nematicidal activity against Meloidogyne incognita, and a novel serine protease SprT with nematicidal activity was purified from the crude extract. Protease SprT has a molecular mass of 31 kDa, a pH optimum of 8.5, and a temperature optimum of 60-65 degrees C. It had good thermostability, and was stable in an alkaline environment. SprT could degrade bovine serum albumin, lysozyme, and gelatin, and its activity was enhanced by many metal ions. The cuticles of nematodes treated by protease SprT obviously crimpled. Purified protease SprT could kill juveniles of M. incognita and inhibit egg hatch, suggesting that it is involved in the nematicidal process of T. pseudokoningii SMF2. The full-length cDNA gene-encoding protease SprT was cloned by rapid amplification of cDNA ends. Sequence analysis showed that SprT is a monodomain subtilase containing 284 amino acid residues. It had higher identities and a closer relation to the nematicidal serine proteases (59-69%) from nematode parasitic fungi than to the serine proteases (