Viburnum

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 3483 Experts worldwide ranked by ideXlab platform

Michael J Donoghue - One of the best experts on this subject based on the ideXlab platform.

  • parallelism in endocarp form sheds light on fruit syndrome evolution in Viburnum
    Systematic Botany, 2021
    Co-Authors: Wendy L Clement, Theodore J Stammer, Amanda Goble, Patrick Gallagher, Michael J Donoghue
    Abstract:

    All Viburnum species produce drupes with a hardened endocarp surrounding a single seed. Endocarp form varies greatly within Viburnum, and differences in shape have long been used to distinguish major subclades. Here we trace the evolution of Viburnum endocarp shape using morphometric analyses and phylogenies for 115 Viburnum species. Endocarp measurements were obtained from fruits sampled from herbarium specimens and from field collections, and shapes were analyzed using elliptical Fourier analysis. We infer that the first Viburnums had flattened and grooved endocarps. Subsequently, there were multiple losses of grooving in conjunction with shifts to both highly flattened and nearly round endocarps. In several clades the parallel evolution of a derived endocarp shape was accompanied by changes in a suite of other fruit traits, yielding distinctive fruit syndromes likely related to bird dispersal. However, in other clades endocarp shapes similar to the ancestral form have been retained while other fruit traits (color, amount of flesh, nutritional content) have diverged. We quantify cases of parallel evolution in endocarp shape that cut across recognized fruit syndromes such as red, carbohydrate-rich fruits with flattened endocarps or blue, lipid-rich fruits with round endocarps. Our analyses now invite studies of function and the selective factors that have yielded the distinctive suites of fruit and seed traits that distinguish the major Viburnum lineages.

  • joint phylogenetic estimation of geographic movements and biome shifts during the global diversification of Viburnum
    Systematic Biology, 2021
    Co-Authors: Wendy L Clement, Erika J Edwards, Brian Park, Elizabeth L Spriggs, Patrick W Sweeney, Michael J Landis, Deren A R Eaton, Michael J Donoghue
    Abstract:

    Phylogeny, molecular sequences, fossils, biogeography, and biome occupancy are all lines of evidence that reflect the singular evolutionary history of a clade, but they are most often studied separately, by first inferring a fossil-dated molecular phylogeny, then mapping on ancestral ranges and biomes inferred from extant species. Here we jointly model the evolution of biogeographic ranges, biome affinities, and molecular sequences, while incorporating fossils to estimate a dated phylogeny for all of the 163 extant species of the woody plant clade Viburnum (Adoxaceae) that we currently recognize in our ongoing worldwide monographic treatment of the group. Our analyses indicate that while the major Viburnum lineages evolved in the Eocene, the majority of extant species originated since the Miocene. Viburnum radiated first in Asia, in warm, broad-leaved evergreen (lucidophyllous) forests. Within Asia, we infer several early shifts into more tropical forests, and multiple shifts into forests that experience prolonged freezing. From Asia, we infer two early movements into the New World. These two lineages probably first occupied warm temperate forests and adapted later to spreading cold climates. One of these lineages (Porphyrotinus) occupied cloud forests and moved south through the mountains of the Neotropics. Several other movements into North America took place more recently, facilitated by prior adaptations to freezing in the Old World. We also infer four disjunctions between Asia and Europe: the Tinus lineage is the oldest and probably occupied warm forests when it spread, whereas the other three were more recent and in cold-adapted lineages. These results variously contradict published accounts, especially the view that Viburnum radiated initially in cold forests and, accordingly, maintained vessel elements with scalariform perforations. We explored how the location and biome assignments of fossils affected our inference of ancestral areas and biome states. Our results are sensitive to, but not entirely dependent upon, the inclusion of fossil biome data. It will be critical to take advantage of all available lines of evidence to decipher events in the distant past. The joint estimation approach developed here provides cautious hope even when fossil evidence is limited. [Biogeography; biome; combined evidence; fossil pollen; phylogeny; Viburnum.].

  • evolutionary dynamics of genome size in a radiation of woody plants
    American Journal of Botany, 2020
    Co-Authors: Morgan Moeglein, Michael J Donoghue, David S Chatelet, Erika J Edwards
    Abstract:

    PREMISE Plant genome size ranges widely, providing many opportunities to examine how genome size variation affects plant form and function. We analyzed trends in chromosome number, genome size, and leaf traits for the woody angiosperm clade Viburnum to examine the evolutionary associations, functional implications, and possible drivers of genome size. METHODS Chromosome counts and genome size estimates were mapped onto a Viburnum phylogeny to infer the location and frequency of polyploidization events and trends in genome size evolution. Genome size was analyzed with leaf anatomical and physiological data to evaluate the influence of genome size on plant function. RESULTS We discovered nine independent polyploidization events, two reductions in base chromosome number, and substantial variation in genome size with a slight trend toward genome size reduction in polyploids. We did not find strong relationships between genome size and the functional and morphological traits that have been highlighted at broader phylogenetic scales. CONCLUSIONS Polyploidization events were sometimes associated with rapid radiations, demonstrating that polyploid lineages can be highly successful. Relationships between genome size and plant physiological function observed at broad phylogenetic scales may be largely irrelevant to the evolutionary dynamics of genome size at smaller scales. The view that plants readily tolerate changes in ploidy and genome size, and often do so, appears to apply to Viburnum.

  • fruit syndromes in Viburnum correlated evolution of color nutritional content and morphology in bird dispersed fleshy fruits
    BMC Evolutionary Biology, 2020
    Co-Authors: Wendy L Clement, Miranda Sinnottarmstrong, Chong Lee, Michael J Donoghue
    Abstract:

    A key question in plant dispersal via animal vectors is where and why fruit colors vary between species and how color relates to other fruit traits. To better understand the factors shaping the evolution of fruit color diversity, we tested for the existence of syndromes of traits (color, morphology, and nutrition) in the fruits of Viburnum. We placed these results in a larger phylogenetic context and reconstructed ancestral states to assess how Viburnum fruit traits have evolved across the clade. We find that blue Viburnum fruits are not very juicy, and have high lipid content and large, round endocarps surrounded by a small quantity of pulp. Red fruits display the opposite suite of traits: they are very juicy with low lipid content and smaller, flatter endocarps. The ancestral Viburnum fruit may have gone through a sequence of color changes before maturation (green to yellow to red to black), though our reconstructions are equivocal. In one major clade of Viburnum (Nectarotinus), fruits mature synchronously with reduced intermediate color stages. Most transitions between fruit colors occurred in this synchronously fruiting clade. It is widely accepted that fruit trait diversity has primarily been driven by the differing perceptual abilities of bird versus mammal frugivores. Yet within a clade of largely bird-dispersed fruits, we find clear correlations between color, morphology, and nutrition. These correlations are likely driven by a shift from sequential to synchronous development, followed by diversification in color, nutrition, and morphology. A deeper understanding of fruit evolution within clades will elucidate the degree to which such syndromes structure extant fruit diversity.

  • joint phylogenetic estimation of geographic movements and biome shifts during the global diversification of Viburnum
    bioRxiv, 2019
    Co-Authors: Wendy L Clement, Erika J Edwards, Brian Park, Elizabeth L Spriggs, Patrick W Sweeney, Michael J Landis, Deren A R Eaton, Michael J Donoghue
    Abstract:

    Abstract Phylogeny, fossils, biogeography, and biome occupancy provide evidence that reflects the singular evolutionary history of a clade. Despite the connections that bind them together, these lines of evidence are most often studied separately, by first inferring a fossil-dated molecular phylogeny, then mapping on ancestral ranges and biomes inferred from extant species. Here we jointly model the evolution of biogeographic ranges, biome affinities, and molecular sequences, incorporating fossils to estimate a dated phylogeny for all of the 163 extant species of the woody plant clade Viburnum (Adoxaceae) that we currently recognize. Our analyses indicate that while the major Viburnum lineages evolved in the Eocene, the majority of extant species originated since the Miocene. Viburnum radiated first in Asia, in warm, broad-leaved evergreen (lucidophyllous) forests. Within Asia we infer several early shifts into more tropical forests, and multiple shifts into forests that experience prolonged freezing. From Asia we infer two early movements into the New World. These two lineages probably first occupied warm temperate forests and adapted later to spreading cold climates. One of these lineages (Porphyrotinus) occupied cloud forests and moved south through the mountains of the Neotropics. Several other movements into North America took place more recently, facilitated by prior adaptations to freezing in the Old World. We also infer four disjunctions between Asia and Europe: the Tinus lineage is the oldest and probably occupied warm forests when it spread, while the other three were more recent and in cold-adapted lineages. These results variously contradict published accounts, especially the view that Viburnum radiated initially in cold forests and, accordingly, maintained vessel elements with scalariform perforations. We explored how the location and biome assignments of fossils affected our inference of ancestral areas and biome states. Our results are sensitive to, but not entirely dependent upon, the inclusion of fossil biome data. We argue that it will be critical to take advantage of all available lines of evidence to decipher events in the distant past, and the joint estimation approach developed here provides cautious hope even when fossil evidence is limited.

Gaylord A. Desurmont - One of the best experts on this subject based on the ideXlab platform.

  • seasonal decline in plant defence is associated with relaxed offensive oviposition behaviour in the Viburnum leaf beetle pyrrhalta viburni
    Ecological Entomology, 2014
    Co-Authors: Gaylord A. Desurmont, Ann E Hajek, Anurag Agrawal
    Abstract:

    1. Plant defence of Viburnum shrubs against oviposition by its specialist herbivore, the Viburnum leaf beetle [VLB Pyrrhalta viburni(Paykull)], involves an egg-crushing wound response in twigs. Although the response is variable among Viburnum species, it can have a strong impact on egg survivorship. Beetles typically aggregate egg masses with conspecifics along infested twigs, forming clusters that can overwhelm the twig response. It was investigated whether twig responses and beetle oviposition behaviour vary seasonally. 2. In a field experiment, twig defences decreased towards the end of the VLB oviposition period: wound response of the North American Viburnum dentatum L. and the European V. opulus L. was reduced by 100% and 54%, respectively, in September compared with the July to August period. 3. Oviposition trials demonstrated a corresponding behavioural change: VLB females displayed aggregative oviposition in August, but not in September. 4. Further tests revealed that late-season VLB females reverted to aggregative oviposition after being kept on uninfested twigs, whereas females kept on heavily infested twigs did not. This behavioural change suggests that relaxation of aggregative oviposition originates from cues associated with high densities of egg masses. 5. Relaxation of aggregative oviposition may be adaptive (and beneficial for invasion) on shrubs with low levels of defences by reducing intra-specific competition.

  • do plant defenses predict damage by an invasive herbivore a comparative study of the Viburnum leaf beetle
    Ecological Applications, 2014
    Co-Authors: Gaylord A. Desurmont, Anurag A Agrawal
    Abstract:

    The impact of plant defenses on insect herbivores is widely accepted, but their relative effects on oviposition choice, survival, and larval growth in preventing pest damage, especially for invasive insects, is not fully understood. Here, we examined the potential for plant defenses to reduce the economic and environmental impacts of an invasive herbivore, the Viburnum leaf beetle, VLB (Pyrrhalta viburni ), on Viburnum species in North America. We used a common garden with 15 host Viburnum species of North American, European, and Asian origin and evaluated oviposition preferences, twig defense against oviposition (a reaction that crushes VLB eggs), larval performance in the lab and field, and foliar damage to mature shrubs in two consecutive years. VLB oviposition preference was the strongest predictor of plant damage, with twig defense and larval performance explaining little of the defoliation patterns. In particular, we showed that VLB females evade key defenses by choosing poorly defended twigs for oviposition; assays on the 15 Viburnum species revealed that adults laid over four times more eggs on dead (undefended) twigs than on living twigs. We additionally tested the hypothesis that shrubs with a higher proportion of dead twigs are preferentially chosen for oviposition, leading to more defoliation by larvae and increased dieback in the following year. We term this the infestation feedback hypothesis. Indeed, we report consistent positive correlations between percentage dieback, oviposition, and percentage defoliation across Viburnum species, and among individuals within two species tested separately (V. dentatum and V. opulus). Our results demonstrate that oviposition preference plays a major role in the susceptibility of Viburnum shrubs to the invasive VLB through adults choosing high-quality species for their larvae (a strong preference-performance correlation) and avoiding well-defended twigs among preferred species. More generally, where invasive insects can avoid plant defenses and when preference and performance are positively correlated, an infestation feedback loop can lead to persistent pest problems. Because dieback weakens Viburnum defenses by providing optimal oviposition sites, we recommend that Viburnum growers mechanically remove dead twigs from susceptible shrubs at the end of the growing season, especially in the early stages of VLB colonization.

  • oviposition strategy as a means of local adaptation to plant defence in native and invasive populations of the Viburnum leaf beetle
    Proceedings of The Royal Society B: Biological Sciences, 2012
    Co-Authors: Gaylord A. Desurmont, Franck Herard, Anurag Agrawal
    Abstract:

    Herbivores have been hypothesized to adapt locally to variation in plant defences and such adaptation could facilitate novel associations in the context of biological invasions. Here, we show that in the native range of the Viburnum leaf beetle (VLB, Pyrrhalta viburni ), two populations of geographically isolated hosts— Viburnum opulus and Viburnum tinus—have divergent defences against VLB oviposition: negative versus positive density-dependent egg-crushing wound responses, respectively. Populations of beetles coexisting with each host show an adaptive behavioural response: aggregative versus non-aggregative oviposition on V .o pulusand V. tinus, respectively. In parallel, we show that in North America, where VLB is invasive, defences of three novel hosts are negatively density-dependent, and beetles’ oviposition behaviour is aggregative. Thus, local adaptation to plant defences has the potential to facilitate the invasion of herbivores onto novel hosts.

  • aggregative oviposition of a phytophagous beetle overcomes egg crushing plant defences
    Ecological Entomology, 2011
    Co-Authors: Gaylord A. Desurmont, Paul A. Weston
    Abstract:

    1. Gregarious behaviours in phytophagous insects are common, but their adaptive value is rarely well understood. In the present study, we document a novel case of cooperative behaviour, the aggregative oviposition of a leaf beetle, Pyrrhalta viburni Paykull, and the realised fitness benefit of overcoming a plant defensive response (wound tissue production). 2. In laboratory choice-tests, females exhibited aggregative oviposition, characterised by (i) a preference for twigs already infested by conspecifics, and (ii) positioning of new egg masses adjacent to existing ones. Field observations supported laboratory results, showing that P. viburni egg masses are most commonly found aggregated in large clusters. 3. In a field experiment using three host plants (Viburnum dentatum L., Viburnum opulus L. and Viburnum×bodnantense Aberc. ex Stearn), mean egg survivorship and twig mortality increased, while twig wound response decreased, with an increasing level of infestation. Egg survivorship was consistently higher on twigs that died than on twigs that remained alive. 4. Overall, these results suggest that, by aggregating their egg masses, P. viburni females overwhelm the twig wound response, often killing the twig in the process. Aggregative oviposition and low defences of V. dentatum to P. viburni could have facilitated the establishment and spread of this beetle in its introduced range (northeastern North America), in areas where V. dentatum is abundant.

  • evolutionary history predicts plant defense against an invasive pest
    Proceedings of the National Academy of Sciences of the United States of America, 2011
    Co-Authors: Gaylord A. Desurmont, Wendy L Clement, Michael J Donoghue, Anurag A Agrawal
    Abstract:

    It has long been hypothesized that invasive pests may be facilitated by the evolutionary naivete of their new hosts, but this prediction has never been examined in a phylogenetic framework. To address the hypothesis, we have been studying the invasive Viburnum leaf beetle (Pyrrhalta viburni), which is decimating North American native species of Viburnum, a clade of worldwide importance as understory shrubs and ornamentals. In a phylogenetic field experiment using 16 species of Viburnum, we show that old-world Viburnum species that evolved in the presence of Pyrrhalta beetles mount a massive defensive wound response that crushes eggs of the pest insect; in contrast, naive North American species that share no evolutionary history with Pyrrhalta beetles show a markedly lower response. This convergent continental difference in the defensive response of Viburnum spp. against insect oviposition contrasts with little difference in the quality of leaves for beetle larvae. Females show strong oviposition preferences that correspond with larval performance regardless of continental origin, which has facilitated colonization of susceptible North American species. Thus, although much attention has been paid to escape from enemies as a factor in the establishment and spread of nonnative organisms, the colonization of undefended resources seems to play a major role in the success of invasive species such as the Viburnum leaf beetle.

Wendy L Clement - One of the best experts on this subject based on the ideXlab platform.

  • parallelism in endocarp form sheds light on fruit syndrome evolution in Viburnum
    Systematic Botany, 2021
    Co-Authors: Wendy L Clement, Theodore J Stammer, Amanda Goble, Patrick Gallagher, Michael J Donoghue
    Abstract:

    All Viburnum species produce drupes with a hardened endocarp surrounding a single seed. Endocarp form varies greatly within Viburnum, and differences in shape have long been used to distinguish major subclades. Here we trace the evolution of Viburnum endocarp shape using morphometric analyses and phylogenies for 115 Viburnum species. Endocarp measurements were obtained from fruits sampled from herbarium specimens and from field collections, and shapes were analyzed using elliptical Fourier analysis. We infer that the first Viburnums had flattened and grooved endocarps. Subsequently, there were multiple losses of grooving in conjunction with shifts to both highly flattened and nearly round endocarps. In several clades the parallel evolution of a derived endocarp shape was accompanied by changes in a suite of other fruit traits, yielding distinctive fruit syndromes likely related to bird dispersal. However, in other clades endocarp shapes similar to the ancestral form have been retained while other fruit traits (color, amount of flesh, nutritional content) have diverged. We quantify cases of parallel evolution in endocarp shape that cut across recognized fruit syndromes such as red, carbohydrate-rich fruits with flattened endocarps or blue, lipid-rich fruits with round endocarps. Our analyses now invite studies of function and the selective factors that have yielded the distinctive suites of fruit and seed traits that distinguish the major Viburnum lineages.

  • joint phylogenetic estimation of geographic movements and biome shifts during the global diversification of Viburnum
    Systematic Biology, 2021
    Co-Authors: Wendy L Clement, Erika J Edwards, Brian Park, Elizabeth L Spriggs, Patrick W Sweeney, Michael J Landis, Deren A R Eaton, Michael J Donoghue
    Abstract:

    Phylogeny, molecular sequences, fossils, biogeography, and biome occupancy are all lines of evidence that reflect the singular evolutionary history of a clade, but they are most often studied separately, by first inferring a fossil-dated molecular phylogeny, then mapping on ancestral ranges and biomes inferred from extant species. Here we jointly model the evolution of biogeographic ranges, biome affinities, and molecular sequences, while incorporating fossils to estimate a dated phylogeny for all of the 163 extant species of the woody plant clade Viburnum (Adoxaceae) that we currently recognize in our ongoing worldwide monographic treatment of the group. Our analyses indicate that while the major Viburnum lineages evolved in the Eocene, the majority of extant species originated since the Miocene. Viburnum radiated first in Asia, in warm, broad-leaved evergreen (lucidophyllous) forests. Within Asia, we infer several early shifts into more tropical forests, and multiple shifts into forests that experience prolonged freezing. From Asia, we infer two early movements into the New World. These two lineages probably first occupied warm temperate forests and adapted later to spreading cold climates. One of these lineages (Porphyrotinus) occupied cloud forests and moved south through the mountains of the Neotropics. Several other movements into North America took place more recently, facilitated by prior adaptations to freezing in the Old World. We also infer four disjunctions between Asia and Europe: the Tinus lineage is the oldest and probably occupied warm forests when it spread, whereas the other three were more recent and in cold-adapted lineages. These results variously contradict published accounts, especially the view that Viburnum radiated initially in cold forests and, accordingly, maintained vessel elements with scalariform perforations. We explored how the location and biome assignments of fossils affected our inference of ancestral areas and biome states. Our results are sensitive to, but not entirely dependent upon, the inclusion of fossil biome data. It will be critical to take advantage of all available lines of evidence to decipher events in the distant past. The joint estimation approach developed here provides cautious hope even when fossil evidence is limited. [Biogeography; biome; combined evidence; fossil pollen; phylogeny; Viburnum.].

  • fruit syndromes in Viburnum correlated evolution of color nutritional content and morphology in bird dispersed fleshy fruits
    BMC Evolutionary Biology, 2020
    Co-Authors: Wendy L Clement, Miranda Sinnottarmstrong, Chong Lee, Michael J Donoghue
    Abstract:

    A key question in plant dispersal via animal vectors is where and why fruit colors vary between species and how color relates to other fruit traits. To better understand the factors shaping the evolution of fruit color diversity, we tested for the existence of syndromes of traits (color, morphology, and nutrition) in the fruits of Viburnum. We placed these results in a larger phylogenetic context and reconstructed ancestral states to assess how Viburnum fruit traits have evolved across the clade. We find that blue Viburnum fruits are not very juicy, and have high lipid content and large, round endocarps surrounded by a small quantity of pulp. Red fruits display the opposite suite of traits: they are very juicy with low lipid content and smaller, flatter endocarps. The ancestral Viburnum fruit may have gone through a sequence of color changes before maturation (green to yellow to red to black), though our reconstructions are equivocal. In one major clade of Viburnum (Nectarotinus), fruits mature synchronously with reduced intermediate color stages. Most transitions between fruit colors occurred in this synchronously fruiting clade. It is widely accepted that fruit trait diversity has primarily been driven by the differing perceptual abilities of bird versus mammal frugivores. Yet within a clade of largely bird-dispersed fruits, we find clear correlations between color, morphology, and nutrition. These correlations are likely driven by a shift from sequential to synchronous development, followed by diversification in color, nutrition, and morphology. A deeper understanding of fruit evolution within clades will elucidate the degree to which such syndromes structure extant fruit diversity.

  • joint phylogenetic estimation of geographic movements and biome shifts during the global diversification of Viburnum
    bioRxiv, 2019
    Co-Authors: Wendy L Clement, Erika J Edwards, Brian Park, Elizabeth L Spriggs, Patrick W Sweeney, Michael J Landis, Deren A R Eaton, Michael J Donoghue
    Abstract:

    Abstract Phylogeny, fossils, biogeography, and biome occupancy provide evidence that reflects the singular evolutionary history of a clade. Despite the connections that bind them together, these lines of evidence are most often studied separately, by first inferring a fossil-dated molecular phylogeny, then mapping on ancestral ranges and biomes inferred from extant species. Here we jointly model the evolution of biogeographic ranges, biome affinities, and molecular sequences, incorporating fossils to estimate a dated phylogeny for all of the 163 extant species of the woody plant clade Viburnum (Adoxaceae) that we currently recognize. Our analyses indicate that while the major Viburnum lineages evolved in the Eocene, the majority of extant species originated since the Miocene. Viburnum radiated first in Asia, in warm, broad-leaved evergreen (lucidophyllous) forests. Within Asia we infer several early shifts into more tropical forests, and multiple shifts into forests that experience prolonged freezing. From Asia we infer two early movements into the New World. These two lineages probably first occupied warm temperate forests and adapted later to spreading cold climates. One of these lineages (Porphyrotinus) occupied cloud forests and moved south through the mountains of the Neotropics. Several other movements into North America took place more recently, facilitated by prior adaptations to freezing in the Old World. We also infer four disjunctions between Asia and Europe: the Tinus lineage is the oldest and probably occupied warm forests when it spread, while the other three were more recent and in cold-adapted lineages. These results variously contradict published accounts, especially the view that Viburnum radiated initially in cold forests and, accordingly, maintained vessel elements with scalariform perforations. We explored how the location and biome assignments of fossils affected our inference of ancestral areas and biome states. Our results are sensitive to, but not entirely dependent upon, the inclusion of fossil biome data. We argue that it will be critical to take advantage of all available lines of evidence to decipher events in the distant past, and the joint estimation approach developed here provides cautious hope even when fossil evidence is limited.

  • characterization of 16 microsatellite markers for the oreinotinus clade of Viburnum adoxaceae
    Applications in Plant Sciences, 2016
    Co-Authors: Syndi Barish, Michael J Donoghue, Erika J Edwards, Monica Arakaki, Wendy L Clement
    Abstract:

    Premise of the study: Microsatellite loci were isolated from four species of Viburnum (Adoxaceae) to study population structure and assess species boundaries among morphologically similar South American Viburnum species of the Oreinotinus clade. Methods and Results: Using a microsatellite-enriched library and mining next-generation sequence data, 16 microsatellites were developed. Each locus was tested on two populations of V. triphyllum and one population of V. pichinchense. For nuclear loci, one to 13 alleles were recovered, expected heterozygosity ranged from 0 to 0.8975, Simpson diversity index ranged from 0.0167 to 1.000, and Shannon diversity index ranged from 0 to 2.3670 in a given population. For the mitochondrial locus, three to six alleles were recovered and unbiased haploid diversity values ranged from 0.756 to 0.853 in a given population. Conclusions: The 16 microsatellite loci developed for the Oreinotinus clade (Viburnum, Adoxaceae) will inform investigations of population structure and spec...

Erika J Edwards - One of the best experts on this subject based on the ideXlab platform.

  • joint phylogenetic estimation of geographic movements and biome shifts during the global diversification of Viburnum
    Systematic Biology, 2021
    Co-Authors: Wendy L Clement, Erika J Edwards, Brian Park, Elizabeth L Spriggs, Patrick W Sweeney, Michael J Landis, Deren A R Eaton, Michael J Donoghue
    Abstract:

    Phylogeny, molecular sequences, fossils, biogeography, and biome occupancy are all lines of evidence that reflect the singular evolutionary history of a clade, but they are most often studied separately, by first inferring a fossil-dated molecular phylogeny, then mapping on ancestral ranges and biomes inferred from extant species. Here we jointly model the evolution of biogeographic ranges, biome affinities, and molecular sequences, while incorporating fossils to estimate a dated phylogeny for all of the 163 extant species of the woody plant clade Viburnum (Adoxaceae) that we currently recognize in our ongoing worldwide monographic treatment of the group. Our analyses indicate that while the major Viburnum lineages evolved in the Eocene, the majority of extant species originated since the Miocene. Viburnum radiated first in Asia, in warm, broad-leaved evergreen (lucidophyllous) forests. Within Asia, we infer several early shifts into more tropical forests, and multiple shifts into forests that experience prolonged freezing. From Asia, we infer two early movements into the New World. These two lineages probably first occupied warm temperate forests and adapted later to spreading cold climates. One of these lineages (Porphyrotinus) occupied cloud forests and moved south through the mountains of the Neotropics. Several other movements into North America took place more recently, facilitated by prior adaptations to freezing in the Old World. We also infer four disjunctions between Asia and Europe: the Tinus lineage is the oldest and probably occupied warm forests when it spread, whereas the other three were more recent and in cold-adapted lineages. These results variously contradict published accounts, especially the view that Viburnum radiated initially in cold forests and, accordingly, maintained vessel elements with scalariform perforations. We explored how the location and biome assignments of fossils affected our inference of ancestral areas and biome states. Our results are sensitive to, but not entirely dependent upon, the inclusion of fossil biome data. It will be critical to take advantage of all available lines of evidence to decipher events in the distant past. The joint estimation approach developed here provides cautious hope even when fossil evidence is limited. [Biogeography; biome; combined evidence; fossil pollen; phylogeny; Viburnum.].

  • evolutionary dynamics of genome size in a radiation of woody plants
    American Journal of Botany, 2020
    Co-Authors: Morgan Moeglein, Michael J Donoghue, David S Chatelet, Erika J Edwards
    Abstract:

    PREMISE Plant genome size ranges widely, providing many opportunities to examine how genome size variation affects plant form and function. We analyzed trends in chromosome number, genome size, and leaf traits for the woody angiosperm clade Viburnum to examine the evolutionary associations, functional implications, and possible drivers of genome size. METHODS Chromosome counts and genome size estimates were mapped onto a Viburnum phylogeny to infer the location and frequency of polyploidization events and trends in genome size evolution. Genome size was analyzed with leaf anatomical and physiological data to evaluate the influence of genome size on plant function. RESULTS We discovered nine independent polyploidization events, two reductions in base chromosome number, and substantial variation in genome size with a slight trend toward genome size reduction in polyploids. We did not find strong relationships between genome size and the functional and morphological traits that have been highlighted at broader phylogenetic scales. CONCLUSIONS Polyploidization events were sometimes associated with rapid radiations, demonstrating that polyploid lineages can be highly successful. Relationships between genome size and plant physiological function observed at broad phylogenetic scales may be largely irrelevant to the evolutionary dynamics of genome size at smaller scales. The view that plants readily tolerate changes in ploidy and genome size, and often do so, appears to apply to Viburnum.

  • joint phylogenetic estimation of geographic movements and biome shifts during the global diversification of Viburnum
    bioRxiv, 2019
    Co-Authors: Wendy L Clement, Erika J Edwards, Brian Park, Elizabeth L Spriggs, Patrick W Sweeney, Michael J Landis, Deren A R Eaton, Michael J Donoghue
    Abstract:

    Abstract Phylogeny, fossils, biogeography, and biome occupancy provide evidence that reflects the singular evolutionary history of a clade. Despite the connections that bind them together, these lines of evidence are most often studied separately, by first inferring a fossil-dated molecular phylogeny, then mapping on ancestral ranges and biomes inferred from extant species. Here we jointly model the evolution of biogeographic ranges, biome affinities, and molecular sequences, incorporating fossils to estimate a dated phylogeny for all of the 163 extant species of the woody plant clade Viburnum (Adoxaceae) that we currently recognize. Our analyses indicate that while the major Viburnum lineages evolved in the Eocene, the majority of extant species originated since the Miocene. Viburnum radiated first in Asia, in warm, broad-leaved evergreen (lucidophyllous) forests. Within Asia we infer several early shifts into more tropical forests, and multiple shifts into forests that experience prolonged freezing. From Asia we infer two early movements into the New World. These two lineages probably first occupied warm temperate forests and adapted later to spreading cold climates. One of these lineages (Porphyrotinus) occupied cloud forests and moved south through the mountains of the Neotropics. Several other movements into North America took place more recently, facilitated by prior adaptations to freezing in the Old World. We also infer four disjunctions between Asia and Europe: the Tinus lineage is the oldest and probably occupied warm forests when it spread, while the other three were more recent and in cold-adapted lineages. These results variously contradict published accounts, especially the view that Viburnum radiated initially in cold forests and, accordingly, maintained vessel elements with scalariform perforations. We explored how the location and biome assignments of fossils affected our inference of ancestral areas and biome states. Our results are sensitive to, but not entirely dependent upon, the inclusion of fossil biome data. We argue that it will be critical to take advantage of all available lines of evidence to decipher events in the distant past, and the joint estimation approach developed here provides cautious hope even when fossil evidence is limited.

  • convergence consilience and the evolution of temperate deciduous forests
    The American Naturalist, 2017
    Co-Authors: Erika J Edwards, David S Chatelet, Bo Chang Chen, Jin Yao Ong, Shuichiro Tagane, Hironobu Kanemitsu, Kazuki Tagawa, Kentaro Teramoto, Brian Park
    Abstract:

    AbstractThe deciduous habit of northern temperate trees and shrubs provides one of the most obvious examples of convergent evolution, but how did it evolve? Hypotheses based on the fossil record posit that deciduousness evolved first in response to drought or darkness and preadapted certain lineages as cold climates spread. An alternative is that evergreens first established in freezing environments and later evolved the deciduous habit. We monitored phenological patterns of 20 species of Viburnum spanning tropical, lucidophyllous (subtropical montane and warm temperate), and cool temperate Asian forests. In lucidophyllous forests, all Viburnums were evergreen plants that exhibited coordinated leaf flushes with the onset of the rainy season but varied greatly in the timing of leaf senescence. In contrast, deciduous species exhibited tight coordination of both flushing and senescence, and we found a perfect correlation between the deciduous habit and prolonged annual freezing. In contrast to previous stepw...

  • characterization of 16 microsatellite markers for the oreinotinus clade of Viburnum adoxaceae
    Applications in Plant Sciences, 2016
    Co-Authors: Syndi Barish, Michael J Donoghue, Erika J Edwards, Monica Arakaki, Wendy L Clement
    Abstract:

    Premise of the study: Microsatellite loci were isolated from four species of Viburnum (Adoxaceae) to study population structure and assess species boundaries among morphologically similar South American Viburnum species of the Oreinotinus clade. Methods and Results: Using a microsatellite-enriched library and mining next-generation sequence data, 16 microsatellites were developed. Each locus was tested on two populations of V. triphyllum and one population of V. pichinchense. For nuclear loci, one to 13 alleles were recovered, expected heterozygosity ranged from 0 to 0.8975, Simpson diversity index ranged from 0.0167 to 1.000, and Shannon diversity index ranged from 0 to 2.3670 in a given population. For the mitochondrial locus, three to six alleles were recovered and unbiased haploid diversity values ranged from 0.756 to 0.853 in a given population. Conclusions: The 16 microsatellite loci developed for the Oreinotinus clade (Viburnum, Adoxaceae) will inform investigations of population structure and spec...

Anurag A Agrawal - One of the best experts on this subject based on the ideXlab platform.

  • do plant defenses predict damage by an invasive herbivore a comparative study of the Viburnum leaf beetle
    Ecological Applications, 2014
    Co-Authors: Gaylord A. Desurmont, Anurag A Agrawal
    Abstract:

    The impact of plant defenses on insect herbivores is widely accepted, but their relative effects on oviposition choice, survival, and larval growth in preventing pest damage, especially for invasive insects, is not fully understood. Here, we examined the potential for plant defenses to reduce the economic and environmental impacts of an invasive herbivore, the Viburnum leaf beetle, VLB (Pyrrhalta viburni ), on Viburnum species in North America. We used a common garden with 15 host Viburnum species of North American, European, and Asian origin and evaluated oviposition preferences, twig defense against oviposition (a reaction that crushes VLB eggs), larval performance in the lab and field, and foliar damage to mature shrubs in two consecutive years. VLB oviposition preference was the strongest predictor of plant damage, with twig defense and larval performance explaining little of the defoliation patterns. In particular, we showed that VLB females evade key defenses by choosing poorly defended twigs for oviposition; assays on the 15 Viburnum species revealed that adults laid over four times more eggs on dead (undefended) twigs than on living twigs. We additionally tested the hypothesis that shrubs with a higher proportion of dead twigs are preferentially chosen for oviposition, leading to more defoliation by larvae and increased dieback in the following year. We term this the infestation feedback hypothesis. Indeed, we report consistent positive correlations between percentage dieback, oviposition, and percentage defoliation across Viburnum species, and among individuals within two species tested separately (V. dentatum and V. opulus). Our results demonstrate that oviposition preference plays a major role in the susceptibility of Viburnum shrubs to the invasive VLB through adults choosing high-quality species for their larvae (a strong preference-performance correlation) and avoiding well-defended twigs among preferred species. More generally, where invasive insects can avoid plant defenses and when preference and performance are positively correlated, an infestation feedback loop can lead to persistent pest problems. Because dieback weakens Viburnum defenses by providing optimal oviposition sites, we recommend that Viburnum growers mechanically remove dead twigs from susceptible shrubs at the end of the growing season, especially in the early stages of VLB colonization.

  • evolutionary history predicts plant defense against an invasive pest
    Proceedings of the National Academy of Sciences of the United States of America, 2011
    Co-Authors: Gaylord A. Desurmont, Wendy L Clement, Michael J Donoghue, Anurag A Agrawal
    Abstract:

    It has long been hypothesized that invasive pests may be facilitated by the evolutionary naivete of their new hosts, but this prediction has never been examined in a phylogenetic framework. To address the hypothesis, we have been studying the invasive Viburnum leaf beetle (Pyrrhalta viburni), which is decimating North American native species of Viburnum, a clade of worldwide importance as understory shrubs and ornamentals. In a phylogenetic field experiment using 16 species of Viburnum, we show that old-world Viburnum species that evolved in the presence of Pyrrhalta beetles mount a massive defensive wound response that crushes eggs of the pest insect; in contrast, naive North American species that share no evolutionary history with Pyrrhalta beetles show a markedly lower response. This convergent continental difference in the defensive response of Viburnum spp. against insect oviposition contrasts with little difference in the quality of leaves for beetle larvae. Females show strong oviposition preferences that correspond with larval performance regardless of continental origin, which has facilitated colonization of susceptible North American species. Thus, although much attention has been paid to escape from enemies as a factor in the establishment and spread of nonnative organisms, the colonization of undefended resources seems to play a major role in the success of invasive species such as the Viburnum leaf beetle.