Wernicke Area

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 1722 Experts worldwide ranked by ideXlab platform

Jeffrey S Anderson - One of the best experts on this subject based on the ideXlab platform.

  • abnormal lateralization of functional connectivity between language and default mode regions in autism
    Molecular Autism, 2014
    Co-Authors: Jared A Nielsen, Brandon A Zielinski, Nicholas Lange, Thomas P Fletcher, Janet E. Lainhart, Andrew L. Alexander, Erin D. Bigler, Jeffrey S Anderson
    Abstract:

    Background: Lateralization of brain structure and function occurs in typical development, and abnormal lateralization is present in various neuropsychiatric disorders. Autism is characterized by a lack of left lateralization in structure and function of regions involved in language, such as Broca and Wernicke Areas. Methods: Using functional connectivity magnetic resonance imaging from a large publicly available sample (n = 964), we tested whether abnormal functional lateralization in autism exists preferentially in language regions or in a more diffuse pattern across networks of lateralized brain regions. Results: The autism group exhibited significantly reduced left lateralization in a few connections involving language regions and regions from the default mode network, but results were not significant throughout left- and right-lateralized networks. There is a trend that suggests the lack of left lateralization in a connection involving Wernicke Area and the posterior cingulate cortex associates with more severe autism. Conclusions: Abnormal language lateralization in autism may be due to abnormal language development rather than to a deficit in hemispheric specialization of the entire brain.

  • an evaluation of the left brain vs right brain hypothesis with resting state functional connectivity magnetic resonance imaging
    PLOS ONE, 2013
    Co-Authors: Jared A Nielsen, Brandon A Zielinski, Janet E. Lainhart, Michael A Ferguson, Jeffrey S Anderson
    Abstract:

    Lateralized brain regions subserve functions such as language and visuospatial processing. It has been conjectured that individuals may be left-brain dominant or right-brain dominant based on personality and cognitive style, but neuroimaging data has not provided clear evidence whether such phenotypic differences in the strength of left-dominant or right-dominant networks exist. We evaluated whether strongly lateralized connections covaried within the same individuals. Data were analyzed from publicly available resting state scans for 1011 individuals between the ages of 7 and 29. For each subject, functional lateralization was measured for each pair of 7266 regions covering the gray matter at 5-mm resolution as a difference in correlation before and after inverting images across the midsagittal plane. The difference in gray matter density between homotopic coordinates was used as a regressor to reduce the effect of structural asymmetries on functional lateralization. Nine left- and 11 right-lateralized hubs were identified as peaks in the degree map from the graph of significantly lateralized connections. The left-lateralized hubs included regions from the default mode network (medial prefrontal cortex, posterior cingulate cortex, and temporoparietal junction) and language regions (e.g., Broca Area and Wernicke Area), whereas the right-lateralized hubs included regions from the attention control network (e.g., lateral intraparietal sulcus, anterior insula, Area MT, and frontal eye fields). Left- and right-lateralized hubs formed two separable networks of mutually lateralized regions. Connections involving only left- or only right-lateralized hubs showed positive correlation across subjects, but only for connections sharing a node. Lateralization of brain connections appears to be a local rather than global property of brain networks, and our data are not consistent with a whole-brain phenotype of greater “left-brained” or greater “right-brained” network strength across individuals. Small increases in lateralization with age were seen, but no differences in gender were observed.

Jared A Nielsen - One of the best experts on this subject based on the ideXlab platform.

  • abnormal lateralization of functional connectivity between language and default mode regions in autism
    Molecular Autism, 2014
    Co-Authors: Jared A Nielsen, Brandon A Zielinski, Nicholas Lange, Thomas P Fletcher, Janet E. Lainhart, Andrew L. Alexander, Erin D. Bigler, Jeffrey S Anderson
    Abstract:

    Background: Lateralization of brain structure and function occurs in typical development, and abnormal lateralization is present in various neuropsychiatric disorders. Autism is characterized by a lack of left lateralization in structure and function of regions involved in language, such as Broca and Wernicke Areas. Methods: Using functional connectivity magnetic resonance imaging from a large publicly available sample (n = 964), we tested whether abnormal functional lateralization in autism exists preferentially in language regions or in a more diffuse pattern across networks of lateralized brain regions. Results: The autism group exhibited significantly reduced left lateralization in a few connections involving language regions and regions from the default mode network, but results were not significant throughout left- and right-lateralized networks. There is a trend that suggests the lack of left lateralization in a connection involving Wernicke Area and the posterior cingulate cortex associates with more severe autism. Conclusions: Abnormal language lateralization in autism may be due to abnormal language development rather than to a deficit in hemispheric specialization of the entire brain.

  • multisite functional connectivity mri classification of autism abide results
    Frontiers in Human Neuroscience, 2013
    Co-Authors: Jared A Nielsen, Brandon A Zielinski, Nicholas Lange, Thomas P Fletcher, Andrew L. Alexander, Erin D. Bigler, Janet E. Lainhart
    Abstract:

    Background: Systematic differences in functional connectivity MRI metrics have been consistently observed in autism, with predominantly decreased cortico-cortical connectivity. Previous attempts at single subject classification in high-functioning autism using whole brain point-to-point functional connectivity have yielded about 80% accurate classification of autism vs. control subjects across a wide age range. We attempted to replicate the method and results using the Autism Brain Imaging Data Exchange including resting state fMRI data obtained from 964 subjects and 16 separate international sites. Methods: For each of 964 subjects, we obtained pairwise functional connectivity measurements from a lattice of 7266 regions of interest covering the gray matter (26.4 million "connections") after preprocessing that included motion and slice timing correction, coregistration to an anatomic image, normalization to standard space, and voxelwise removal by regression of motion parameters, soft tissue, CSF, and white matter signals. Connections were grouped into multiple bins, and a leave-one-out classifier was evaluated on connections comprising each set of bins. Age, age-squared, gender, handedness, and site were included as covariates for the classifier. Results: Classification accuracy significantly outperformed chance but was much lower for multisite prediction than for previous single site results. As high as 60% accuracy was obtained for whole brain classification, with the best accuracy from connections involving regions of the default mode network, parahippocampal and fusiform gyri, insula, Wernicke Area, and intraparietal sulcus. The classifier score was related to symptom severity, social function, daily living skills, and verbal IQ. Classification accuracy was significantly higher for sites with longer BOLD imaging times. Conclusions: Multisite functional connectivity classification of autism outperformed chance using a simple leave-one-out classifier, but exhibit

  • an evaluation of the left brain vs right brain hypothesis with resting state functional connectivity magnetic resonance imaging
    PLOS ONE, 2013
    Co-Authors: Jared A Nielsen, Brandon A Zielinski, Janet E. Lainhart, Michael A Ferguson, Jeffrey S Anderson
    Abstract:

    Lateralized brain regions subserve functions such as language and visuospatial processing. It has been conjectured that individuals may be left-brain dominant or right-brain dominant based on personality and cognitive style, but neuroimaging data has not provided clear evidence whether such phenotypic differences in the strength of left-dominant or right-dominant networks exist. We evaluated whether strongly lateralized connections covaried within the same individuals. Data were analyzed from publicly available resting state scans for 1011 individuals between the ages of 7 and 29. For each subject, functional lateralization was measured for each pair of 7266 regions covering the gray matter at 5-mm resolution as a difference in correlation before and after inverting images across the midsagittal plane. The difference in gray matter density between homotopic coordinates was used as a regressor to reduce the effect of structural asymmetries on functional lateralization. Nine left- and 11 right-lateralized hubs were identified as peaks in the degree map from the graph of significantly lateralized connections. The left-lateralized hubs included regions from the default mode network (medial prefrontal cortex, posterior cingulate cortex, and temporoparietal junction) and language regions (e.g., Broca Area and Wernicke Area), whereas the right-lateralized hubs included regions from the attention control network (e.g., lateral intraparietal sulcus, anterior insula, Area MT, and frontal eye fields). Left- and right-lateralized hubs formed two separable networks of mutually lateralized regions. Connections involving only left- or only right-lateralized hubs showed positive correlation across subjects, but only for connections sharing a node. Lateralization of brain connections appears to be a local rather than global property of brain networks, and our data are not consistent with a whole-brain phenotype of greater “left-brained” or greater “right-brained” network strength across individuals. Small increases in lateralization with age were seen, but no differences in gender were observed.

Jeffrey R Binder - One of the best experts on this subject based on the ideXlab platform.

  • Current Controversies on Wernicke's Area and its Role in Language.
    Current neurology and neuroscience reports, 2017
    Co-Authors: Jeffrey R Binder
    Abstract:

    The aim of the study is to assess historical anatomical and functional definitions of Wernicke’s Area in light of modern lesion and neuroimaging data. “Wernicke’s Area” has become an anatomical label usually applied to the left posterior superior temporal gyrus and adjacent supramarginal gyrus. Recent evidence shows that this region is not critical for speech perception or for word comprehension. Rather, it supports retrieval of phonological forms (mental representations of phoneme sequences), which are used for speech output and short-term memory tasks. Focal damage to this region produces phonemic paraphasia without impairing word comprehension, i.e., conduction aphasia. Neuroimaging studies in recent decades provide evidence for a widely distributed temporal, parietal, and frontal network supporting language comprehension, which does not include the anatomically defined Wernicke Area. The term Wernicke’s Area, if used at all, should not be used to refer to a zone critical for speech comprehension.

  • The Wernicke Area: Modern evidence and a reinterpretation.
    Neurology, 2015
    Co-Authors: Jeffrey R Binder
    Abstract:

    The term "Wernicke's Area" is most often used as an anatomical label for the gyri forming the lower posterior left sylvian fissure. Although traditionally this region was held to support language comprehension, modern imaging and neuropsychological studies converge on the conclusion that this region plays a much larger role in speech production. This evidence is briefly reviewed, and a simple schematic model of posterior cortical language processing is described.

  • human brain language Areas identified by functional magnetic resonance imaging
    The Journal of Neuroscience, 1997
    Co-Authors: Jeffrey R Binder, J A Frost, Thomas A Hammeke, Thomas E Prieto
    Abstract:

    Functional magnetic resonance imaging (FMRI) was used to identify candidate language processing Areas in the intact human brain. Language was defined broadly to include both phonological and lexical–semantic functions and to exclude sensory, motor, and general executive functions. The language activation task required phonetic and semantic analysis of aurally presented words and was compared with a control task involving perceptual analysis of nonlinguistic sounds. Functional maps of the entire brain were obtained from 30 right-handed subjects. These maps were averaged in standard stereotaxic space to produce a robust “average activation map” that proved reliable in a split-half analysis. As predicted from classical models of language organization based on lesion data, cortical activation associated with language processing was strongly lateralized to the left cerebral hemisphere and involved a network of regions in the frontal, temporal, and parietal lobes. Less consistent with classical models were (1) the existence of left hemisphere temporoparietal language Areas outside the traditional “Wernicke Area,” namely, in the middle temporal, inferior temporal, fusiform, and angular gyri; (2) extensive left prefrontal language Areas outside the classical “Broca Area”; and (3) clear participation of these left frontal Areas in a task emphasizing “receptive” language functions. Although partly in conflict with the classical model of language localization, these findings are generally compatible with reported lesion data and provide additional support for ongoing efforts to refine and extend the classical model.

Janet E. Lainhart - One of the best experts on this subject based on the ideXlab platform.

  • abnormal lateralization of functional connectivity between language and default mode regions in autism
    Molecular Autism, 2014
    Co-Authors: Jared A Nielsen, Brandon A Zielinski, Nicholas Lange, Thomas P Fletcher, Janet E. Lainhart, Andrew L. Alexander, Erin D. Bigler, Jeffrey S Anderson
    Abstract:

    Background: Lateralization of brain structure and function occurs in typical development, and abnormal lateralization is present in various neuropsychiatric disorders. Autism is characterized by a lack of left lateralization in structure and function of regions involved in language, such as Broca and Wernicke Areas. Methods: Using functional connectivity magnetic resonance imaging from a large publicly available sample (n = 964), we tested whether abnormal functional lateralization in autism exists preferentially in language regions or in a more diffuse pattern across networks of lateralized brain regions. Results: The autism group exhibited significantly reduced left lateralization in a few connections involving language regions and regions from the default mode network, but results were not significant throughout left- and right-lateralized networks. There is a trend that suggests the lack of left lateralization in a connection involving Wernicke Area and the posterior cingulate cortex associates with more severe autism. Conclusions: Abnormal language lateralization in autism may be due to abnormal language development rather than to a deficit in hemispheric specialization of the entire brain.

  • multisite functional connectivity mri classification of autism abide results
    Frontiers in Human Neuroscience, 2013
    Co-Authors: Jared A Nielsen, Brandon A Zielinski, Nicholas Lange, Thomas P Fletcher, Andrew L. Alexander, Erin D. Bigler, Janet E. Lainhart
    Abstract:

    Background: Systematic differences in functional connectivity MRI metrics have been consistently observed in autism, with predominantly decreased cortico-cortical connectivity. Previous attempts at single subject classification in high-functioning autism using whole brain point-to-point functional connectivity have yielded about 80% accurate classification of autism vs. control subjects across a wide age range. We attempted to replicate the method and results using the Autism Brain Imaging Data Exchange including resting state fMRI data obtained from 964 subjects and 16 separate international sites. Methods: For each of 964 subjects, we obtained pairwise functional connectivity measurements from a lattice of 7266 regions of interest covering the gray matter (26.4 million "connections") after preprocessing that included motion and slice timing correction, coregistration to an anatomic image, normalization to standard space, and voxelwise removal by regression of motion parameters, soft tissue, CSF, and white matter signals. Connections were grouped into multiple bins, and a leave-one-out classifier was evaluated on connections comprising each set of bins. Age, age-squared, gender, handedness, and site were included as covariates for the classifier. Results: Classification accuracy significantly outperformed chance but was much lower for multisite prediction than for previous single site results. As high as 60% accuracy was obtained for whole brain classification, with the best accuracy from connections involving regions of the default mode network, parahippocampal and fusiform gyri, insula, Wernicke Area, and intraparietal sulcus. The classifier score was related to symptom severity, social function, daily living skills, and verbal IQ. Classification accuracy was significantly higher for sites with longer BOLD imaging times. Conclusions: Multisite functional connectivity classification of autism outperformed chance using a simple leave-one-out classifier, but exhibit

  • an evaluation of the left brain vs right brain hypothesis with resting state functional connectivity magnetic resonance imaging
    PLOS ONE, 2013
    Co-Authors: Jared A Nielsen, Brandon A Zielinski, Janet E. Lainhart, Michael A Ferguson, Jeffrey S Anderson
    Abstract:

    Lateralized brain regions subserve functions such as language and visuospatial processing. It has been conjectured that individuals may be left-brain dominant or right-brain dominant based on personality and cognitive style, but neuroimaging data has not provided clear evidence whether such phenotypic differences in the strength of left-dominant or right-dominant networks exist. We evaluated whether strongly lateralized connections covaried within the same individuals. Data were analyzed from publicly available resting state scans for 1011 individuals between the ages of 7 and 29. For each subject, functional lateralization was measured for each pair of 7266 regions covering the gray matter at 5-mm resolution as a difference in correlation before and after inverting images across the midsagittal plane. The difference in gray matter density between homotopic coordinates was used as a regressor to reduce the effect of structural asymmetries on functional lateralization. Nine left- and 11 right-lateralized hubs were identified as peaks in the degree map from the graph of significantly lateralized connections. The left-lateralized hubs included regions from the default mode network (medial prefrontal cortex, posterior cingulate cortex, and temporoparietal junction) and language regions (e.g., Broca Area and Wernicke Area), whereas the right-lateralized hubs included regions from the attention control network (e.g., lateral intraparietal sulcus, anterior insula, Area MT, and frontal eye fields). Left- and right-lateralized hubs formed two separable networks of mutually lateralized regions. Connections involving only left- or only right-lateralized hubs showed positive correlation across subjects, but only for connections sharing a node. Lateralization of brain connections appears to be a local rather than global property of brain networks, and our data are not consistent with a whole-brain phenotype of greater “left-brained” or greater “right-brained” network strength across individuals. Small increases in lateralization with age were seen, but no differences in gender were observed.

Brandon A Zielinski - One of the best experts on this subject based on the ideXlab platform.

  • abnormal lateralization of functional connectivity between language and default mode regions in autism
    Molecular Autism, 2014
    Co-Authors: Jared A Nielsen, Brandon A Zielinski, Nicholas Lange, Thomas P Fletcher, Janet E. Lainhart, Andrew L. Alexander, Erin D. Bigler, Jeffrey S Anderson
    Abstract:

    Background: Lateralization of brain structure and function occurs in typical development, and abnormal lateralization is present in various neuropsychiatric disorders. Autism is characterized by a lack of left lateralization in structure and function of regions involved in language, such as Broca and Wernicke Areas. Methods: Using functional connectivity magnetic resonance imaging from a large publicly available sample (n = 964), we tested whether abnormal functional lateralization in autism exists preferentially in language regions or in a more diffuse pattern across networks of lateralized brain regions. Results: The autism group exhibited significantly reduced left lateralization in a few connections involving language regions and regions from the default mode network, but results were not significant throughout left- and right-lateralized networks. There is a trend that suggests the lack of left lateralization in a connection involving Wernicke Area and the posterior cingulate cortex associates with more severe autism. Conclusions: Abnormal language lateralization in autism may be due to abnormal language development rather than to a deficit in hemispheric specialization of the entire brain.

  • multisite functional connectivity mri classification of autism abide results
    Frontiers in Human Neuroscience, 2013
    Co-Authors: Jared A Nielsen, Brandon A Zielinski, Nicholas Lange, Thomas P Fletcher, Andrew L. Alexander, Erin D. Bigler, Janet E. Lainhart
    Abstract:

    Background: Systematic differences in functional connectivity MRI metrics have been consistently observed in autism, with predominantly decreased cortico-cortical connectivity. Previous attempts at single subject classification in high-functioning autism using whole brain point-to-point functional connectivity have yielded about 80% accurate classification of autism vs. control subjects across a wide age range. We attempted to replicate the method and results using the Autism Brain Imaging Data Exchange including resting state fMRI data obtained from 964 subjects and 16 separate international sites. Methods: For each of 964 subjects, we obtained pairwise functional connectivity measurements from a lattice of 7266 regions of interest covering the gray matter (26.4 million "connections") after preprocessing that included motion and slice timing correction, coregistration to an anatomic image, normalization to standard space, and voxelwise removal by regression of motion parameters, soft tissue, CSF, and white matter signals. Connections were grouped into multiple bins, and a leave-one-out classifier was evaluated on connections comprising each set of bins. Age, age-squared, gender, handedness, and site were included as covariates for the classifier. Results: Classification accuracy significantly outperformed chance but was much lower for multisite prediction than for previous single site results. As high as 60% accuracy was obtained for whole brain classification, with the best accuracy from connections involving regions of the default mode network, parahippocampal and fusiform gyri, insula, Wernicke Area, and intraparietal sulcus. The classifier score was related to symptom severity, social function, daily living skills, and verbal IQ. Classification accuracy was significantly higher for sites with longer BOLD imaging times. Conclusions: Multisite functional connectivity classification of autism outperformed chance using a simple leave-one-out classifier, but exhibit

  • an evaluation of the left brain vs right brain hypothesis with resting state functional connectivity magnetic resonance imaging
    PLOS ONE, 2013
    Co-Authors: Jared A Nielsen, Brandon A Zielinski, Janet E. Lainhart, Michael A Ferguson, Jeffrey S Anderson
    Abstract:

    Lateralized brain regions subserve functions such as language and visuospatial processing. It has been conjectured that individuals may be left-brain dominant or right-brain dominant based on personality and cognitive style, but neuroimaging data has not provided clear evidence whether such phenotypic differences in the strength of left-dominant or right-dominant networks exist. We evaluated whether strongly lateralized connections covaried within the same individuals. Data were analyzed from publicly available resting state scans for 1011 individuals between the ages of 7 and 29. For each subject, functional lateralization was measured for each pair of 7266 regions covering the gray matter at 5-mm resolution as a difference in correlation before and after inverting images across the midsagittal plane. The difference in gray matter density between homotopic coordinates was used as a regressor to reduce the effect of structural asymmetries on functional lateralization. Nine left- and 11 right-lateralized hubs were identified as peaks in the degree map from the graph of significantly lateralized connections. The left-lateralized hubs included regions from the default mode network (medial prefrontal cortex, posterior cingulate cortex, and temporoparietal junction) and language regions (e.g., Broca Area and Wernicke Area), whereas the right-lateralized hubs included regions from the attention control network (e.g., lateral intraparietal sulcus, anterior insula, Area MT, and frontal eye fields). Left- and right-lateralized hubs formed two separable networks of mutually lateralized regions. Connections involving only left- or only right-lateralized hubs showed positive correlation across subjects, but only for connections sharing a node. Lateralization of brain connections appears to be a local rather than global property of brain networks, and our data are not consistent with a whole-brain phenotype of greater “left-brained” or greater “right-brained” network strength across individuals. Small increases in lateralization with age were seen, but no differences in gender were observed.