XPA

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 3465 Experts worldwide ranked by ideXlab platform

Andrew J Sinclair - One of the best experts on this subject based on the ideXlab platform.

  • comparison of the bioavailability of docosapentaenoic acid dpa 22 5n 3 and eicosapentaenoic acid epa 20 5n 3 in the rat
    Prostaglandins Leukotrienes and Essential Fatty Acids, 2014
    Co-Authors: Samaneh Ghasemi Fard, Kaisa M Linderborg, Giovanni M Turchini, Andrew J Sinclair
    Abstract:

    Based on the results from a human study which showed significantly reduced incorporation of DPA compared with EPA into chylomicrons, this study was designed to test if dietary DPA was significantly less absorbed than EPA. Male Sprague Dawley rats were randomly assigned to three groups of six, and were fed a semi-synthetic high fat diet (23.5% fat) for 9 days. The test omega 3 fatty acids (EPA and DPA, 250 mg/animal/day, free fatty acid form) or olive oil (250 mg/animal/day) were added to the high fat diet on days 5, 6 and 7. Dietary EPA and DPA appeared in the faeces on days 6, 7 and 8, with the total amount of DPA excreted being 4.6-fold greater than that of EPA. The total amount of faecal fat did not differ significantly between the groups. At the conclusion of the study (day 9), it was found that liver DPA, EPA and total n-3 LC-PUFA levels were significantly increased by both DPA and EPA feeding compared with the olive oil fed control group. In the heart, DPA feeding increased the DPA content and both DPA and EPA feeding increased the total n-3 LC-PUFA levels. This study showed that DPA and EPA, both provided in free form, are metabolised differently, despite being chemically similar.

  • docosapentaenoic acid 22 5n 3 a review of its biological effects
    Progress in Lipid Research, 2011
    Co-Authors: Gunveen Kaur, Manohar L Garg, David Cameronsmith, Andrew J Sinclair
    Abstract:

    This article summarizes the current knowledge available on metabolism and the biological effects of n-3 docosapentaenoic acid (DPA). n-3 DPA has not been extensively studied because of the limited availability of the pure compound. n-3 DPA is an elongated metabolite of EPA and is an intermediary product between EPA and DHA. The literature on n-3 DPA is limited, however the available data suggests it has beneficial health effects. In vitro n-3 DPA is retro-converted back to EPA, however it does not appear to be readily metabolised to DHA. In vivo studies have shown limited conversion of n-3 DPA to DHA, mainly in liver, but in addition retro-conversion to EPA is evident in a number of tissues. n-3 DPA can be metabolised by lipoxygenase, in platelets, to form ll-hydroxy-7,9,13,16,19- and 14-hydroxy-7,10,12,16,19-DPA. It has also been reported that n-3 DPA is effective (more so than EPA and DHA) in inhibition of aggregation in platelets obtained from rabbit blood. In addition, there is evidence that n-3 DPA possesses 10-fold greater endothelial cell migration ability than EPA, which is important in wound-healing processes. An in vivo study has reported that n-3 DPA reduces the fatty acid synthase and malic enzyme activity levels in n-3 DPA-supplemented mice and these effects were stronger than the EPA-supplemented mice. Another recent in vivo study has reported that n-3 DPA may have a role in attenuating age-related decrease in spatial learning and long-term potentiation. However, more research remains to be done to further investigate the biological effects of this n-3 VLCPUFA.

  • short term docosapentaenoic acid 22 5n 3 supplementation increases tissue docosapentaenoic acid dha and epa concentrations in rats
    British Journal of Nutrition, 2010
    Co-Authors: Gunveen Kaur, Denovan P Begg, Daniel P Barr, Manohar L Garg, David Cameronsmith, Andrew J Sinclair
    Abstract:

    The metabolic fate of dietary n-3 docosapentaenoic acid (DPA) in mammals is currently unknown. The aim of the present study was to determine the extent of conversion of dietary DPA to DHA and EPA in rats. Four groups of male weanling Sprague–Dawley rats (aged 5 weeks) were given 50 mg of DPA, EPA, DHA or oleic acid, daily for 7 d by gavage. At the end of the treatment period, the tissues were analysed for concentrations of long-chain PUFA. DPA supplementation led to significant increases in DPA concentration in all tissues, with largest increase being in adipose (5-fold) and smallest increase being in brain (1·1-fold). DPA supplementation significantly increased the concentration of DHA in liver and the concentration of EPA in liver, heart and skeletal muscle, presumably by the process of retroconversion. EPA supplementation significantly increased the concentration of EPA and DPA in liver, heart and skeletal muscle and the DHA concentration in liver. DHA supplementation elevated the DHA levels in all tissues and EPA levels in the liver. Adipose was the main tissue site for accumulation of DPA, EPA and DHA. These data suggest that dietary DPA can be converted to DHA in the liver, in a short-term study, and that in addition it is partly retroconverted to EPA in liver, adipose, heart and skeletal muscle. Future studies should examine the physiological effect of DPA in tissues such as liver and heart.

David Cameronsmith - One of the best experts on this subject based on the ideXlab platform.

  • postprandial metabolism of docosapentaenoic acid dpa 22 5n 3 and eicosapentaenoic acid epa 20 5n 3 in humans
    Prostaglandins Leukotrienes and Essential Fatty Acids, 2013
    Co-Authors: Kaisa M Linderborg, Gunveen Kaur, Eliza G Miller, Peter J Meikle, Amy E Larsen, Jacquelyn M Weir, Anu Nuora, Christopher K Barlow, Heikki Kallio, David Cameronsmith
    Abstract:

    The study of the metabolism of docosapentaenoic acid (DPA, 22:5n � 3) in humans has been limited by the unavailability of pure DPA and the fact that DPA is found in combination with eicosapentaenoic acid (EPA, 20:5n � 3) and docosahexaenoic acid (DHA, 22:6n � 3) in natural products. In this double blind cross over study, pure DPA and EPA were incorporated in meals served to healthy female volunteers. Mass spectrometric methods were used to study the chylomicron lipidomics. Plasma chylomicronemia was significantly reduced after the meal containing DPA compared with the meal containing EPA or olive oil only. Both EPA and DPA were incorporated into chylomicron TAGs, while there was less incorporation into chylomicron phospholipids. Lipidomic analysis of the chylomicron TAGs revealed the dynamic nature of chylomicron TAGs. The main TAG species that EPA and DPA were incorporated into were EPA/18:1/18:1, DPA/18:1/16:0 and DPA/18:1/18:1. There was very limited conversion of DPA and EPA to DHA and there were no increases in EPA levels during the 5 h postprandial period after the DPA meal. In conclusion, EPA and DPA showed different metabolic fates, and DPA hindered the digestion, ingestion or incorporation into chylomicrons of the olive oil present in the meal.

  • docosapentaenoic acid 22 5n 3 a review of its biological effects
    Progress in Lipid Research, 2011
    Co-Authors: Gunveen Kaur, Manohar L Garg, David Cameronsmith, Andrew J Sinclair
    Abstract:

    This article summarizes the current knowledge available on metabolism and the biological effects of n-3 docosapentaenoic acid (DPA). n-3 DPA has not been extensively studied because of the limited availability of the pure compound. n-3 DPA is an elongated metabolite of EPA and is an intermediary product between EPA and DHA. The literature on n-3 DPA is limited, however the available data suggests it has beneficial health effects. In vitro n-3 DPA is retro-converted back to EPA, however it does not appear to be readily metabolised to DHA. In vivo studies have shown limited conversion of n-3 DPA to DHA, mainly in liver, but in addition retro-conversion to EPA is evident in a number of tissues. n-3 DPA can be metabolised by lipoxygenase, in platelets, to form ll-hydroxy-7,9,13,16,19- and 14-hydroxy-7,10,12,16,19-DPA. It has also been reported that n-3 DPA is effective (more so than EPA and DHA) in inhibition of aggregation in platelets obtained from rabbit blood. In addition, there is evidence that n-3 DPA possesses 10-fold greater endothelial cell migration ability than EPA, which is important in wound-healing processes. An in vivo study has reported that n-3 DPA reduces the fatty acid synthase and malic enzyme activity levels in n-3 DPA-supplemented mice and these effects were stronger than the EPA-supplemented mice. Another recent in vivo study has reported that n-3 DPA may have a role in attenuating age-related decrease in spatial learning and long-term potentiation. However, more research remains to be done to further investigate the biological effects of this n-3 VLCPUFA.

  • short term docosapentaenoic acid 22 5n 3 supplementation increases tissue docosapentaenoic acid dha and epa concentrations in rats
    British Journal of Nutrition, 2010
    Co-Authors: Gunveen Kaur, Denovan P Begg, Daniel P Barr, Manohar L Garg, David Cameronsmith, Andrew J Sinclair
    Abstract:

    The metabolic fate of dietary n-3 docosapentaenoic acid (DPA) in mammals is currently unknown. The aim of the present study was to determine the extent of conversion of dietary DPA to DHA and EPA in rats. Four groups of male weanling Sprague–Dawley rats (aged 5 weeks) were given 50 mg of DPA, EPA, DHA or oleic acid, daily for 7 d by gavage. At the end of the treatment period, the tissues were analysed for concentrations of long-chain PUFA. DPA supplementation led to significant increases in DPA concentration in all tissues, with largest increase being in adipose (5-fold) and smallest increase being in brain (1·1-fold). DPA supplementation significantly increased the concentration of DHA in liver and the concentration of EPA in liver, heart and skeletal muscle, presumably by the process of retroconversion. EPA supplementation significantly increased the concentration of EPA and DPA in liver, heart and skeletal muscle and the DHA concentration in liver. DHA supplementation elevated the DHA levels in all tissues and EPA levels in the liver. Adipose was the main tissue site for accumulation of DPA, EPA and DHA. These data suggest that dietary DPA can be converted to DHA in the liver, in a short-term study, and that in addition it is partly retroconverted to EPA in liver, adipose, heart and skeletal muscle. Future studies should examine the physiological effect of DPA in tissues such as liver and heart.

O.i. Lavrik - One of the best experts on this subject based on the ideXlab platform.

  • influence of centrin 2 on the interaction of nucleotide excision repair factors with damaged dna
    Biochemistry, 2012
    Co-Authors: Yu S Krasikova, N I Rechkunova, E A Maltseva, Constantin T Craescu, I O Petruseva, O.i. Lavrik
    Abstract:

    We have examined the influence of centrin 2 (Cen2) on the interaction of nucleotide excision repair factors (XPC-HR23b, RPA, and XPA) with 48-mer DNA duplexes bearing the dUMP derivative 5-{3-[6-(carboxyamidofluores-ceinyl)amidocapromoyl]allyl}-2′-deoxyuridine-5′-monophosphate. The fluorescein residue linked to the nucleotide base imitates a bulky lesion of DNA. Cen2 stimulated the binding and increased the yield of DNA adducts with XPC-HR23b, a protein recognizing bulky damages in DNA. Stimulation of the binding was most pronounced in the presence of Mg2+ and demonstrated a bell-shaped dependence on Cen2 concentration. The addition of Cen2 changed the stoichiometry of RPA-DNA complexes and diminished the yield of RPA-DNA covalent crosslinks. We have shown that Cen2 influences the binding of RPA and XPA with DNA, which results in formation of additional DNA-protein complexes possibly including Cen2. We have also found some evidence of direct contacts between Cen2 and DNA. These results in concert with the literature data suggest that Cen2 can be a regulatory element in the nucleotide excision repair system.

  • interaction of nucleotide excision repair factors xpc hr23b XPA and rpa with damaged dna
    Biochemistry, 2008
    Co-Authors: Yu S Krasikova, O.i. Lavrik, N I Rechkunova, E A Maltseva, Orlando D Scharer, I O Petruseva, V N Silnikov, Timofei S Zatsepin, T S Oretskaya
    Abstract:

    The interaction of nucleotide excision repair factors-xeroderma pigmentosum complementation group C protein in complex with human homolog of yeast Rad23 protein (XPC-HR23B), replication protein A (RPA), and xeroderma pigmentosum complementation group A protein (XPA)—with 48-mer DNA duplexes imitating damaged DNA structures was investigated. All studied proteins demonstrated low specificity in binding to damaged DNA compared with undamaged DNA duplexes. RPA stimulates formation of XPC-HR23B complex with DNA, and when XPA and XPC-HR23B are simultaneously present in the reaction mixture a synergistic effect in binding of these proteins to DNA is observed. RPA crosslinks to DNA bearing photoreactive 5I-dUMP residue on one strand and fluorescein-substituted dUMP analog as a lesion in the opposite strand of DNA duplex and also stimulates cross-linking with XPC-HR23B. Therefore, RPA might be one of the main regulation factors at various stages of nucleotide excision repair. The data are in agreement with the cooperative binding model of nucleotide excision repair factors participating in pre-incision complex formation with DNA duplexes bearing damages.

  • crosslinking of nucleotide excision repair proteins with dna containing photoreactive damages
    Bioorganic Chemistry, 2008
    Co-Authors: E A Maltseva, Wim Vermeulen, N I Rechkunova, Orlando D Scharer, I O Petruseva, O.i. Lavrik
    Abstract:

    Photoreactive DNA duplexes mimicking substrates of nucleotide excision repair (NER) system were used to analyze the interaction of XPC-HR23B, RPA, and XPA with damaged DNA. Photoreactive groups in one strand of DNA duplex (arylazido-dCMP or 4-thio-dUMP) were combined with anthracenyl-dCMP residue at the opposite strand to analyze contacts of NER factors with damaged and undamaged strands. Crosslinking of XPC-HR23B complex with photoreactive 48-mers results in modification of XPC subunit. XPC-HR23B did not crosslink with DNA duplex bearing bulky residues in both strands while this modification does not prevent interaction of DNA with XPA. The data on crosslinking of XPA and RPA with photoreactive DNA duplexes containing bulky group in one of the strands are in favor of XPA preference to interact with the damaged strand and RPA preference for the undamaged strand. The results support the understanding and set the stage for dynamically oriented experiments of how the pre-incision complex is formed in the early stage of NER.

  • crosslinking of the ner damage recognition proteins xpc hr23b XPA and rpa to photoreactive probes that mimic dna damages
    Biochimica et Biophysica Acta, 2007
    Co-Authors: E A Maltseva, N I Rechkunova, Orlando D Scharer, I O Petruseva, Ludovic C Gillet, O.i. Lavrik
    Abstract:

    A new assay to probe the mechanism of mammalian nucleotide excision repair (NER) was developed. Photoreactive arylazido analogues of dNMP in DNA were shown to be substrates for the human NER system. Oligonucleotides carrying photoreactive "damages" were prepared using the multi-stage protocol including one-nucleotide gap filling by DNA polymerase beta using photoreactive dCTP or dUTP analogues followed by ligation of the resulting nick. Photoreactive 60-mers were annealed with single-stranded pBluescript II SK (+) and subsequently primer extension reactions were performed. Incubation of HeLa extracts with the plasmids containing photoreactive moieties resulted in an excision pattern typical of NER. DNA duplexes containing photoreactive analogues were used to analyze the interaction of XPC-HR23B, RPA, and XPA with damaged DNA using the photocrosslinking assay. Crosslinking of the XPC-HR23B complex with photoreactive 60-mers resulted in modification of its XPC subunit. RPA crosslinked to ssDNA or mismatched dsDNA more efficiently than to dsDNA, whereas XPA did not show a preference for any of the DNA species. XPC and XPA photocrosslinking to DNA decreased in the presence of Mg(2+) whereas RPA crosslinking to DNA was not sensitive to this cofactor. Our data establish a photocrosslinking assay for the investigation of the damage recognition step in human nucleotide excision repair.

Gunveen Kaur - One of the best experts on this subject based on the ideXlab platform.

  • postprandial metabolism of docosapentaenoic acid dpa 22 5n 3 and eicosapentaenoic acid epa 20 5n 3 in humans
    Prostaglandins Leukotrienes and Essential Fatty Acids, 2013
    Co-Authors: Kaisa M Linderborg, Gunveen Kaur, Eliza G Miller, Peter J Meikle, Amy E Larsen, Jacquelyn M Weir, Anu Nuora, Christopher K Barlow, Heikki Kallio, David Cameronsmith
    Abstract:

    The study of the metabolism of docosapentaenoic acid (DPA, 22:5n � 3) in humans has been limited by the unavailability of pure DPA and the fact that DPA is found in combination with eicosapentaenoic acid (EPA, 20:5n � 3) and docosahexaenoic acid (DHA, 22:6n � 3) in natural products. In this double blind cross over study, pure DPA and EPA were incorporated in meals served to healthy female volunteers. Mass spectrometric methods were used to study the chylomicron lipidomics. Plasma chylomicronemia was significantly reduced after the meal containing DPA compared with the meal containing EPA or olive oil only. Both EPA and DPA were incorporated into chylomicron TAGs, while there was less incorporation into chylomicron phospholipids. Lipidomic analysis of the chylomicron TAGs revealed the dynamic nature of chylomicron TAGs. The main TAG species that EPA and DPA were incorporated into were EPA/18:1/18:1, DPA/18:1/16:0 and DPA/18:1/18:1. There was very limited conversion of DPA and EPA to DHA and there were no increases in EPA levels during the 5 h postprandial period after the DPA meal. In conclusion, EPA and DPA showed different metabolic fates, and DPA hindered the digestion, ingestion or incorporation into chylomicrons of the olive oil present in the meal.

  • docosapentaenoic acid 22 5n 3 a review of its biological effects
    Progress in Lipid Research, 2011
    Co-Authors: Gunveen Kaur, Manohar L Garg, David Cameronsmith, Andrew J Sinclair
    Abstract:

    This article summarizes the current knowledge available on metabolism and the biological effects of n-3 docosapentaenoic acid (DPA). n-3 DPA has not been extensively studied because of the limited availability of the pure compound. n-3 DPA is an elongated metabolite of EPA and is an intermediary product between EPA and DHA. The literature on n-3 DPA is limited, however the available data suggests it has beneficial health effects. In vitro n-3 DPA is retro-converted back to EPA, however it does not appear to be readily metabolised to DHA. In vivo studies have shown limited conversion of n-3 DPA to DHA, mainly in liver, but in addition retro-conversion to EPA is evident in a number of tissues. n-3 DPA can be metabolised by lipoxygenase, in platelets, to form ll-hydroxy-7,9,13,16,19- and 14-hydroxy-7,10,12,16,19-DPA. It has also been reported that n-3 DPA is effective (more so than EPA and DHA) in inhibition of aggregation in platelets obtained from rabbit blood. In addition, there is evidence that n-3 DPA possesses 10-fold greater endothelial cell migration ability than EPA, which is important in wound-healing processes. An in vivo study has reported that n-3 DPA reduces the fatty acid synthase and malic enzyme activity levels in n-3 DPA-supplemented mice and these effects were stronger than the EPA-supplemented mice. Another recent in vivo study has reported that n-3 DPA may have a role in attenuating age-related decrease in spatial learning and long-term potentiation. However, more research remains to be done to further investigate the biological effects of this n-3 VLCPUFA.

  • short term docosapentaenoic acid 22 5n 3 supplementation increases tissue docosapentaenoic acid dha and epa concentrations in rats
    British Journal of Nutrition, 2010
    Co-Authors: Gunveen Kaur, Denovan P Begg, Daniel P Barr, Manohar L Garg, David Cameronsmith, Andrew J Sinclair
    Abstract:

    The metabolic fate of dietary n-3 docosapentaenoic acid (DPA) in mammals is currently unknown. The aim of the present study was to determine the extent of conversion of dietary DPA to DHA and EPA in rats. Four groups of male weanling Sprague–Dawley rats (aged 5 weeks) were given 50 mg of DPA, EPA, DHA or oleic acid, daily for 7 d by gavage. At the end of the treatment period, the tissues were analysed for concentrations of long-chain PUFA. DPA supplementation led to significant increases in DPA concentration in all tissues, with largest increase being in adipose (5-fold) and smallest increase being in brain (1·1-fold). DPA supplementation significantly increased the concentration of DHA in liver and the concentration of EPA in liver, heart and skeletal muscle, presumably by the process of retroconversion. EPA supplementation significantly increased the concentration of EPA and DPA in liver, heart and skeletal muscle and the DHA concentration in liver. DHA supplementation elevated the DHA levels in all tissues and EPA levels in the liver. Adipose was the main tissue site for accumulation of DPA, EPA and DHA. These data suggest that dietary DPA can be converted to DHA in the liver, in a short-term study, and that in addition it is partly retroconverted to EPA in liver, adipose, heart and skeletal muscle. Future studies should examine the physiological effect of DPA in tissues such as liver and heart.

Kaisa M Linderborg - One of the best experts on this subject based on the ideXlab platform.

  • comparison of the bioavailability of docosapentaenoic acid dpa 22 5n 3 and eicosapentaenoic acid epa 20 5n 3 in the rat
    Prostaglandins Leukotrienes and Essential Fatty Acids, 2014
    Co-Authors: Samaneh Ghasemi Fard, Kaisa M Linderborg, Giovanni M Turchini, Andrew J Sinclair
    Abstract:

    Based on the results from a human study which showed significantly reduced incorporation of DPA compared with EPA into chylomicrons, this study was designed to test if dietary DPA was significantly less absorbed than EPA. Male Sprague Dawley rats were randomly assigned to three groups of six, and were fed a semi-synthetic high fat diet (23.5% fat) for 9 days. The test omega 3 fatty acids (EPA and DPA, 250 mg/animal/day, free fatty acid form) or olive oil (250 mg/animal/day) were added to the high fat diet on days 5, 6 and 7. Dietary EPA and DPA appeared in the faeces on days 6, 7 and 8, with the total amount of DPA excreted being 4.6-fold greater than that of EPA. The total amount of faecal fat did not differ significantly between the groups. At the conclusion of the study (day 9), it was found that liver DPA, EPA and total n-3 LC-PUFA levels were significantly increased by both DPA and EPA feeding compared with the olive oil fed control group. In the heart, DPA feeding increased the DPA content and both DPA and EPA feeding increased the total n-3 LC-PUFA levels. This study showed that DPA and EPA, both provided in free form, are metabolised differently, despite being chemically similar.

  • postprandial metabolism of docosapentaenoic acid dpa 22 5n 3 and eicosapentaenoic acid epa 20 5n 3 in humans
    Prostaglandins Leukotrienes and Essential Fatty Acids, 2013
    Co-Authors: Kaisa M Linderborg, Gunveen Kaur, Eliza G Miller, Peter J Meikle, Amy E Larsen, Jacquelyn M Weir, Anu Nuora, Christopher K Barlow, Heikki Kallio, David Cameronsmith
    Abstract:

    The study of the metabolism of docosapentaenoic acid (DPA, 22:5n � 3) in humans has been limited by the unavailability of pure DPA and the fact that DPA is found in combination with eicosapentaenoic acid (EPA, 20:5n � 3) and docosahexaenoic acid (DHA, 22:6n � 3) in natural products. In this double blind cross over study, pure DPA and EPA were incorporated in meals served to healthy female volunteers. Mass spectrometric methods were used to study the chylomicron lipidomics. Plasma chylomicronemia was significantly reduced after the meal containing DPA compared with the meal containing EPA or olive oil only. Both EPA and DPA were incorporated into chylomicron TAGs, while there was less incorporation into chylomicron phospholipids. Lipidomic analysis of the chylomicron TAGs revealed the dynamic nature of chylomicron TAGs. The main TAG species that EPA and DPA were incorporated into were EPA/18:1/18:1, DPA/18:1/16:0 and DPA/18:1/18:1. There was very limited conversion of DPA and EPA to DHA and there were no increases in EPA levels during the 5 h postprandial period after the DPA meal. In conclusion, EPA and DPA showed different metabolic fates, and DPA hindered the digestion, ingestion or incorporation into chylomicrons of the olive oil present in the meal.