Zaglossus

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 147 Experts worldwide ranked by ideXlab platform

Helgen Lauren - One of the best experts on this subject based on the ideXlab platform.

Margaret Hawkins - One of the best experts on this subject based on the ideXlab platform.

  • Body Temperature In Captive Long-Beaked
    2016
    Co-Authors: Echidnas Bartoni, Lyn A. Beard, Larry I. Perry, Julie A. Barnes, Gordon C Grigg, Gary J. Fry, Margaret Hawkins
    Abstract:

    The routine occurrence of both short-term (daily) and long-term torpor (hibernation) in short-beaked echidnas, but not platypus, raises questions about the third monotreme genus, New Guinea's Zaglossus. We measured body temperatures (Tb) with implanted data loggers over three and a half years in two captive Zaglossus bartoni at Taronga Zoo, Sydney. The modal Tb of both long-beaks was 31 °C, similar to non-hibernating short-beaked echidnas, Tachyglossus aculeatus, in the wild (30–32 °C) and to platypus (32 °C), suggesting that this is characteristic of normothermic monotremes. Tb cycled daily, usually over 2–4 °C. There were some departures from this pattern to suggest periods of inactivity but nothing to indicate the occurrence of long-term torpor. In contrast, two short-beaked echidnas monitored concurrently in the same pen showed extended periods of low Tb in the cooler months (hibernation) and short periods of torpor at any time of the year, as they do in the wild. Whether torpor or hibernation occurs in Zaglossus in the wild or in juveniles remains unknown. However, given that the environment in this study was conducive to hibernation in short-beaks, which do not easily enter torpor in captivity, and their large size, we think that torpor in wild adult Zaglossus is unlikely

  • First record of limb preferences in monotremes (Zaglossus spp.)
    Australian Journal of Zoology, 2015
    Co-Authors: Andrey Giljov, Margaret Hawkins, Karina Karenina, Yegor Malashichev
    Abstract:

    Lateralisation in forelimb use at the population and/or individual level has been found in a wide variety of vertebrate species. However, some large taxa have not yet been investigated and that limits a proper evolutionary interpretation of forelimb preferences. Among mammals lateralised use of the forelimbs has been shown for both placentals and marsupials, but nothing is known about behavioural lateralisation in monotremes. Here we examined lateral preferences in forelimb use in four long-beaked echidnas (male and female Zaglossus bruijni, and male and female Z. bartoni) in captivity. Three individuals showed significant forelimb preferences in unimanual behaviours associated with feeding. When stepping on an eminence with one forelimb first, the lateralisation at the individual level was found only in males of both species. During male–female interactions, the male Z. bartoni significantly preferred to put one of the forelimbs on the female’s back. In both males, the direction of preferences was consistent across different types of behaviour. Our results confirm that manual lateralisation, at least at the individual level, is widespread among mammals. Further research is needed to investigate whether the monotremes display population-level lateralisation in forelimb use.

  • Body Temperature In Captive Long-Beaked Echidnas (Zaglossus Bartoni)
    Comparative Biochemistry and Physiology A-molecular & Integrative Physiology, 2003
    Co-Authors: Gordon C Grigg, Lyn A. Beard, Larry I. Perry, Julie A. Barnes, Margaret Hawkins
    Abstract:

    The routine occurrence of both short-term (daily) and long-term torpor (hibernation) in short-beaked echidnas, but not platypus, raises questions about the third monotreme genus, New Guinea's Zaglossus. We measured body temperatures (Tb) with implanted data loggers over three and a half years in two captive Zaglossus bartoni at Taronga Zoo, Sydney. The modal Tb of both long-beaks was 31 degrees C, similar to non-hibernating short-beaked echidnas, Tachyglossus aculeatus, in the wild (30-32 degrees C) and to platypus (32 degrees C), suggesting that this is characteristic of normothermic monotremes. Tb cycled daily, usually over 2-4 degrees C. There were some departures from this pattern to suggest periods of inactivity but nothing to indicate the occurrence of long-term torpor. In contrast, two short-beaked echidnas monitored concurrently in the same pen showed extended periods of low Tb in the cooler months (hibernation) and short periods of torpor at any time of the year, as they do in the wild. Whether torpor or hibernation occurs in Zaglossus in the wild or in juveniles remains unknown. However, given that the environment in this study was conducive to hibernation in short-beaks, which do not easily enter torpor in captivity, and their large size, we think that torpor in wild adult Zaglossus is unlikely.

C. P. Groves - One of the best experts on this subject based on the ideXlab platform.

Helgen, Kristofer M - One of the best experts on this subject based on the ideXlab platform.

Gordon C Grigg - One of the best experts on this subject based on the ideXlab platform.

  • Body Temperature In Captive Long-Beaked
    2016
    Co-Authors: Echidnas Bartoni, Lyn A. Beard, Larry I. Perry, Julie A. Barnes, Gordon C Grigg, Gary J. Fry, Margaret Hawkins
    Abstract:

    The routine occurrence of both short-term (daily) and long-term torpor (hibernation) in short-beaked echidnas, but not platypus, raises questions about the third monotreme genus, New Guinea's Zaglossus. We measured body temperatures (Tb) with implanted data loggers over three and a half years in two captive Zaglossus bartoni at Taronga Zoo, Sydney. The modal Tb of both long-beaks was 31 °C, similar to non-hibernating short-beaked echidnas, Tachyglossus aculeatus, in the wild (30–32 °C) and to platypus (32 °C), suggesting that this is characteristic of normothermic monotremes. Tb cycled daily, usually over 2–4 °C. There were some departures from this pattern to suggest periods of inactivity but nothing to indicate the occurrence of long-term torpor. In contrast, two short-beaked echidnas monitored concurrently in the same pen showed extended periods of low Tb in the cooler months (hibernation) and short periods of torpor at any time of the year, as they do in the wild. Whether torpor or hibernation occurs in Zaglossus in the wild or in juveniles remains unknown. However, given that the environment in this study was conducive to hibernation in short-beaks, which do not easily enter torpor in captivity, and their large size, we think that torpor in wild adult Zaglossus is unlikely

  • Body Temperature In Captive Long-Beaked Echidnas (Zaglossus Bartoni)
    Comparative Biochemistry and Physiology A-molecular & Integrative Physiology, 2003
    Co-Authors: Gordon C Grigg, Lyn A. Beard, Larry I. Perry, Julie A. Barnes, Margaret Hawkins
    Abstract:

    The routine occurrence of both short-term (daily) and long-term torpor (hibernation) in short-beaked echidnas, but not platypus, raises questions about the third monotreme genus, New Guinea's Zaglossus. We measured body temperatures (Tb) with implanted data loggers over three and a half years in two captive Zaglossus bartoni at Taronga Zoo, Sydney. The modal Tb of both long-beaks was 31 degrees C, similar to non-hibernating short-beaked echidnas, Tachyglossus aculeatus, in the wild (30-32 degrees C) and to platypus (32 degrees C), suggesting that this is characteristic of normothermic monotremes. Tb cycled daily, usually over 2-4 degrees C. There were some departures from this pattern to suggest periods of inactivity but nothing to indicate the occurrence of long-term torpor. In contrast, two short-beaked echidnas monitored concurrently in the same pen showed extended periods of low Tb in the cooler months (hibernation) and short periods of torpor at any time of the year, as they do in the wild. Whether torpor or hibernation occurs in Zaglossus in the wild or in juveniles remains unknown. However, given that the environment in this study was conducive to hibernation in short-beaks, which do not easily enter torpor in captivity, and their large size, we think that torpor in wild adult Zaglossus is unlikely.