ABCB4

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 16407 Experts worldwide ranked by ideXlab platform

Julien Gautherot - One of the best experts on this subject based on the ideXlab platform.

  • thyroid hormone receptor β1 stimulates ABCB4 to increase biliary phosphatidylcholine excretion in mice
    Journal of Lipid Research, 2018
    Co-Authors: Julien Gautherot, Thierry Claudel, Frans J C Cuperus, Claudia D Fuchs, Thomas Falguieres, Michael Trauner
    Abstract:

    The ATP-binding cassette transporter ABCB4/MDR3 is critical for biliary phosphatidylcholine (PC) excretion at the canalicular membrane of hepatocytes. Defective ABCB4 gene expression and protein function result in various cholestatic liver and bile duct injuries. Thyroid hormone receptor (THR) is a major regulator of hepatic lipid metabolism; we explored its potential role in ABCB4 regulation. Thyroid hormone T3 stimulation to human hepatocyte models showed direct transcriptional activation of ABCB4 in a dose- and time-dependent manner. To determine whether THRβ1 (the main THR isoform of the liver) is involved in regulation, we tested THRβ1-specific agonists (e.g., GC-1, KB-141); these agonists resulted in greater stimulation than the native hormone. KB-141 activated hepatic ABCB44 expression in mice, which enhanced biliary PC secretion in vivo. We also identified THR response elements 6 kb upstream of the ABCB4 locus that were conserved in humans and mice. Thus, T3-via THRβ1 as a novel transcriptional activator regulates ABCB4 to increase ABCB4 protein levels at the canalicular membrane and promote PC secretion into bile. These findings may have important implications for understanding thyroid hormone function as a potential modifier of bile duct homeostasis and provide pharmacologic opportunities to improve liver function in hepatobiliary diseases caused by low ABCB4 expression.

  • phosphorylation of ABCB4 impacts its function insights from disease causing mutations
    Hepatology, 2014
    Co-Authors: Jeanlouis Delaunay, Tounsia Aitslimane, Julien Gautherot, Daniele Delautier, Marieanne Maubert, Gerard Bolbach
    Abstract:

    The ABCB4 transporter mediates phosphatidylcholine (PC) secretion at the canalicular membrane of hepatocytes and its genetic defects cause biliary diseases. Whereas ABCB4 shares high sequence identity with the multidrug transporter, ABCB1, its N-terminal domain is poorly conserved, leading us to hypothesize a functional specificity of this domain. A database of ABCB4 genotyping in a large series of patients was screened for variations altering residues of the N-terminal domain. Identified variants were then expressed in cell models to investigate their biological consequences. Two missense variations, T34M and R47G, were identified in patients with low-phospholipid–associated cholelithiasis or intrahepatic cholestasis of pregnancy. The T34M and R47G mutated proteins showed no or minor defect, respectively, in maturation and targeting to the apical membrane, in polarized Madin-Darby Canine Kidney and HepG2 cells, whereas their stability was similar to that of wild-type (WT) ABCB4. By contrast, the PC secretion activity of both mutants was markedly decreased. In silico analysis indicated that the identified variants were likely to affect ABCB4 phosphorylation. Mass spectrometry analyses confirmed that the N-terminal domain of WT ABCB4 could undergo phosphorylation in vitro and revealed that the T34M and R47G mutations impaired such phosphorylation. ABCB4-mediated PC secretion was also increased by pharmacological activation of protein kinases A or C and decreased by inhibition of these kinases. Furthermore, secretion activity of the T34M and R47G mutants was less responsive than that of WT ABCB4 to protein kinase modulators. Conclusion: We identified disease-associated variants of ABCB4 involved in the phosphorylation of its N-terminal domain and leading to decreased PC secretion. Our results also indicate that ABCB4 activity is regulated by phosphorylation, in particular, of N-terminal residues. (Hepatology 2014;60:610–621)

  • effects of cellular chemical and pharmacological chaperones on the rescue of a trafficking defective mutant of the atp binding cassette transporter proteins abcb1 ABCB4
    Journal of Biological Chemistry, 2012
    Co-Authors: Julien Gautherot, Jeanlouis Delaunay, Annemarie Durandschneider, Michele Maurice, Daniele Delautier, Alegna Rada, Julie Gabillet, C Housset, Tounsia Aitslimane
    Abstract:

    The ATP-binding cassette transporter ABCB4 is a phosphatidylcholine translocator specifically expressed at the bile canalicular membrane in hepatocytes, highly homologous to the multidrug transporter ABCB1. Variations in the ABCB4 gene sequence cause progressive familial intrahepatic cholestasis type 3. We have shown previously that the I541F mutation, when reproduced either in ABCB1 or in ABCB4, led to retention in the endoplasmic reticulum (ER)/Golgi. Here, Madin-Darby canine kidney cells expressing ABCB1-GFP were used as a model to investigate this mutant. We show that ABCB1-I541F is not properly folded and is more susceptible to in situ protease degradation. It colocalizes and coprecipitates with the ER chaperone calnexin and coprecipitates with the cytosolic chaperone Hsc/Hsp70. Silencing of calnexin or overexpression of Hsp70 have no effect on maturation of the mutant. We also tested potential rescue by chemical and pharmacological chaperones. Thapsigargin and sodium 4-phenyl butyrate were inefficient. Glycerol improved maturation and exit of the mutant from the ER. Cyclosporin A, a competitive substrate for ABCB1, restored maturation, plasma membrane expression, and activity of ABCB1-I541F. Cyclosporin A also improved maturation of ABCB4-I541F in Madin-Darby canine kidney cells. In HepG2 cells transfected with ABCB4-I541F cDNA, cyclosporin A allowed a significant amount of the mutant protein to reach the membrane of bile canaliculi. These results show that the best strategy to rescue conformation-defective ABCB4 mutants is provided by pharmacological chaperones that specifically target the protein. They identify cyclosporin A as a potential novel therapeutic tool for progressive familial intrahepatic cholestasis type 3 patients.

  • a missense mutation in ABCB4 gene involved in progressive familial intrahepatic cholestasis type 3 leads to a folding defect that can be rescued by low temperature
    Hepatology, 2009
    Co-Authors: J Delaunay, Annemarie Durandschneider, Julien Gautherot, Daniele Delautier, Alegna Rada
    Abstract:

    Progressive familial intrahepatic cholestasis type 3 (PFIC3) is a rare liver disease characterized by early onset of cholestasis that leads to cirrhosis and liver failure before adulthood. PFIC3 may be improved by chronic administration of ursodeoxycholic acid, although in many cases liver transplantation is the only therapy. The disease is caused by mutations of the adenosine triphosphate (ATP)–binding cassette, sub-family B, member 4 (ABCB4) [multidrug resistance 3 (MDR3)] gene encoding a specific hepatocellular canalicular transporter involved in biliary phosphatidylcholine secretion. Several mutations have been reported; however, the effect of individual mutations has not been investigated. ABCB4 is highly homologous to ATP-binding cassette, sub-family B, member 1 (ABCB1) (MDR1), the multidrug transporter responsible for drug resistance of cancer cells. We have studied the effect of mutation I541F localized to the first nucleotide-binding domain, which is highly conserved between ABCB4 and ABCB1. Plasmids encoding the wild-type human ABCB4 or rat ABCB1–green fluorescing protein (GFP) construct, and corresponding I541F-mutants, were expressed in hepatocellular carcinoma, human (HepG2) and Madin-Darby canine kidney (MDCK) cells. Expression studies showed that ABCB4 was localized at the bile canalicular membrane in HepG2 cells and at the apical surface in MDCK cells, whereas the I541F mutant was intracellular. In MDCK cells, ABCB1-I541F also accumulated intracellularly in compartments, which were identified as the endoplasmic reticulum and cis-Golgi, and remained partially endoH-sensitive. After shifting cells to 27°C, ABCB1-I541F was expressed at the apical cell surface in a mature and active form. Similarly, ABCB4 was significantly trafficked to the membrane of bile canaliculi in HepG2 cells. Conclusion: Mutation I541F causes mislocalization of both ABCB4 and ABCB1. Intracellular retention of ABCB4-I541F can explain the disease in PFIC3 patients bearing this mutation. The observation that plasma membrane expression and activity can be rescued by low temperature opens perspectives to develop novel therapies for the treatment of PFIC3. (HEPATOLOGY 2009.)

Tounsia Aitslimane - One of the best experts on this subject based on the ideXlab platform.

  • functional defect of variants in the adenosine triphosphate binding sites of ABCB4 and their rescue by the cystic fibrosis transmembrane conductance regulator potentiator ivacaftor vx 770
    Hepatology, 2017
    Co-Authors: Jeanlouis Delaunay, Alix Bruneau, Brice Hoffmann, Annemarie Durandschneider, V Barbu, Emmanuel Jacquemin, Michele Maurice, Chantal Housset, Isabelle Callebaut, Tounsia Aitslimane
    Abstract:

    ABCB4 (MDR3) is an ATP-binding cassette (ABC) transporter expressed at the canalicular membrane of hepatocytes where it mediates phosphatidylcholine (PC) secretion. Variations in the ABCB4 gene are responsible for several biliary diseases, including progressive familial intrahepatic cholestasis type 3 (PFIC3), a rare disease that can be lethal in the absence of liver transplantation. In this study, we investigated the effect and potential rescue of ABCB4 missense variations that reside in the highly conserved motifs of ABC transporters, involved in ATP binding. Five disease-causing variations in these motifs have been identified in ABCB4 (G535D, G536R, S1076C, S1176L and G1178S), three of which are homologous to the gating mutations of cystic fibrosis transmembrane conductance regulator (CFTR or ABCC7), (i.e. G551D, S1251N and G1349D), that were previously shown to be function-defective and corrected by ivacaftor (VX-770, Kalydeco®), a clinically approved CFTR potentiator. Three-dimension structural modeling predicted that all five ABCB4 variants would disrupt critical interactions in the binding of ATP and thereby impair ATP-induced nucleotide-binding domains (NBDs) dimerization and ABCB4 function. This prediction was confirmed by expression in cell models, which showed that the ABCB4 mutants were normally processed and targeted to the plasma membrane, whereas their PC secretion activity was dramatically decreased. As also hypothesized on the basis of molecular modeling, PC secretion activity of the mutants was rescued by the CFTR potentiator ivacaftor (VX-770). Conclusion: Disease-causing variations in the ATP-binding sites of ABCB4 cause defects in PC secretion, which can be rescued by ivacaftor. These results provide the first experimental evidence that ivacaftor is a potential therapy for selected patients who harbor mutations in the ATP-binding sites of ABCB4. This article is protected by copyright. All rights reserved.

  • a pdz like motif in the biliary transporter ABCB4 interacts with the scaffold protein ebp50 and regulates ABCB4 cell surface expression
    PLOS ONE, 2016
    Co-Authors: Quitterie Venot, Jeanlouis Delaunay, Michele Maurice, Daniele Delautier, C Housset, Thomas Falguieres, Laura Fouassier, Tounsia Aitslimane
    Abstract:

    ABCB4/MDR3, a member of the ABC superfamily, is an ATP-dependent phosphatidylcholine translocator expressed at the canalicular membrane of hepatocytes. Defects in the ABCB4 gene are associated with rare biliary diseases. It is essential to understand the mechanisms of its canalicular membrane expression in particular for the development of new therapies. The stability of several ABC transporters is regulated through their binding to PDZ (PSD95/DglA/ZO-1) domain-containing proteins. ABCB4 protein ends by the sequence glutamine-asparagine-leucine (QNL), which shows some similarity to PDZ-binding motifs. The aim of our study was to assess the potential role of the QNL motif on the surface expression of ABCB4 and to determine if PDZ domain-containing proteins are involved. We found that truncation of the QNL motif decreased the stability of ABCB4 in HepG2-transfected cells. The deleted mutant ABCB4-ΔQNL also displayed accelerated endocytosis. EBP50, a PDZ protein highly expressed in the liver, strongly colocalized and coimmunoprecipitated with ABCB4, and this interaction required the QNL motif. Down-regulation of EBP50 by siRNA or by expression of an EBP50 dominant-negative mutant caused a significant decrease in the level of ABCB4 protein expression, and in the amount of ABCB4 localized at the canalicular membrane. Interaction of ABCB4 with EBP50 through its PDZ-like motif plays a critical role in the regulation of ABCB4 expression and stability at the canalicular plasma membrane.

  • phosphorylation of ABCB4 impacts its function insights from disease causing mutations
    Hepatology, 2014
    Co-Authors: Jeanlouis Delaunay, Tounsia Aitslimane, Julien Gautherot, Daniele Delautier, Marieanne Maubert, Gerard Bolbach
    Abstract:

    The ABCB4 transporter mediates phosphatidylcholine (PC) secretion at the canalicular membrane of hepatocytes and its genetic defects cause biliary diseases. Whereas ABCB4 shares high sequence identity with the multidrug transporter, ABCB1, its N-terminal domain is poorly conserved, leading us to hypothesize a functional specificity of this domain. A database of ABCB4 genotyping in a large series of patients was screened for variations altering residues of the N-terminal domain. Identified variants were then expressed in cell models to investigate their biological consequences. Two missense variations, T34M and R47G, were identified in patients with low-phospholipid–associated cholelithiasis or intrahepatic cholestasis of pregnancy. The T34M and R47G mutated proteins showed no or minor defect, respectively, in maturation and targeting to the apical membrane, in polarized Madin-Darby Canine Kidney and HepG2 cells, whereas their stability was similar to that of wild-type (WT) ABCB4. By contrast, the PC secretion activity of both mutants was markedly decreased. In silico analysis indicated that the identified variants were likely to affect ABCB4 phosphorylation. Mass spectrometry analyses confirmed that the N-terminal domain of WT ABCB4 could undergo phosphorylation in vitro and revealed that the T34M and R47G mutations impaired such phosphorylation. ABCB4-mediated PC secretion was also increased by pharmacological activation of protein kinases A or C and decreased by inhibition of these kinases. Furthermore, secretion activity of the T34M and R47G mutants was less responsive than that of WT ABCB4 to protein kinase modulators. Conclusion: We identified disease-associated variants of ABCB4 involved in the phosphorylation of its N-terminal domain and leading to decreased PC secretion. Our results also indicate that ABCB4 activity is regulated by phosphorylation, in particular, of N-terminal residues. (Hepatology 2014;60:610–621)

  • effects of cellular chemical and pharmacological chaperones on the rescue of a trafficking defective mutant of the atp binding cassette transporter proteins abcb1 ABCB4
    Journal of Biological Chemistry, 2012
    Co-Authors: Julien Gautherot, Jeanlouis Delaunay, Annemarie Durandschneider, Michele Maurice, Daniele Delautier, Alegna Rada, Julie Gabillet, C Housset, Tounsia Aitslimane
    Abstract:

    The ATP-binding cassette transporter ABCB4 is a phosphatidylcholine translocator specifically expressed at the bile canalicular membrane in hepatocytes, highly homologous to the multidrug transporter ABCB1. Variations in the ABCB4 gene sequence cause progressive familial intrahepatic cholestasis type 3. We have shown previously that the I541F mutation, when reproduced either in ABCB1 or in ABCB4, led to retention in the endoplasmic reticulum (ER)/Golgi. Here, Madin-Darby canine kidney cells expressing ABCB1-GFP were used as a model to investigate this mutant. We show that ABCB1-I541F is not properly folded and is more susceptible to in situ protease degradation. It colocalizes and coprecipitates with the ER chaperone calnexin and coprecipitates with the cytosolic chaperone Hsc/Hsp70. Silencing of calnexin or overexpression of Hsp70 have no effect on maturation of the mutant. We also tested potential rescue by chemical and pharmacological chaperones. Thapsigargin and sodium 4-phenyl butyrate were inefficient. Glycerol improved maturation and exit of the mutant from the ER. Cyclosporin A, a competitive substrate for ABCB1, restored maturation, plasma membrane expression, and activity of ABCB1-I541F. Cyclosporin A also improved maturation of ABCB4-I541F in Madin-Darby canine kidney cells. In HepG2 cells transfected with ABCB4-I541F cDNA, cyclosporin A allowed a significant amount of the mutant protein to reach the membrane of bile canaliculi. These results show that the best strategy to rescue conformation-defective ABCB4 mutants is provided by pharmacological chaperones that specifically target the protein. They identify cyclosporin A as a potential novel therapeutic tool for progressive familial intrahepatic cholestasis type 3 patients.

Jeanlouis Delaunay - One of the best experts on this subject based on the ideXlab platform.

  • rab10 interacts with ABCB4 and regulates its intracellular traffic
    International Journal of Molecular Sciences, 2021
    Co-Authors: Alix Bruneau, Annemarie Durandschneider, Amel Ben Saad, Virginie Vauthier, Martine Lapalus, Elodie Mareux, Evangeline Bennana, Jeanlouis Delaunay
    Abstract:

    ABCB4 (ATP-binding cassette subfamily B member 4) is an ABC transporter expressed at the canalicular membrane of hepatocytes where it ensures phosphatidylcholine secretion into bile. Genetic variations of ABCB4 are associated with several rare cholestatic diseases. The available treatments are not efficient for a significant proportion of patients with ABCB4-related diseases and liver transplantation is often required. The development of novel therapies requires a deep understanding of the molecular mechanisms regulating ABCB4 expression, intracellular traffic, and function. Using an immunoprecipitation approach combined with mass spectrometry analyses, we have identified the small GTPase RAB10 as a novel molecular partner of ABCB4. Our results indicate that the overexpression of wild type RAB10 or its dominant-active mutant significantly increases the amount of ABCB4 at the plasma membrane expression and its phosphatidylcholine floppase function. Contrariwise, RAB10 silencing induces the intracellular retention of ABCB4 and then indirectly diminishes its secretory function. Taken together, our findings suggest that RAB10 regulates the plasma membrane targeting of ABCB4 and consequently its capacity to mediate phosphatidylcholine secretion.

  • functional defect of variants in the adenosine triphosphate binding sites of ABCB4 and their rescue by the cystic fibrosis transmembrane conductance regulator potentiator ivacaftor vx 770
    Hepatology, 2017
    Co-Authors: Jeanlouis Delaunay, Alix Bruneau, Brice Hoffmann, Annemarie Durandschneider, V Barbu, Emmanuel Jacquemin, Michele Maurice, Chantal Housset, Isabelle Callebaut, Tounsia Aitslimane
    Abstract:

    ABCB4 (MDR3) is an ATP-binding cassette (ABC) transporter expressed at the canalicular membrane of hepatocytes where it mediates phosphatidylcholine (PC) secretion. Variations in the ABCB4 gene are responsible for several biliary diseases, including progressive familial intrahepatic cholestasis type 3 (PFIC3), a rare disease that can be lethal in the absence of liver transplantation. In this study, we investigated the effect and potential rescue of ABCB4 missense variations that reside in the highly conserved motifs of ABC transporters, involved in ATP binding. Five disease-causing variations in these motifs have been identified in ABCB4 (G535D, G536R, S1076C, S1176L and G1178S), three of which are homologous to the gating mutations of cystic fibrosis transmembrane conductance regulator (CFTR or ABCC7), (i.e. G551D, S1251N and G1349D), that were previously shown to be function-defective and corrected by ivacaftor (VX-770, Kalydeco®), a clinically approved CFTR potentiator. Three-dimension structural modeling predicted that all five ABCB4 variants would disrupt critical interactions in the binding of ATP and thereby impair ATP-induced nucleotide-binding domains (NBDs) dimerization and ABCB4 function. This prediction was confirmed by expression in cell models, which showed that the ABCB4 mutants were normally processed and targeted to the plasma membrane, whereas their PC secretion activity was dramatically decreased. As also hypothesized on the basis of molecular modeling, PC secretion activity of the mutants was rescued by the CFTR potentiator ivacaftor (VX-770). Conclusion: Disease-causing variations in the ATP-binding sites of ABCB4 cause defects in PC secretion, which can be rescued by ivacaftor. These results provide the first experimental evidence that ivacaftor is a potential therapy for selected patients who harbor mutations in the ATP-binding sites of ABCB4. This article is protected by copyright. All rights reserved.

  • a pdz like motif in the biliary transporter ABCB4 interacts with the scaffold protein ebp50 and regulates ABCB4 cell surface expression
    PLOS ONE, 2016
    Co-Authors: Quitterie Venot, Jeanlouis Delaunay, Michele Maurice, Daniele Delautier, C Housset, Thomas Falguieres, Laura Fouassier, Tounsia Aitslimane
    Abstract:

    ABCB4/MDR3, a member of the ABC superfamily, is an ATP-dependent phosphatidylcholine translocator expressed at the canalicular membrane of hepatocytes. Defects in the ABCB4 gene are associated with rare biliary diseases. It is essential to understand the mechanisms of its canalicular membrane expression in particular for the development of new therapies. The stability of several ABC transporters is regulated through their binding to PDZ (PSD95/DglA/ZO-1) domain-containing proteins. ABCB4 protein ends by the sequence glutamine-asparagine-leucine (QNL), which shows some similarity to PDZ-binding motifs. The aim of our study was to assess the potential role of the QNL motif on the surface expression of ABCB4 and to determine if PDZ domain-containing proteins are involved. We found that truncation of the QNL motif decreased the stability of ABCB4 in HepG2-transfected cells. The deleted mutant ABCB4-ΔQNL also displayed accelerated endocytosis. EBP50, a PDZ protein highly expressed in the liver, strongly colocalized and coimmunoprecipitated with ABCB4, and this interaction required the QNL motif. Down-regulation of EBP50 by siRNA or by expression of an EBP50 dominant-negative mutant caused a significant decrease in the level of ABCB4 protein expression, and in the amount of ABCB4 localized at the canalicular membrane. Interaction of ABCB4 with EBP50 through its PDZ-like motif plays a critical role in the regulation of ABCB4 expression and stability at the canalicular plasma membrane.

  • phosphorylation of ABCB4 impacts its function insights from disease causing mutations
    Hepatology, 2014
    Co-Authors: Jeanlouis Delaunay, Tounsia Aitslimane, Julien Gautherot, Daniele Delautier, Marieanne Maubert, Gerard Bolbach
    Abstract:

    The ABCB4 transporter mediates phosphatidylcholine (PC) secretion at the canalicular membrane of hepatocytes and its genetic defects cause biliary diseases. Whereas ABCB4 shares high sequence identity with the multidrug transporter, ABCB1, its N-terminal domain is poorly conserved, leading us to hypothesize a functional specificity of this domain. A database of ABCB4 genotyping in a large series of patients was screened for variations altering residues of the N-terminal domain. Identified variants were then expressed in cell models to investigate their biological consequences. Two missense variations, T34M and R47G, were identified in patients with low-phospholipid–associated cholelithiasis or intrahepatic cholestasis of pregnancy. The T34M and R47G mutated proteins showed no or minor defect, respectively, in maturation and targeting to the apical membrane, in polarized Madin-Darby Canine Kidney and HepG2 cells, whereas their stability was similar to that of wild-type (WT) ABCB4. By contrast, the PC secretion activity of both mutants was markedly decreased. In silico analysis indicated that the identified variants were likely to affect ABCB4 phosphorylation. Mass spectrometry analyses confirmed that the N-terminal domain of WT ABCB4 could undergo phosphorylation in vitro and revealed that the T34M and R47G mutations impaired such phosphorylation. ABCB4-mediated PC secretion was also increased by pharmacological activation of protein kinases A or C and decreased by inhibition of these kinases. Furthermore, secretion activity of the T34M and R47G mutants was less responsive than that of WT ABCB4 to protein kinase modulators. Conclusion: We identified disease-associated variants of ABCB4 involved in the phosphorylation of its N-terminal domain and leading to decreased PC secretion. Our results also indicate that ABCB4 activity is regulated by phosphorylation, in particular, of N-terminal residues. (Hepatology 2014;60:610–621)

  • effects of cellular chemical and pharmacological chaperones on the rescue of a trafficking defective mutant of the atp binding cassette transporter proteins abcb1 ABCB4
    Journal of Biological Chemistry, 2012
    Co-Authors: Julien Gautherot, Jeanlouis Delaunay, Annemarie Durandschneider, Michele Maurice, Daniele Delautier, Alegna Rada, Julie Gabillet, C Housset, Tounsia Aitslimane
    Abstract:

    The ATP-binding cassette transporter ABCB4 is a phosphatidylcholine translocator specifically expressed at the bile canalicular membrane in hepatocytes, highly homologous to the multidrug transporter ABCB1. Variations in the ABCB4 gene sequence cause progressive familial intrahepatic cholestasis type 3. We have shown previously that the I541F mutation, when reproduced either in ABCB1 or in ABCB4, led to retention in the endoplasmic reticulum (ER)/Golgi. Here, Madin-Darby canine kidney cells expressing ABCB1-GFP were used as a model to investigate this mutant. We show that ABCB1-I541F is not properly folded and is more susceptible to in situ protease degradation. It colocalizes and coprecipitates with the ER chaperone calnexin and coprecipitates with the cytosolic chaperone Hsc/Hsp70. Silencing of calnexin or overexpression of Hsp70 have no effect on maturation of the mutant. We also tested potential rescue by chemical and pharmacological chaperones. Thapsigargin and sodium 4-phenyl butyrate were inefficient. Glycerol improved maturation and exit of the mutant from the ER. Cyclosporin A, a competitive substrate for ABCB1, restored maturation, plasma membrane expression, and activity of ABCB1-I541F. Cyclosporin A also improved maturation of ABCB4-I541F in Madin-Darby canine kidney cells. In HepG2 cells transfected with ABCB4-I541F cDNA, cyclosporin A allowed a significant amount of the mutant protein to reach the membrane of bile canaliculi. These results show that the best strategy to rescue conformation-defective ABCB4 mutants is provided by pharmacological chaperones that specifically target the protein. They identify cyclosporin A as a potential novel therapeutic tool for progressive familial intrahepatic cholestasis type 3 patients.

Annemarie Durandschneider - One of the best experts on this subject based on the ideXlab platform.

  • rab10 interacts with ABCB4 and regulates its intracellular traffic
    International Journal of Molecular Sciences, 2021
    Co-Authors: Alix Bruneau, Annemarie Durandschneider, Amel Ben Saad, Virginie Vauthier, Martine Lapalus, Elodie Mareux, Evangeline Bennana, Jeanlouis Delaunay
    Abstract:

    ABCB4 (ATP-binding cassette subfamily B member 4) is an ABC transporter expressed at the canalicular membrane of hepatocytes where it ensures phosphatidylcholine secretion into bile. Genetic variations of ABCB4 are associated with several rare cholestatic diseases. The available treatments are not efficient for a significant proportion of patients with ABCB4-related diseases and liver transplantation is often required. The development of novel therapies requires a deep understanding of the molecular mechanisms regulating ABCB4 expression, intracellular traffic, and function. Using an immunoprecipitation approach combined with mass spectrometry analyses, we have identified the small GTPase RAB10 as a novel molecular partner of ABCB4. Our results indicate that the overexpression of wild type RAB10 or its dominant-active mutant significantly increases the amount of ABCB4 at the plasma membrane expression and its phosphatidylcholine floppase function. Contrariwise, RAB10 silencing induces the intracellular retention of ABCB4 and then indirectly diminishes its secretory function. Taken together, our findings suggest that RAB10 regulates the plasma membrane targeting of ABCB4 and consequently its capacity to mediate phosphatidylcholine secretion.

  • functional defect of variants in the adenosine triphosphate binding sites of ABCB4 and their rescue by the cystic fibrosis transmembrane conductance regulator potentiator ivacaftor vx 770
    Hepatology, 2017
    Co-Authors: Jeanlouis Delaunay, Alix Bruneau, Brice Hoffmann, Annemarie Durandschneider, V Barbu, Emmanuel Jacquemin, Michele Maurice, Chantal Housset, Isabelle Callebaut, Tounsia Aitslimane
    Abstract:

    ABCB4 (MDR3) is an ATP-binding cassette (ABC) transporter expressed at the canalicular membrane of hepatocytes where it mediates phosphatidylcholine (PC) secretion. Variations in the ABCB4 gene are responsible for several biliary diseases, including progressive familial intrahepatic cholestasis type 3 (PFIC3), a rare disease that can be lethal in the absence of liver transplantation. In this study, we investigated the effect and potential rescue of ABCB4 missense variations that reside in the highly conserved motifs of ABC transporters, involved in ATP binding. Five disease-causing variations in these motifs have been identified in ABCB4 (G535D, G536R, S1076C, S1176L and G1178S), three of which are homologous to the gating mutations of cystic fibrosis transmembrane conductance regulator (CFTR or ABCC7), (i.e. G551D, S1251N and G1349D), that were previously shown to be function-defective and corrected by ivacaftor (VX-770, Kalydeco®), a clinically approved CFTR potentiator. Three-dimension structural modeling predicted that all five ABCB4 variants would disrupt critical interactions in the binding of ATP and thereby impair ATP-induced nucleotide-binding domains (NBDs) dimerization and ABCB4 function. This prediction was confirmed by expression in cell models, which showed that the ABCB4 mutants were normally processed and targeted to the plasma membrane, whereas their PC secretion activity was dramatically decreased. As also hypothesized on the basis of molecular modeling, PC secretion activity of the mutants was rescued by the CFTR potentiator ivacaftor (VX-770). Conclusion: Disease-causing variations in the ATP-binding sites of ABCB4 cause defects in PC secretion, which can be rescued by ivacaftor. These results provide the first experimental evidence that ivacaftor is a potential therapy for selected patients who harbor mutations in the ATP-binding sites of ABCB4. This article is protected by copyright. All rights reserved.

  • effects of cellular chemical and pharmacological chaperones on the rescue of a trafficking defective mutant of the atp binding cassette transporter proteins abcb1 ABCB4
    Journal of Biological Chemistry, 2012
    Co-Authors: Julien Gautherot, Jeanlouis Delaunay, Annemarie Durandschneider, Michele Maurice, Daniele Delautier, Alegna Rada, Julie Gabillet, C Housset, Tounsia Aitslimane
    Abstract:

    The ATP-binding cassette transporter ABCB4 is a phosphatidylcholine translocator specifically expressed at the bile canalicular membrane in hepatocytes, highly homologous to the multidrug transporter ABCB1. Variations in the ABCB4 gene sequence cause progressive familial intrahepatic cholestasis type 3. We have shown previously that the I541F mutation, when reproduced either in ABCB1 or in ABCB4, led to retention in the endoplasmic reticulum (ER)/Golgi. Here, Madin-Darby canine kidney cells expressing ABCB1-GFP were used as a model to investigate this mutant. We show that ABCB1-I541F is not properly folded and is more susceptible to in situ protease degradation. It colocalizes and coprecipitates with the ER chaperone calnexin and coprecipitates with the cytosolic chaperone Hsc/Hsp70. Silencing of calnexin or overexpression of Hsp70 have no effect on maturation of the mutant. We also tested potential rescue by chemical and pharmacological chaperones. Thapsigargin and sodium 4-phenyl butyrate were inefficient. Glycerol improved maturation and exit of the mutant from the ER. Cyclosporin A, a competitive substrate for ABCB1, restored maturation, plasma membrane expression, and activity of ABCB1-I541F. Cyclosporin A also improved maturation of ABCB4-I541F in Madin-Darby canine kidney cells. In HepG2 cells transfected with ABCB4-I541F cDNA, cyclosporin A allowed a significant amount of the mutant protein to reach the membrane of bile canaliculi. These results show that the best strategy to rescue conformation-defective ABCB4 mutants is provided by pharmacological chaperones that specifically target the protein. They identify cyclosporin A as a potential novel therapeutic tool for progressive familial intrahepatic cholestasis type 3 patients.

  • a missense mutation in ABCB4 gene involved in progressive familial intrahepatic cholestasis type 3 leads to a folding defect that can be rescued by low temperature
    Hepatology, 2009
    Co-Authors: J Delaunay, Annemarie Durandschneider, Julien Gautherot, Daniele Delautier, Alegna Rada
    Abstract:

    Progressive familial intrahepatic cholestasis type 3 (PFIC3) is a rare liver disease characterized by early onset of cholestasis that leads to cirrhosis and liver failure before adulthood. PFIC3 may be improved by chronic administration of ursodeoxycholic acid, although in many cases liver transplantation is the only therapy. The disease is caused by mutations of the adenosine triphosphate (ATP)–binding cassette, sub-family B, member 4 (ABCB4) [multidrug resistance 3 (MDR3)] gene encoding a specific hepatocellular canalicular transporter involved in biliary phosphatidylcholine secretion. Several mutations have been reported; however, the effect of individual mutations has not been investigated. ABCB4 is highly homologous to ATP-binding cassette, sub-family B, member 1 (ABCB1) (MDR1), the multidrug transporter responsible for drug resistance of cancer cells. We have studied the effect of mutation I541F localized to the first nucleotide-binding domain, which is highly conserved between ABCB4 and ABCB1. Plasmids encoding the wild-type human ABCB4 or rat ABCB1–green fluorescing protein (GFP) construct, and corresponding I541F-mutants, were expressed in hepatocellular carcinoma, human (HepG2) and Madin-Darby canine kidney (MDCK) cells. Expression studies showed that ABCB4 was localized at the bile canalicular membrane in HepG2 cells and at the apical surface in MDCK cells, whereas the I541F mutant was intracellular. In MDCK cells, ABCB1-I541F also accumulated intracellularly in compartments, which were identified as the endoplasmic reticulum and cis-Golgi, and remained partially endoH-sensitive. After shifting cells to 27°C, ABCB1-I541F was expressed at the apical cell surface in a mature and active form. Similarly, ABCB4 was significantly trafficked to the membrane of bile canaliculi in HepG2 cells. Conclusion: Mutation I541F causes mislocalization of both ABCB4 and ABCB1. Intracellular retention of ABCB4-I541F can explain the disease in PFIC3 patients bearing this mutation. The observation that plasma membrane expression and activity can be rescued by low temperature opens perspectives to develop novel therapies for the treatment of PFIC3. (HEPATOLOGY 2009.)

Daniele Delautier - One of the best experts on this subject based on the ideXlab platform.

  • a pdz like motif in the biliary transporter ABCB4 interacts with the scaffold protein ebp50 and regulates ABCB4 cell surface expression
    PLOS ONE, 2016
    Co-Authors: Quitterie Venot, Jeanlouis Delaunay, Michele Maurice, Daniele Delautier, C Housset, Thomas Falguieres, Laura Fouassier, Tounsia Aitslimane
    Abstract:

    ABCB4/MDR3, a member of the ABC superfamily, is an ATP-dependent phosphatidylcholine translocator expressed at the canalicular membrane of hepatocytes. Defects in the ABCB4 gene are associated with rare biliary diseases. It is essential to understand the mechanisms of its canalicular membrane expression in particular for the development of new therapies. The stability of several ABC transporters is regulated through their binding to PDZ (PSD95/DglA/ZO-1) domain-containing proteins. ABCB4 protein ends by the sequence glutamine-asparagine-leucine (QNL), which shows some similarity to PDZ-binding motifs. The aim of our study was to assess the potential role of the QNL motif on the surface expression of ABCB4 and to determine if PDZ domain-containing proteins are involved. We found that truncation of the QNL motif decreased the stability of ABCB4 in HepG2-transfected cells. The deleted mutant ABCB4-ΔQNL also displayed accelerated endocytosis. EBP50, a PDZ protein highly expressed in the liver, strongly colocalized and coimmunoprecipitated with ABCB4, and this interaction required the QNL motif. Down-regulation of EBP50 by siRNA or by expression of an EBP50 dominant-negative mutant caused a significant decrease in the level of ABCB4 protein expression, and in the amount of ABCB4 localized at the canalicular membrane. Interaction of ABCB4 with EBP50 through its PDZ-like motif plays a critical role in the regulation of ABCB4 expression and stability at the canalicular plasma membrane.

  • phosphorylation of ABCB4 impacts its function insights from disease causing mutations
    Hepatology, 2014
    Co-Authors: Jeanlouis Delaunay, Tounsia Aitslimane, Julien Gautherot, Daniele Delautier, Marieanne Maubert, Gerard Bolbach
    Abstract:

    The ABCB4 transporter mediates phosphatidylcholine (PC) secretion at the canalicular membrane of hepatocytes and its genetic defects cause biliary diseases. Whereas ABCB4 shares high sequence identity with the multidrug transporter, ABCB1, its N-terminal domain is poorly conserved, leading us to hypothesize a functional specificity of this domain. A database of ABCB4 genotyping in a large series of patients was screened for variations altering residues of the N-terminal domain. Identified variants were then expressed in cell models to investigate their biological consequences. Two missense variations, T34M and R47G, were identified in patients with low-phospholipid–associated cholelithiasis or intrahepatic cholestasis of pregnancy. The T34M and R47G mutated proteins showed no or minor defect, respectively, in maturation and targeting to the apical membrane, in polarized Madin-Darby Canine Kidney and HepG2 cells, whereas their stability was similar to that of wild-type (WT) ABCB4. By contrast, the PC secretion activity of both mutants was markedly decreased. In silico analysis indicated that the identified variants were likely to affect ABCB4 phosphorylation. Mass spectrometry analyses confirmed that the N-terminal domain of WT ABCB4 could undergo phosphorylation in vitro and revealed that the T34M and R47G mutations impaired such phosphorylation. ABCB4-mediated PC secretion was also increased by pharmacological activation of protein kinases A or C and decreased by inhibition of these kinases. Furthermore, secretion activity of the T34M and R47G mutants was less responsive than that of WT ABCB4 to protein kinase modulators. Conclusion: We identified disease-associated variants of ABCB4 involved in the phosphorylation of its N-terminal domain and leading to decreased PC secretion. Our results also indicate that ABCB4 activity is regulated by phosphorylation, in particular, of N-terminal residues. (Hepatology 2014;60:610–621)

  • effects of cellular chemical and pharmacological chaperones on the rescue of a trafficking defective mutant of the atp binding cassette transporter proteins abcb1 ABCB4
    Journal of Biological Chemistry, 2012
    Co-Authors: Julien Gautherot, Jeanlouis Delaunay, Annemarie Durandschneider, Michele Maurice, Daniele Delautier, Alegna Rada, Julie Gabillet, C Housset, Tounsia Aitslimane
    Abstract:

    The ATP-binding cassette transporter ABCB4 is a phosphatidylcholine translocator specifically expressed at the bile canalicular membrane in hepatocytes, highly homologous to the multidrug transporter ABCB1. Variations in the ABCB4 gene sequence cause progressive familial intrahepatic cholestasis type 3. We have shown previously that the I541F mutation, when reproduced either in ABCB1 or in ABCB4, led to retention in the endoplasmic reticulum (ER)/Golgi. Here, Madin-Darby canine kidney cells expressing ABCB1-GFP were used as a model to investigate this mutant. We show that ABCB1-I541F is not properly folded and is more susceptible to in situ protease degradation. It colocalizes and coprecipitates with the ER chaperone calnexin and coprecipitates with the cytosolic chaperone Hsc/Hsp70. Silencing of calnexin or overexpression of Hsp70 have no effect on maturation of the mutant. We also tested potential rescue by chemical and pharmacological chaperones. Thapsigargin and sodium 4-phenyl butyrate were inefficient. Glycerol improved maturation and exit of the mutant from the ER. Cyclosporin A, a competitive substrate for ABCB1, restored maturation, plasma membrane expression, and activity of ABCB1-I541F. Cyclosporin A also improved maturation of ABCB4-I541F in Madin-Darby canine kidney cells. In HepG2 cells transfected with ABCB4-I541F cDNA, cyclosporin A allowed a significant amount of the mutant protein to reach the membrane of bile canaliculi. These results show that the best strategy to rescue conformation-defective ABCB4 mutants is provided by pharmacological chaperones that specifically target the protein. They identify cyclosporin A as a potential novel therapeutic tool for progressive familial intrahepatic cholestasis type 3 patients.

  • a missense mutation in ABCB4 gene involved in progressive familial intrahepatic cholestasis type 3 leads to a folding defect that can be rescued by low temperature
    Hepatology, 2009
    Co-Authors: J Delaunay, Annemarie Durandschneider, Julien Gautherot, Daniele Delautier, Alegna Rada
    Abstract:

    Progressive familial intrahepatic cholestasis type 3 (PFIC3) is a rare liver disease characterized by early onset of cholestasis that leads to cirrhosis and liver failure before adulthood. PFIC3 may be improved by chronic administration of ursodeoxycholic acid, although in many cases liver transplantation is the only therapy. The disease is caused by mutations of the adenosine triphosphate (ATP)–binding cassette, sub-family B, member 4 (ABCB4) [multidrug resistance 3 (MDR3)] gene encoding a specific hepatocellular canalicular transporter involved in biliary phosphatidylcholine secretion. Several mutations have been reported; however, the effect of individual mutations has not been investigated. ABCB4 is highly homologous to ATP-binding cassette, sub-family B, member 1 (ABCB1) (MDR1), the multidrug transporter responsible for drug resistance of cancer cells. We have studied the effect of mutation I541F localized to the first nucleotide-binding domain, which is highly conserved between ABCB4 and ABCB1. Plasmids encoding the wild-type human ABCB4 or rat ABCB1–green fluorescing protein (GFP) construct, and corresponding I541F-mutants, were expressed in hepatocellular carcinoma, human (HepG2) and Madin-Darby canine kidney (MDCK) cells. Expression studies showed that ABCB4 was localized at the bile canalicular membrane in HepG2 cells and at the apical surface in MDCK cells, whereas the I541F mutant was intracellular. In MDCK cells, ABCB1-I541F also accumulated intracellularly in compartments, which were identified as the endoplasmic reticulum and cis-Golgi, and remained partially endoH-sensitive. After shifting cells to 27°C, ABCB1-I541F was expressed at the apical cell surface in a mature and active form. Similarly, ABCB4 was significantly trafficked to the membrane of bile canaliculi in HepG2 cells. Conclusion: Mutation I541F causes mislocalization of both ABCB4 and ABCB1. Intracellular retention of ABCB4-I541F can explain the disease in PFIC3 patients bearing this mutation. The observation that plasma membrane expression and activity can be rescued by low temperature opens perspectives to develop novel therapies for the treatment of PFIC3. (HEPATOLOGY 2009.)