Activin Receptor 2 - Explore the Science & Experts | ideXlab

Scan Science and Technology

Contact Leading Edge Experts & Companies

Activin Receptor 2

The Experts below are selected from a list of 5847 Experts worldwide ranked by ideXlab platform

Activin Receptor 2 – Free Register to Access Experts & Abstracts

John M Carethers – One of the best experts on this subject based on the ideXlab platform.

  • Flanking nucleotide specificity for DNA mismatch repair-deficient frameshifts within Activin Receptor 2 (ACVR2).
    Mutation research, 2011
    Co-Authors: Heekyung Chung, Joy Chaudhry, Jenny F Lai, Dennis J Young, John M Carethers

    Abstract:

    We previously demonstrated that exonic selectivity for frameshift mutation (exon 10 over exon 3) of ACVR2 in mismatch repair (MMR)-deficient cells is partially determined by 6 nucleotides flanking 5′ and 3′ of each microsatellite. Substitution of flanking nucleotides surrounding the exon 10 microsatellite with those surrounding the exon 3 microsatellite greatly diminished heteroduplex (A(7)/T(8)) and full (A(7)/T(7)) mutation, while substitution of flanking nucleotides from exon 3 with those from exon 10 enhanced frameshift mutation. We hypothesized that specific individual nucleotide(s) within these flanking sequences control ACVR2 frameshift mutation rates. Only the 3rd nucleotide 5′ of the microsatellite, and 3rd, 4th, and 5th nucleotides 3′ of the microsatellite were altered from the native flanking sequences and these locations were individually altered (sites A, B, C, and D, respectively). Constructs were cloned +1bp out-of-frame of EGFP, allowing a -1bp frameshift to express EGFP. Plasmids were stably transfected into MMR-deficient cells. Non-fluorescent cells were sorted, cultured for 35 days, and harvested for flow cytometry and DNA-sequencing. Site A (C to T) and B (G to C) in ACVR2 exon 10 decreased both heteroduplex and full mutant as much as the construct containing all 4 alterations. For ACVR2 exon 3, site A (T to C), C (A to G), and D (G to C) are responsible for increased heteroduplex formation, whereas site D is responsible for full mutant formation by ACVR2 exon 10 flanking sequences. Exonic selectivity for frameshift mutation within ACVR2‘s sequence context is specifically controlled by individual nucleotides flanking each microsatellite.

  • 224 Specific Nucleotides That Flank Coding Microsatellites of Activin Receptor 2 (ACVR2) Determine Exonic Selectivity and Control Frameshift Mutation Rates in Defective DNA Mismatch Repair (MMR)
    Gastroenterology, 2010
    Co-Authors: Heekyung Chung, Jenny F Lai, Dennis J Young, Joy Holmstrom, John M Carethers

    Abstract:

    Carcinoembryonic antigen (CEA) is a tumor marker for the clinical management of colorectal cancer (CRC). The elevated blood levels of CEA are associated with metastasis and poor prognosis in CRC. There is mounting evidence that CEA enhances the metastatic potential of cancer cells. CEA increases the ability of weakly metastatic CRC to colonize the liver and to develop spontaneous hematogeneous liver and lung metastases. CEA expression has also been related with resistance to cytotoxic chemotherapy and to anoikis, a form of apoptosis caused by detachment from cell matrix. Yet the mechanism of CEA mediated metastasis is only partially understood. The TGF-β (transforming growth factor beta) signaling pathway contributes to tumorigenesis by controlling several biological processes, including cell proliferation, differentiation, migration and apoptosis. It has been reported that TGF-β regulates CEA transcription and secretion, however, little is known about the effects of CEA on TGFβ signaling. Aims: Based on the above facts, we focused on the influence of CEA on the TGF-β signaling in both normal cells and colorectal cancer cells. Results: Our preliminary data showed that CEA directly interacted with TGF-β Receptors. Overexpression of CEA blocked TGF-β induced SMAD3 phosphorylation, SMAD3 translocation to nuclear and the downregulation of c-myc transcription. Targeting CEA with anti-CEA antibody rescued TGFβ response in CRC cell lines with elevated CEA expression, thereby restoring the inhibitory effects of TGF-β on the proliferation of these cancer cells. Finally, in animal experiment, we found that CEA enhanced survival of colorectal cancer cell in both local colonization and liver metastasis. Conclusion: Since CEA is a well-characterized tumor-associated antigen that is frequently overexpressed in tumors, specific antibodies targeting CEA have been developed as a novel therapeutic approach for treatment of tumors expressing CEA on their surface. Based on our study, it may be helpful to combine CEA antibody and TGF-β to inhibit cancer cell proliferation and metastasis in some cases.

  • 841 Mechanism for Selectivity of Specific Exonic Activin Receptor 2 (ACVR2) Frameshift Mutation in Colorectal Cells with Defective DNA Mismatch Repair (MMR)
    Gastroenterology, 2009
    Co-Authors: Heekyung Chung, Dennis J Young, Claudia Lopez, Betty L. Cabrera, Deena Ream-robinson, John M Carethers

    Abstract:

    Preoperative Biliary Drainage Versus Direct Operation for Pancreatic Tumors Causing Obstructive Jaundice Niels Anthony Van Der Gaag, Erik Rauws, Casper H. van Eijck, Marco Bruno, Erwin van der Harst, Josephus J. Gerritsen, J. W. M. Greve, Michael F. Gerhards, Ignace H. de Hingh, Jean H. Klinkenbijl, Chung Y. Nio, Steve M. de Castro, Olivier R. Busch, Thomas M. Van Gulik, Patrick M. Bossuyt, Dirk J. Gouma

Heekyung Chung – One of the best experts on this subject based on the ideXlab platform.

  • Flanking nucleotide specificity for DNA mismatch repair-deficient frameshifts within Activin Receptor 2 (ACVR2).
    Mutation research, 2011
    Co-Authors: Heekyung Chung, Joy Chaudhry, Jenny F Lai, Dennis J Young, John M Carethers

    Abstract:

    We previously demonstrated that exonic selectivity for frameshift mutation (exon 10 over exon 3) of ACVR2 in mismatch repair (MMR)-deficient cells is partially determined by 6 nucleotides flanking 5′ and 3′ of each microsatellite. Substitution of flanking nucleotides surrounding the exon 10 microsatellite with those surrounding the exon 3 microsatellite greatly diminished heteroduplex (A(7)/T(8)) and full (A(7)/T(7)) mutation, while substitution of flanking nucleotides from exon 3 with those from exon 10 enhanced frameshift mutation. We hypothesized that specific individual nucleotide(s) within these flanking sequences control ACVR2 frameshift mutation rates. Only the 3rd nucleotide 5′ of the microsatellite, and 3rd, 4th, and 5th nucleotides 3′ of the microsatellite were altered from the native flanking sequences and these locations were individually altered (sites A, B, C, and D, respectively). Constructs were cloned +1bp out-of-frame of EGFP, allowing a -1bp frameshift to express EGFP. Plasmids were stably transfected into MMR-deficient cells. Non-fluorescent cells were sorted, cultured for 35 days, and harvested for flow cytometry and DNA-sequencing. Site A (C to T) and B (G to C) in ACVR2 exon 10 decreased both heteroduplex and full mutant as much as the construct containing all 4 alterations. For ACVR2 exon 3, site A (T to C), C (A to G), and D (G to C) are responsible for increased heteroduplex formation, whereas site D is responsible for full mutant formation by ACVR2 exon 10 flanking sequences. Exonic selectivity for frameshift mutation within ACVR2‘s sequence context is specifically controlled by individual nucleotides flanking each microsatellite.

  • 224 Specific Nucleotides That Flank Coding Microsatellites of Activin Receptor 2 (ACVR2) Determine Exonic Selectivity and Control Frameshift Mutation Rates in Defective DNA Mismatch Repair (MMR)
    Gastroenterology, 2010
    Co-Authors: Heekyung Chung, Jenny F Lai, Dennis J Young, Joy Holmstrom, John M Carethers

    Abstract:

    Carcinoembryonic antigen (CEA) is a tumor marker for the clinical management of colorectal cancer (CRC). The elevated blood levels of CEA are associated with metastasis and poor prognosis in CRC. There is mounting evidence that CEA enhances the metastatic potential of cancer cells. CEA increases the ability of weakly metastatic CRC to colonize the liver and to develop spontaneous hematogeneous liver and lung metastases. CEA expression has also been related with resistance to cytotoxic chemotherapy and to anoikis, a form of apoptosis caused by detachment from cell matrix. Yet the mechanism of CEA mediated metastasis is only partially understood. The TGF-β (transforming growth factor beta) signaling pathway contributes to tumorigenesis by controlling several biological processes, including cell proliferation, differentiation, migration and apoptosis. It has been reported that TGF-β regulates CEA transcription and secretion, however, little is known about the effects of CEA on TGFβ signaling. Aims: Based on the above facts, we focused on the influence of CEA on the TGF-β signaling in both normal cells and colorectal cancer cells. Results: Our preliminary data showed that CEA directly interacted with TGF-β Receptors. Overexpression of CEA blocked TGF-β induced SMAD3 phosphorylation, SMAD3 translocation to nuclear and the downregulation of c-myc transcription. Targeting CEA with anti-CEA antibody rescued TGFβ response in CRC cell lines with elevated CEA expression, thereby restoring the inhibitory effects of TGF-β on the proliferation of these cancer cells. Finally, in animal experiment, we found that CEA enhanced survival of colorectal cancer cell in both local colonization and liver metastasis. Conclusion: Since CEA is a well-characterized tumor-associated antigen that is frequently overexpressed in tumors, specific antibodies targeting CEA have been developed as a novel therapeutic approach for treatment of tumors expressing CEA on their surface. Based on our study, it may be helpful to combine CEA antibody and TGF-β to inhibit cancer cell proliferation and metastasis in some cases.

  • 841 Mechanism for Selectivity of Specific Exonic Activin Receptor 2 (ACVR2) Frameshift Mutation in Colorectal Cells with Defective DNA Mismatch Repair (MMR)
    Gastroenterology, 2009
    Co-Authors: Heekyung Chung, Dennis J Young, Claudia Lopez, Betty L. Cabrera, Deena Ream-robinson, John M Carethers

    Abstract:

    Preoperative Biliary Drainage Versus Direct Operation for Pancreatic Tumors Causing Obstructive Jaundice Niels Anthony Van Der Gaag, Erik Rauws, Casper H. van Eijck, Marco Bruno, Erwin van der Harst, Josephus J. Gerritsen, J. W. M. Greve, Michael F. Gerhards, Ignace H. de Hingh, Jean H. Klinkenbijl, Chung Y. Nio, Steve M. de Castro, Olivier R. Busch, Thomas M. Van Gulik, Patrick M. Bossuyt, Dirk J. Gouma

Dennis J Young – One of the best experts on this subject based on the ideXlab platform.

  • Flanking nucleotide specificity for DNA mismatch repair-deficient frameshifts within Activin Receptor 2 (ACVR2).
    Mutation research, 2011
    Co-Authors: Heekyung Chung, Joy Chaudhry, Jenny F Lai, Dennis J Young, John M Carethers

    Abstract:

    We previously demonstrated that exonic selectivity for frameshift mutation (exon 10 over exon 3) of ACVR2 in mismatch repair (MMR)-deficient cells is partially determined by 6 nucleotides flanking 5′ and 3′ of each microsatellite. Substitution of flanking nucleotides surrounding the exon 10 microsatellite with those surrounding the exon 3 microsatellite greatly diminished heteroduplex (A(7)/T(8)) and full (A(7)/T(7)) mutation, while substitution of flanking nucleotides from exon 3 with those from exon 10 enhanced frameshift mutation. We hypothesized that specific individual nucleotide(s) within these flanking sequences control ACVR2 frameshift mutation rates. Only the 3rd nucleotide 5′ of the microsatellite, and 3rd, 4th, and 5th nucleotides 3′ of the microsatellite were altered from the native flanking sequences and these locations were individually altered (sites A, B, C, and D, respectively). Constructs were cloned +1bp out-of-frame of EGFP, allowing a -1bp frameshift to express EGFP. Plasmids were stably transfected into MMR-deficient cells. Non-fluorescent cells were sorted, cultured for 35 days, and harvested for flow cytometry and DNA-sequencing. Site A (C to T) and B (G to C) in ACVR2 exon 10 decreased both heteroduplex and full mutant as much as the construct containing all 4 alterations. For ACVR2 exon 3, site A (T to C), C (A to G), and D (G to C) are responsible for increased heteroduplex formation, whereas site D is responsible for full mutant formation by ACVR2 exon 10 flanking sequences. Exonic selectivity for frameshift mutation within ACVR2‘s sequence context is specifically controlled by individual nucleotides flanking each microsatellite.

  • 224 Specific Nucleotides That Flank Coding Microsatellites of Activin Receptor 2 (ACVR2) Determine Exonic Selectivity and Control Frameshift Mutation Rates in Defective DNA Mismatch Repair (MMR)
    Gastroenterology, 2010
    Co-Authors: Heekyung Chung, Jenny F Lai, Dennis J Young, Joy Holmstrom, John M Carethers

    Abstract:

    Carcinoembryonic antigen (CEA) is a tumor marker for the clinical management of colorectal cancer (CRC). The elevated blood levels of CEA are associated with metastasis and poor prognosis in CRC. There is mounting evidence that CEA enhances the metastatic potential of cancer cells. CEA increases the ability of weakly metastatic CRC to colonize the liver and to develop spontaneous hematogeneous liver and lung metastases. CEA expression has also been related with resistance to cytotoxic chemotherapy and to anoikis, a form of apoptosis caused by detachment from cell matrix. Yet the mechanism of CEA mediated metastasis is only partially understood. The TGF-β (transforming growth factor beta) signaling pathway contributes to tumorigenesis by controlling several biological processes, including cell proliferation, differentiation, migration and apoptosis. It has been reported that TGF-β regulates CEA transcription and secretion, however, little is known about the effects of CEA on TGFβ signaling. Aims: Based on the above facts, we focused on the influence of CEA on the TGF-β signaling in both normal cells and colorectal cancer cells. Results: Our preliminary data showed that CEA directly interacted with TGF-β Receptors. Overexpression of CEA blocked TGF-β induced SMAD3 phosphorylation, SMAD3 translocation to nuclear and the downregulation of c-myc transcription. Targeting CEA with anti-CEA antibody rescued TGFβ response in CRC cell lines with elevated CEA expression, thereby restoring the inhibitory effects of TGF-β on the proliferation of these cancer cells. Finally, in animal experiment, we found that CEA enhanced survival of colorectal cancer cell in both local colonization and liver metastasis. Conclusion: Since CEA is a well-characterized tumor-associated antigen that is frequently overexpressed in tumors, specific antibodies targeting CEA have been developed as a novel therapeutic approach for treatment of tumors expressing CEA on their surface. Based on our study, it may be helpful to combine CEA antibody and TGF-β to inhibit cancer cell proliferation and metastasis in some cases.

  • 841 Mechanism for Selectivity of Specific Exonic Activin Receptor 2 (ACVR2) Frameshift Mutation in Colorectal Cells with Defective DNA Mismatch Repair (MMR)
    Gastroenterology, 2009
    Co-Authors: Heekyung Chung, Dennis J Young, Claudia Lopez, Betty L. Cabrera, Deena Ream-robinson, John M Carethers

    Abstract:

    Preoperative Biliary Drainage Versus Direct Operation for Pancreatic Tumors Causing Obstructive Jaundice Niels Anthony Van Der Gaag, Erik Rauws, Casper H. van Eijck, Marco Bruno, Erwin van der Harst, Josephus J. Gerritsen, J. W. M. Greve, Michael F. Gerhards, Ignace H. de Hingh, Jean H. Klinkenbijl, Chung Y. Nio, Steve M. de Castro, Olivier R. Busch, Thomas M. Van Gulik, Patrick M. Bossuyt, Dirk J. Gouma