The Experts below are selected from a list of 327 Experts worldwide ranked by ideXlab platform
Gavin D. Perkins - One of the best experts on this subject based on the ideXlab platform.
-
Improving the Efficiency of Advanced Life Support Training
Annals of Internal Medicine, 2012Co-Authors: Gavin D. Perkins, Andrew Lockey, Ian BullockAbstract:Training health care providers in Advanced Life Support is important but is time- and resource-intensive. This randomized trial compared a conventional 2-day in-person Advanced Life Support course ...
-
Improving the efficiency of Advanced Life Support training : a randomized, controlled trial
Annals of internal medicine, 2012Co-Authors: Gavin D. Perkins, Andrew Lockey, Ian Bullock, Robin P. Davies, Peter K. Kimani, Tom Clutton-brock, Mike Gale, Jenny Lam, Nigel StallardAbstract:BACKGROUND Each year, more than 1.5 million health care professionals receive Advanced Life Support (ALS) training. OBJECTIVE To determine whether a blended approach to ALS training that includes electronic learning (e-learning) produces outcomes similar to those of conventional, instructor-led ALS training. DESIGN Open-label, noninferiority, randomized trial. Randomization, stratified by site, was generated by Sealed Envelope (Sealed Envelope, London, United Kingdom). (International Standardized Randomized Controlled Trial Number Register: ISCRTN86380392) SETTING 31 ALS centers in the United Kingdom and Australia. PARTICIPANTS 3732 health care professionals recruited between December 2008 and October 2010. INTERVENTION A 1-day course supplemented with e-learning versus a conventional 2-day course. MEASUREMENTS The primary outcome was performance in a cardiac arrest simulation test at the end of the course. Secondary outcomes comprised knowledge- and skill-based assessments, repeated assessment after remediation training, and resource use. RESULTS 440 of the 1843 participants randomly assigned to the blended course and 444 of the 1889 participants randomly assigned to conventional training did not attend the courses. Performance in the cardiac arrest simulation test after course attendance was lower in the electronic Advanced Life Support (e-ALS) group compared with the conventional Advanced Life Support (c-ALS) group; 1033 persons (74.5%) in the e-ALS group and 1146 persons (80.2%) in the c-ALS group passed (mean difference, -5.7% [95% CI, -8.8% to -2.7%]). Knowledge- and skill-based assessments were similar between groups, as was the final pass rate after remedial teaching, which was 94.2% in the e-ALS group and 96.7% in the c-ALS group (mean difference, -2.6% [CI, -4.1% to 1.2%]). Faculty, catering, and facility costs were $438 per participant for electronic ALS training and $935 for conventional ALS training. LIMITATIONS Many professionals (24%) did not attend the courses. The effect on patient outcomes was not evaluated. CONCLUSION Compared with conventional ALS training, an approach that included e-learning led to a slightly lower pass rate for cardiac arrest simulation tests, similar scores on a knowledge test, and reduced costs. PRIMARY FUNDING SOURCE National Institute of Health Research and Resuscitation Council (UK).
-
Advanced Life Support update
British medical bulletin, 2009Co-Authors: Natalie Husselbee, Robin P. Davies, Gavin D. PerkinsAbstract:Introduction: Cardiac arrest is a common emergency in acute hospitals. The Resuscitation Council (UK) Advanced Life Support Guidelines provide a systematic approach to cardiac arrest recognition, treatment and aftercare. This review provides an update on the current treatment guidelines and identifies areas where these may be strengthened. Methods: The evidence informing the 2005 Resuscitation Guidelines is reviewed. New evidence since the publication of the guidelines was identified by searching Medline (December 2005‐December 2008) with the term heart arrest or Advanced Life Support. Results: Opportunities for strengthening the chain of survival exist for each link. These include better recognition of critically ill patients at risk of cardiac arrest, improved quality of cardiopulmonary resuscitation, defibrillation strategies, which minimize pre- and post-shock pauses and development of postresuscitation care bundles. Conclusion: Emerging evidence suggests opportunities where Resuscitation Guidelines could be strengthened by focusing on specific aspects of the chain of survival.
-
Use of Advanced Life Support skills
Resuscitation, 2003Co-Authors: Jonathan Hulme, Gavin D. Perkins, Catherine Baldock, Aidan MacnamaraAbstract:Abstract Background: The Advanced Life Support (ALS) Provider Course trains healthcare professionals in a standardised approach to the management of a cardiac arrest. In the setting of limited resources for healthcare training, it is important that courses are fit for purpose in addressing the needs of both the individual and healthcare system. This study investigated the use of ALS skills in clinical practice after training on an ALS course amongst members of the cardiac arrest team compared to first responders. Methods: Questionnaires measuring skill use after an ALS course were distributed to 130 doctors and nurses. Results: 91 replies were returned. Basic Life Support, basic airway management, manual defibrillation, rhythm recognition, drug administration, team leadership, peri- and post-arrest management and resuscitation in special circumstances were used significantly more often by cardiac arrest team members than first responders. There was no difference in skill use between medically and nursing qualified first responders or arrest team members. Conclusion: We believe that the ALS course is more appropriately targeted to members of a cardiac arrest team. In our opinion the recently launched Immediate Life Support course, in parallel with training in the recognition and intervention in the early stages of critical illness, are more appropriate for the occasional or first responder to a cardiac arrest.
-
Variability in the assessment of Advanced Life Support skills
Resuscitation, 2001Co-Authors: Gavin D. Perkins, Jonathan Hulme, Mike TweedAbstract:The number of short 'Life Support' and emergency care courses available are increasing. Variability in examiner assessments has been reported previously in more traditional types of examinations but there is little data on the reliability of the assessments used on these newer courses. This study evaluated the reliability and consistency of instructor marking for the Resuscitation Council UK Advanced Life Support Course. Twenty five instructors from 15 centres throughout the UK were shown four staged video recorded defibrillation tests (one repeated) and three cardiac arrest simulation tests in order to assess inter-observer and intra-observer variability. These tests form part of the final assessment of competence on an Advanced Life Support course. Significant levels of variability were demonstrated between instructors with poor levels of agreement of 52-80% for defibrillation tests and 52-100% for cardiac arrest simulation tests. There was evidence of differences in the observation/recognition of errors and rating tendencies of instructors. Four instructors made a different pass/fail decision when shown defibrillation test 2 for a second time leading to only moderate levels of intra-observer agreement (kappa=0.43). In conclusion there is significant variability between instructors in the assessment of Advanced Life Support skills, which may undermine the present assessment mechanisms for the Advanced Life Support course. Validation of the assessment tools for the rapidly growing number of Life Support courses is required with urgent steps to improve reliability where required.
Daniel W Spaite - One of the best experts on this subject based on the ideXlab platform.
-
The OPALS Major Trauma Study: impact of Advanced Life-Support on survival and morbidity
CMAJ : Canadian Medical Association journal = journal de l'Association medicale canadienne, 2008Co-Authors: Ian G Stiell, Daniel W Spaite, Brian J Field, Lisa Nesbitt, Justin Maloney, William Pickett, Douglas P. Munkley, Jane Banek, Lorraine Luinstra-toohey, Jon DreyerAbstract:Background: To date, the benefit of prehospital Advanced Life-Support programs on trauma-related mortality and morbidity has not been established Methods: The Ontario Prehospital Advanced Life Support (OPALS) Major Trauma Study was a before–after systemwide controlled clinical trial conducted in 17 cities. We enrolled adult patients who had experienced major trauma in a basic Life-Support phase and a subsequent Advanced Life-Support phase (during which paramedics were able to perform endotracheal intubation and administer fluids and drugs intravenously). The primary outcome was survival to hospital discharge. Results: Among the 2867 patients enrolled in the basic LifeSupport (n = 1373) and Advanced Life-Support (n = 1494) phases, characteristics were similar, including mean age (44.8 v. 47.5 years), frequency of blunt injury (92.0% v. 91.4%), median injury severity score (24 v. 22) and percentage of patients with Glasgow Coma Scale score less than 9 (27.2% v. 22.1%). Survival did not differ overall (81.1% among patients in the Advanced Life-Support phase v. 81.8% among those in the basic Life-Support phase; p = 0.65). Among patients with Glasgow Coma Scale score less than 9, survival was lower among those in the Advanced Life-Support phase (50.9% v. 60.0%; p = 0.02). The adjusted odds of death for the Advanced Life-Support v. basic Life-Support phases were nonsignificant (1.2, 95% confidence interval 0.9–1.7; p = 0.16). Interpretation: The OPALS Major Trauma Study showed that systemwide implementation of full Advanced Life-Support programs did not decrease mortality or morbidity for major trauma patients. We also found that during the Advanced LifeSupport phase, mortality was greater among patients with Glasgow Coma Scale scores less than 9. We believe that emergency medical services should carefully re-evaluate the indications for and application of prehospital Advanced Life-Support measures for patients who have experienced major trauma.
-
Advanced Life Support for out of hospital respiratory distress
The New England Journal of Medicine, 2007Co-Authors: Ian G Stiell, Daniel W Spaite, Brian J Field, Lisa Nesbitt, Doug Munkley, Justin Maloney, Jon Dreyer, Lorraine Luinstra Toohey, Tony Campeau, Eugene DagnoneAbstract:The clinical characteristics of the 8138 patients in the two phases of the study were similar. During the first phase, no patients were treated by paramedics trained in Advanced Life Support; during the second phase, 56.6% of patients received this treatment. Endotracheal intubation was performed in 1.4% of the patients, and intravenous drugs were administered to 15.0% during the second phase. This phase of the study was also marked by a substantial increase in the use of nebulized salbutamol and sublingual nitroglycerin for the relief of symptoms. The rate of death among all patients decreased significantly, from 14.3% to 12.4% (absolute difference, 1.9%; 95% confidence interval [CI], 0.4 to 3.4; P = 0.01) from the basic-Life-Support phase to the Advanced-Life-Support phase (adjusted odds ratio, 1.3; 95% CI, 1.1 to 1.5). CONCLUSIONS The addition of a specific regimen of out-of-hospital Advanced-Life-Support interventions to an existing EMS system that provides basic Life Support was associated with a decrease in the rate of death of 1.9 percentage points among patients with respiratory distress.
-
The Ontario Prehospital Advanced Life Support (OPALS) Study: Rationale and Methodology for Cardiac Arrest Patients
Annals of emergency medicine, 1998Co-Authors: Ian G Stiell, Daniel W Spaite, Brian J Field, Justin Maloney, Eugene Dagnone, Douglas P. Munkley, George A. Wells, Marion B Lyver, Gordon R Jones, Lorraine G LuinstraAbstract:The Ontario Prehospital Advanced Life Support Study represents the largest prehospital study yet conducted, worldwide. This study will involve more than 25,000 cardiac arrest, trauma, and critically ill patients over an 8-year period. The study will evaluate the incremental benefit of rapid defibrillation and prehospital Advanced Cardiac Life Support measures for cardiac arrest survival and the benefit of Advanced Life Support for patients with traumatic injuries and other critically ill prehospital patients. This article describes the OPALS study with regard to the rationale and methodology for cardiac arrest patients.
-
Prehospital Advanced Life Support for Major Trauma: Critical Need for Clinical Trials☆☆☆★
Annals of emergency medicine, 1998Co-Authors: Daniel W Spaite, Elizabeth A. Criss, Terence D. Valenzuela, Harvey W MeislinAbstract:A widely diverse body of information exists on the use of Advanced Life Support procedures by prehospital personnel. We compared and contrasted the literature that currently exists on this topic. We examined methodologies, results, and conclusions for each article. We also stress the need for critical clinical evaluations in this arena.
Jodee M. Anderson - One of the best experts on this subject based on the ideXlab platform.
-
A randomized, controlled trial of in situ pediatric Advanced Life Support recertification ("pediatric Advanced Life Support reconstructed") compared with standard pediatric Advanced Life Support recertification for ICU frontline providers*.
Critical care medicine, 2014Co-Authors: Hiroshi Kurosawa, Takanari Ikeyama, Patricia Achuff, Madeline Perkel, Christine E. Watson, Annemarie Monachino, Daphne Remy, Ellen S. Deutsch, Newton Buchanan, Jodee M. AndersonAbstract:Objective:Recent evidence shows poor retention of Pediatric Advanced Life Support provider skills. Frequent refresher training and in situ simulation are promising interventions. We developed a “Pediatric Advanced Life Support–reconstructed” recertification course by deconstructing the training into
M Dixon - One of the best experts on this subject based on the ideXlab platform.
-
Advanced Life Support Research and Technology Transfer at the University of Guelph
Open Agriculture, 2017Co-Authors: M Dixon, M. Stasiak, T. Rondeau, T. GrahamAbstract:AbstractResearch and technology developments surrounding Advanced Life-Support (ALS) began at the University of Guelph in 1992 as the Space and Advanced Life Support Agriculture (SALSA) program, which now represents Canada’s primary contribution to ALS research. The early focus was on recycling hydroponic nutrient solutions, atmospheric gas analysis and carbon balance, sensor research and development, inner/intra-canopy lighting and biological filtration of air in closed systems. With funding from federal, provincial and industry partners, a new generation of technology emerged to address the challenges of deploying biological systems as fundamental components of Life-Support infrastructure for long-duration human space exploration. Accompanying these advances were a wide range of technology transfer opportunities in the agri-food and health sectors, including air and water remediation, plant and environment sensors, disinfection technologies, recyclable growth substrates and Advanced light emitting diode (LED) lighting systems. This report traces the evolution of the SALSA program and catalogues the benefits of ALS research for terrestrial and non-terrestrial applications.
-
Canadian Advanced Life Support capacities and future directions
Advances in Space Research, 2009Co-Authors: Matthew Bamsey, Alain Berinstain, T. Graham, T. Rondeau Vuk, Maciej Stasiak, A. Scott, M DixonAbstract:Canada began research on space-relevant biological Life Support systems in the early 1990s. Since that time Canadian capabilities have grown tremendously, placing Canada among the emerging leaders in biological Life Support systems. The rapid growth of Canadian expertise has been the result of several factors including a large and technically sophisticated greenhouse sector which successfully operates under challenging climatic conditions, well planned technology transfer strategies between the academic and industrial sectors, and a strong emphasis on international research collaborations. Recent activities such as Canada's contribution of the Higher Plant Compartment of the European Space Agency's MELiSSA Pilot Plant and the remote operation of the Arthur Clarke Mars Greenhouse in the Canadian High Arctic continue to demonstrate Canadian capabilities with direct applicability to Advanced Life Support systems. There is also a significant latent potential within Canadian institutions and organizations with respect to directly applicable Advanced Life Support technologies. These directly applicable research interests include such areas as horticultural management strategies (for candidate crops), growth media, food processing, water management, atmosphere management, energy management, waste management, imaging, environment sensors, thermal control, lighting systems, robotics, command and data handling, communications systems, structures, in-situ resource utilization, space analogues and mission operations. With this background and in collaboration with the Canadian aerospace industry sector, a roadmap for future Life Support contributions is presented here. This roadmap targets an objective of at least 50% food closure by 2050 (providing greater closure in oxygen, water recycling and carbon dioxide uptake). The Canadian Advanced Life Support community has chosen to focus on lunar surface infrastructure and not low Earth orbit or transit systems (i.e. microgravity applications). To advance the technical readiness for the proposed lunar missions, including a lunar plant growth lander, lunar "salad machine" (i.e. small scale plant production unit) and a full scale lunar plant production system, a suite of terrestrial developments and analogue systems are proposed. As has been successfully demonstrated by past Canadian Advanced Life Support activities, terrestrial technology transfer and the development of highly qualified personnel will serve as key outputs for Canadian Advanced Life Support system research programs. This approach is designed to serve the Canadian greenhouse industry by developing compliance measures for mitigating environmental impact, reducing labour and energy costs as well as improving Canadian food security, safety and benefit northern/remote communities. Crown Copyright © 2009.
Kjetil Sunde - One of the best experts on this subject based on the ideXlab platform.
-
Decay in chest compression quality due to fatigue is rare during prolonged Advanced Life Support in a manikin model.
Scandinavian journal of trauma resuscitation and emergency medicine, 2011Co-Authors: Conrad Arnfinn Bjorshol, Helge Myklebust, Kjetil Sunde, Jörg Assmus, Eldar SoreideAbstract:Background The aim of this study was to measure chest compression decay during simulated Advanced Life Support (ALS) in a cardiac arrest manikin model.
-
effect of socioemotional stress on the quality of cardiopulmonary resuscitation during Advanced Life Support in a randomized manikin study
Critical Care Medicine, 2011Co-Authors: Conrad Arnfinn Bjorshol, Helge Myklebust, Kjetil Lonne Nilsen, Thomas Hoff, Cato Alexander Bjorkli, Eirik Illguth, Eldar Soreide, Kjetil SundeAbstract:Objective:The aim of this study was to evaluate whether socioemotional stress affects the quality of cardiopulmonary resuscitation during Advanced Life Support in a simulated manikin model.Design:A randomized crossover trial with Advanced Life Support performed in two different conditions, with and