Avenin

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 315 Experts worldwide ranked by ideXlab platform

Yujuan Zhang - One of the best experts on this subject based on the ideXlab platform.

  • characterising Avenin like proteins alps from albumin globulin fraction of wheat grains by rp hplc sds page and ms ms peptides sequencing
    BMC Plant Biology, 2020
    Co-Authors: Yujuan Zhang, Angela Juhasz, Shahidul Islam, Yun Zhao, Wenli Ding
    Abstract:

    Wheat grain Avenin-like proteins (ALPs) belong to a recently discovered class of wheat grain storage protein. ALPs in wheat grains not only have beneficial effects on dough quality but also display antifungal activities, which is a novel observation for wheat storage proteins. Previous studies have shown that ALPs are likely present in the albumin/globulin fractions of total protein extract from wheat flour. However, the accumulation characteristics of these ALPs in the mature wheat grain remains unknown. In the present study, a total of 13 ALPs homologs were isolated and characterized in the albumin/globulin fractions of the wheat protein extract. A combination of multiple techniques including RP-HPLC, SDS-PAGE, MALDI-TOF and peptide sequencing were used for accurate separation and identification of individual ALP homolog. The C-terminal TaALP-by-4AL/7DS, TaALP-by-4AL/7AS/7DS, TaALP-bx/4AL/7AS/7DS, TaALP-ay-7DS, TaALP-ay-4AL, TaALP-ax-4AL, TaALP-ax-7AS, and TaALP-ax-7DS, were separated as individual protein bands from wheat flour for the first time. These unique ALPs peptides were mapped to the latest wheat genome assembly in the IWGSC database. The characteristic defence related proteins present in albumin and globulin fractions, such as protein disulfide-isomerase (PDI), grain softness protein (GSP), alpha-amylase inhibitors (AAIs) and endogenous alpha-amylase/subtilisin inhibitor were also found to co-segregate with these identified ALPs, Avenin-3 and α-gliadins. The molecular weight range and the electrophoresis segregation properties of ALPs were characterised in comparison with the proteins containing the tryp_alpha_amyl domain (PF00234) and the gliadin domain (PF13016), which play a role in plant immunity and grain quality. We examined the phylogenetic relationships of the AAIs, GSP, Avenin-3, α-gliadins and ALPs, based on the alignment of their functional domains. MALDI-TOF profiling indicated the occurrence of certain post-translations modifications (PTMs) in some ALP subunits. We reported for the first time the complete profiling of ALPs present in the albumin/globulin fractions of wheat grain protein extracts. We concluded that majority of the ALPs homologs are expressed in wheat grains. We found clear evidence of PTMs in several ALPs peptides. The identification of both gliadin domain (PF13016) and Tryp_alpha_amyl domain (PF00234) in the mature forms of ALPs highlighted the multiple functional properties of ALPs in grain quality and disease resistance.

  • wheat Avenin like protein and its significant fusarium head blight resistant functions
    bioRxiv, 2018
    Co-Authors: Yujuan Zhang, Angela Juhasz, Shahidul Islam, Xinyou Cao, Maoyun She, Zhanwang Zhu, Stephen J Wylie, Mirza Dowla, Xueyan Chen, Rongchang Yang
    Abstract:

    Wheat Avenin-like proteins (TaALP) are atypical storage proteins belonging to the Prolamin superfamily. Previous studies on ALPs have focused on the proteins positive effects on dough strength, whilst no correlation has been made between TaALPs and the plant immune system. Here, we performed genome-wide characterization of ALP encoding genes in bread wheat. In silico analyses indicated the presence of critical peptides in TaALPs that are active in the plant immune system. Pathogenesis-related nucleotide motifs were also identified in the putative promoter regions of TaALP encoding genes. RT-PCR was performed on TaALP and previously characterised pathogenesis resistance genes in developing wheat caryopses under control and Fusarium graminearum infection conditions, respectively. The results showed that TaALP and NMT genes were upregulated upon F. graminearum inoculation. mRNA insitu hybridization showed that TaALP genes were expressed in the embryo, aleurone and sub-aleurone layer cells. Seven TaALP genes were cloned for the expression of recombinant proteins in Escherichia coli, which displayed significant inhibitory function on F. graminearum under anti-fungal tests. In addition, FHB index association analyses showed that allelic variations of two ALP genes on chromosome 7A were significantly correlated with FHB symptoms. Over-expression of an ALP gene on chromosome 7A showed an enhanced resistance to FHB. Yeast two Hybridization results revealed that ALPs have potential proteases inhibiting effect on metacaspases and beta-glucosidases. A vital infection process related pathogen protein, F. graminearum Beta-glucosidase was found to interact with ALPs. Our study is the first to report a novel function for wheat storage protein in fungal resistance, which greatly advances our understanding of the biological roles of this protein class. The findings in this study is of great significance for future wheat breeding and production.

  • wheat grain Avenin like protein dynamics in relation to genotypes and environments
    Zhang Yujuan (2018) Wheat grain Avenin-like protein dynamics in relation to genotypes and environments. PhD thesis Murdoch University., 2018
    Co-Authors: Yujuan Zhang
    Abstract:

    The recently discovered non-gluten prolamins, Avenin-like proteins (ALPs) in wheat can improve flour baking qualities. In our study, 15 TaALP genes were identified and mapped to chromosomes 7A, 4A and 7D. Phylogenetic analysis showed that TaALP genes formed three major clades, types a, b, and c. The allelic variation of ALP genes in a wild emmer wheat (Triticum turgidum ssp. dicoccoides) populations from Israel were investigated to study the evolution of TdALP genes under different micro environments. In total, 49 alleles were identified at 4 TdALP loci. Correlations between the sites in which wild emmer wheat accessions were collected in Israel and the diversity of their ALP allelles suggested that at least some alleles were selected for by environmental factors. In this project, we found that TaALP genes are pathogen-inducible. Bioinformatics predicted the presence of pathogenesis-related nucleotide motifs in the promoter regions of TaALP genes. Expression levels of TaALP genes and some PR genes were analysed by quantitative RT-PCR in developing caryopses at 7, 13 and 42 days after pollination. Differential expression patterns of TaALP genes were identified in plants infected by Fusarium graminearum. Recombinant TaALP-encoded proteins significantly inhibited the fungal growth in vitro. mRNA in situ hybridization confirmed that TaALP transcripts were upregulated in aleurone, sub-aleurone, and embryos after infection. Genome-wide Fusarium head blight (FHB) index association analysis indicated that certain TaALP alleles were significantly correlated with FHB resistance. The ALPs may act as pathogen resistance proteins mediated by systemic acquired resistance (SAR). Our research indicated that TaALP genes, characterized by typical gliadin domains, are broad-spectrum, partial-resistance genes that contribute to sustainable control of wheat pathogen disease and possibly other fungus-induced disease in wheat. This exciting finding will be applicable for breeding broad range of disease-tolerant and high-quality wheat varieties for sustainable wheat production.

  • genetic characterization of cysteine rich type b Avenin like protein coding genes in common wheat
    Scientific Reports, 2016
    Co-Authors: X Y Chen, Yujuan Zhang, Shahidul Islam, Rongchang Yang, X Y Cao, Jingjuan Zhang, J J Liu, R Appels, Gabriel Keeblegagnere
    Abstract:

    The wheat Avenin-like proteins (ALP) are considered atypical gluten constituents and have shown positive effects on dough properties revealed using a transgenic approach. However, to date the genetic architecture of ALP genes is unclear, making it impossible to be utilized in wheat breeding. In the current study, three genes of type-b ALPs were identified and mapped to chromosomes 7AS, 4AL and 7DS. The coding gene sequence of both TaALP-7A and TaALP-7D was 855 bp long, encoding two identical homologous 284 amino acid long proteins. TaALP-4A was 858 bp long, encoding a 285 amino acid protein variant. Three alleles were identified for TaALP-7A and four for TaALP-4A. TaALP-7A alleles were of two types: type-1, which includes TaALP-7A1 andTaALP-7A2, encodes mature proteins, while type-2, represented byTaALP-7A3, contains a stop codon in the coding region and thus does not encode a mature protein. Dough quality testing of 102 wheat cultivars established a highly significant association of the type-1 TaALP-7A allele with better wheat processing quality. This allelic effects were confirmed among a range of commercial wheat cultivars. Our research makes the ALP be the first of such genetic variation source that can be readily utilized in wheat breeding.

Apollinaire Tsopmo - One of the best experts on this subject based on the ideXlab platform.

  • peptidomic analysis of hydrolyzed oat bran proteins and their in vitro antioxidant and metal chelating properties
    Food Chemistry, 2019
    Co-Authors: Ramak Esfandi, William G Willmore, Apollinaire Tsopmo
    Abstract:

    Abstract Peptide profiles of hydrolyzed oat proteins and the susceptibility of their polypeptides to proteolytic cleavages were determined using peptidomic analysis. In addition, antioxidant activities were also measured. Proteins isolates were first extracted with carbohydrases, Viscozyme or Cellulase and then hydrolyzed with proteases (Alcalase, Papain, Protamex, Flavourzyme). Amongst the eight hydrolysates, Viscozyme-proteins hydrolyzed with Papain showed the highest ability to quench ABTS + radicals (866.9 ± 10.6 µM TE/g) and to chelate ferrous ions (75 ± 0.4%) while displaying the second strongest activity for ROO radicals (396.7 ± 14.0 µM TE/g). Peptidomics analysis showed that the higher activity of papain hydrolysate in most assays was related to its greater proteolytic action on main proteins (Avenin, 11S- and 12S-globulins) compared to other proteases. In addition, the number of peptides identified in the Papain digest of proteins extracted with Viscozyme was about half relative to the number in proteins from bran treated with Cellulase and digested with the same protease. This was likely because the carbohydrases differently affected polypeptide secondary structures.

  • identification of peptides metal binding and lipid peroxidation activities of hplc fractions of hydrolyzed oat bran proteins
    Journal of Food Science and Technology-mysore, 2016
    Co-Authors: Morooj M Baakdah, Apollinaire Tsopmo
    Abstract:

    The aim of this study was to evaluate metal binding and antioxidant activities of hydrolyzed oat bran proteins followed by the determination of peptide sequences. Protamex oat bran protein hydrolysates (OBPH) were separated by reverse-phase HPLC into eight peptide fractions (F1–F8) and their abilities to either chelate metals (Fe2+, Ca2+) or prevent the oxidation of lipids were investigated. In the Fe2+ chelation assay, OBPH had significantly (p < 0.05) higher activity (39.7 %) than the best performed fraction F7 (22.8 %). The second most active was F5 with 12.1 % chelating activity and this was higher than the activity of the tripeptide glutathione (5.8 %) used as control. The two most Fe2+ chelating fractions (F5, F7) however had weak calcium binding (0.6–1.0 %) properties at peptide concentration ranging from 0.2 to 1.0 mg/mL. In the lipid peroxidation assay, OBPH and all HPLC fractions prevented the oxidation of linoleic acid. More than 60 peptides mainly derived from globulin and Avenin proteins were identified using tandem mass spectrometry.

Akira Matsuda - One of the best experts on this subject based on the ideXlab platform.

Yuesheng Wang - One of the best experts on this subject based on the ideXlab platform.

  • effects of an additional cysteine residue of Avenin like b protein by site directed mutagenesis on dough properties in wheat triticum aestivum l
    Journal of Agricultural and Food Chemistry, 2019
    Co-Authors: Yaqiong Wang, Junli Chang, Mingjie Chen, Guangxiao Yang, Yanbin Guan, Fusheng Sun, Jiapeng Han, Yuesheng Wang
    Abstract:

    Avenin-like b protein is rich in cysteine residues, providing the possibility to form intermolecular disulfide bonds and then participate in glutenin polymerization. Site-directed mutagenesis was adopted to produce mutant Avenin-like b gene encoding mutant Avenin-like b protein, in which one tyrosine codon at the C-terminal is substituted by a cysteine codon. Compared with the control lines, both transgenic lines with wild-type and mutant Avenin-like b genes demonstrated superior dough properties. While compared within the transgenic lines, the mutant lines showed relative weaker dough strength and decreased sodium-dodecyl-sulfate sedimentation volumes (from 69.7 mL in line WT alb-1 to 41.0 mL in line Mut alb-4). These inferior dough properties were accompanied by the lower contents of large-sized glutenin polymers, the decreased particle diameters of glutenin macropolymer (GMP), due to the lower content of intermolecular β-sheets (from 39.48% for line WT alb-2 to 30.21% for line Mut alb-3) and the varied contents of disulfide bonds (from 137.37 μmol/g for line WT alb-1 to 105.49 μmol/g for line Mut alb-4) in wheat dough. The extra cysteine might alter the original disulfide bond structure, allowing cysteine residue usually involved in an intermolecular disulfide bond to become available for an intrachain disulfide bond. Avenin-like b proteins were detected in glutenin macropolymers, providing further evidence for this protein to participate in the polymerization of glutenin. This is the first time to investigate the effect of a specific cysteine residue in the Avenin-like b protein on flour quality.

  • transformation of common wheat triticum aestivum l with Avenin like b gene improves flour mixing properties
    Molecular Breeding, 2013
    Co-Authors: Yunyi Liu, Wei Liu, Qian Zheng, Junli Chang, Guangxiao Yang, Hongwen Wang, Yuesheng Wang
    Abstract:

    Avenin-like b proteins may contribute to the viscoelastic properties of wheat dough via inter-chain disulphide bonds, due to their rich cysteine residues. In order to clarify the effect of the Avenin-like b proteins on the functional properties of wheat flour, the functional and biochemical properties of wheat flour were analyzed in three transgenic wheat lines overexpressing the Avenin-like b gene using the sodium dodecyl sulfate sedimentation (SDSS) test, Mixograph and size exclusion-high performance liquid chromatography (SE-HPLC) analysis. The results of the SDSS test and Mixograph analysis demonstrated that the overexpression of Avenin-like b proteins in transgenic lines led to significantly increased SDSS volume and improved flour mixing properties. The results of SE-HPLC analysis of the gluten proteins in wheat flour demonstrated that the improvement in transgenic line flour properties was associated with the increased proportion of large polymeric proteins due to the incorporation of overexpressed Avenin-like b proteins into the glutenin polymers. These results could help to understand the influence and mechanism of Avenin-like b proteins on the functional properties of wheat flour.

  • overexpression of Avenin like b proteins in bread wheat triticum aestivum l improves dough mixing properties by their incorporation into glutenin polymers
    PLOS ONE, 2013
    Co-Authors: Wei Liu, Yunyi Liu, Qian Zheng, Yaqiong Wang, Junli Chang, Mingjie Chen, Guangxiao Yang, Yuesheng Wang
    Abstract:

    Avenin-like b proteins are a small family of wheat storage proteins, each containing 18 or 19 cysteine residues. The role of these proteins, with high numbers of cysteine residues, in determining the functional properties of wheat flour is unclear. In the present study, two transgenic lines of the bread wheat overexpressing Avenin-like b gene were generated to investigate the effects of Avenin-like b proteins on dough mixing properties. Sodium dodecyl sulfate sedimentation (SDSS) test and Mixograph analysis of these lines demonstrated that overexpression of Avenin-like b proteins in both transgenic wheat lines significantly increased SDSS volume and improved dough elasticity, mixing tolerance and resistance to extension. These changes were associated with the increased proportion of polymeric proteins due to the incorporation of overexpressed Avenin-like b proteins into the glutenin polymers. The results of this study were critical to confirm the hypothesis that Avenin-like b proteins could be integrated into glutenin polymers by inter-chain disulphide bonds, which could help understand the mechanism behind strengthening wheat dough strength.

  • cloning expression and characterization of novel Avenin like genes in wheat and related species
    Journal of Cereal Science, 2008
    Co-Authors: Peng Chen, Junli Chang, Guangxiao Yang, Yuesheng Wang, Changdong Wang, Peter R Shewry
    Abstract:

    Abstract B-Type Avenin-like genes and proteins were characterized in 23 species of Triticeae. Southern blot analysis showed that the Avenin-like genes belong to a multigene family. RT-PCR showed expression only in developing endosperms of wheat and related species, between 3 and 22 DPA (days post anthesis) with a peak between 11 and 15 DPA in wheat. The encoded proteins are cysteine-rich, containing 18–19 cysteine residues. An Avenin-like protein from wheat was expressed in Escherichia coli, purified and used to raise polyclonal antibodies. These antibodies were used to detect b-type Avenin-like proteins in endosperms of wheat and related species by western blotting.

Shahidul Islam - One of the best experts on this subject based on the ideXlab platform.

  • characterising Avenin like proteins alps from albumin globulin fraction of wheat grains by rp hplc sds page and ms ms peptides sequencing
    BMC Plant Biology, 2020
    Co-Authors: Yujuan Zhang, Angela Juhasz, Shahidul Islam, Yun Zhao, Wenli Ding
    Abstract:

    Wheat grain Avenin-like proteins (ALPs) belong to a recently discovered class of wheat grain storage protein. ALPs in wheat grains not only have beneficial effects on dough quality but also display antifungal activities, which is a novel observation for wheat storage proteins. Previous studies have shown that ALPs are likely present in the albumin/globulin fractions of total protein extract from wheat flour. However, the accumulation characteristics of these ALPs in the mature wheat grain remains unknown. In the present study, a total of 13 ALPs homologs were isolated and characterized in the albumin/globulin fractions of the wheat protein extract. A combination of multiple techniques including RP-HPLC, SDS-PAGE, MALDI-TOF and peptide sequencing were used for accurate separation and identification of individual ALP homolog. The C-terminal TaALP-by-4AL/7DS, TaALP-by-4AL/7AS/7DS, TaALP-bx/4AL/7AS/7DS, TaALP-ay-7DS, TaALP-ay-4AL, TaALP-ax-4AL, TaALP-ax-7AS, and TaALP-ax-7DS, were separated as individual protein bands from wheat flour for the first time. These unique ALPs peptides were mapped to the latest wheat genome assembly in the IWGSC database. The characteristic defence related proteins present in albumin and globulin fractions, such as protein disulfide-isomerase (PDI), grain softness protein (GSP), alpha-amylase inhibitors (AAIs) and endogenous alpha-amylase/subtilisin inhibitor were also found to co-segregate with these identified ALPs, Avenin-3 and α-gliadins. The molecular weight range and the electrophoresis segregation properties of ALPs were characterised in comparison with the proteins containing the tryp_alpha_amyl domain (PF00234) and the gliadin domain (PF13016), which play a role in plant immunity and grain quality. We examined the phylogenetic relationships of the AAIs, GSP, Avenin-3, α-gliadins and ALPs, based on the alignment of their functional domains. MALDI-TOF profiling indicated the occurrence of certain post-translations modifications (PTMs) in some ALP subunits. We reported for the first time the complete profiling of ALPs present in the albumin/globulin fractions of wheat grain protein extracts. We concluded that majority of the ALPs homologs are expressed in wheat grains. We found clear evidence of PTMs in several ALPs peptides. The identification of both gliadin domain (PF13016) and Tryp_alpha_amyl domain (PF00234) in the mature forms of ALPs highlighted the multiple functional properties of ALPs in grain quality and disease resistance.

  • wheat Avenin like protein and its significant fusarium head blight resistant functions
    bioRxiv, 2018
    Co-Authors: Yujuan Zhang, Angela Juhasz, Shahidul Islam, Xinyou Cao, Maoyun She, Zhanwang Zhu, Stephen J Wylie, Mirza Dowla, Xueyan Chen, Rongchang Yang
    Abstract:

    Wheat Avenin-like proteins (TaALP) are atypical storage proteins belonging to the Prolamin superfamily. Previous studies on ALPs have focused on the proteins positive effects on dough strength, whilst no correlation has been made between TaALPs and the plant immune system. Here, we performed genome-wide characterization of ALP encoding genes in bread wheat. In silico analyses indicated the presence of critical peptides in TaALPs that are active in the plant immune system. Pathogenesis-related nucleotide motifs were also identified in the putative promoter regions of TaALP encoding genes. RT-PCR was performed on TaALP and previously characterised pathogenesis resistance genes in developing wheat caryopses under control and Fusarium graminearum infection conditions, respectively. The results showed that TaALP and NMT genes were upregulated upon F. graminearum inoculation. mRNA insitu hybridization showed that TaALP genes were expressed in the embryo, aleurone and sub-aleurone layer cells. Seven TaALP genes were cloned for the expression of recombinant proteins in Escherichia coli, which displayed significant inhibitory function on F. graminearum under anti-fungal tests. In addition, FHB index association analyses showed that allelic variations of two ALP genes on chromosome 7A were significantly correlated with FHB symptoms. Over-expression of an ALP gene on chromosome 7A showed an enhanced resistance to FHB. Yeast two Hybridization results revealed that ALPs have potential proteases inhibiting effect on metacaspases and beta-glucosidases. A vital infection process related pathogen protein, F. graminearum Beta-glucosidase was found to interact with ALPs. Our study is the first to report a novel function for wheat storage protein in fungal resistance, which greatly advances our understanding of the biological roles of this protein class. The findings in this study is of great significance for future wheat breeding and production.

  • genetic characterization of cysteine rich type b Avenin like protein coding genes in common wheat
    Scientific Reports, 2016
    Co-Authors: X Y Chen, Yujuan Zhang, Shahidul Islam, Rongchang Yang, X Y Cao, Jingjuan Zhang, J J Liu, R Appels, Gabriel Keeblegagnere
    Abstract:

    The wheat Avenin-like proteins (ALP) are considered atypical gluten constituents and have shown positive effects on dough properties revealed using a transgenic approach. However, to date the genetic architecture of ALP genes is unclear, making it impossible to be utilized in wheat breeding. In the current study, three genes of type-b ALPs were identified and mapped to chromosomes 7AS, 4AL and 7DS. The coding gene sequence of both TaALP-7A and TaALP-7D was 855 bp long, encoding two identical homologous 284 amino acid long proteins. TaALP-4A was 858 bp long, encoding a 285 amino acid protein variant. Three alleles were identified for TaALP-7A and four for TaALP-4A. TaALP-7A alleles were of two types: type-1, which includes TaALP-7A1 andTaALP-7A2, encodes mature proteins, while type-2, represented byTaALP-7A3, contains a stop codon in the coding region and thus does not encode a mature protein. Dough quality testing of 102 wheat cultivars established a highly significant association of the type-1 TaALP-7A allele with better wheat processing quality. This allelic effects were confirmed among a range of commercial wheat cultivars. Our research makes the ALP be the first of such genetic variation source that can be readily utilized in wheat breeding.