Bacteriocyte

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 486 Experts worldwide ranked by ideXlab platform

Alex C C Wilson - One of the best experts on this subject based on the ideXlab platform.

  • trading amino acids at the aphid buchnera symbiotic interface
    Proceedings of the National Academy of Sciences of the United States of America, 2019
    Co-Authors: Honglin Feng, Alex C C Wilson, Daniel R G Price, Charles W Luetje, Rebecca P Duncan, Noel Edwards, Catriona M H Anderson, Mike Althaus, Yu Ching Hsu, David T Thwaites
    Abstract:

    Plant sap-feeding insects are widespread, having evolved to occupy diverse environmental niches despite exclusive feeding on an impoverished diet lacking in essential amino acids and vitamins. Success depends exquisitely on their symbiotic relationships with microbial symbionts housed within specialized eukaryotic Bacteriocyte cells. Each Bacteriocyte is packed with symbionts that are individually surrounded by a host-derived symbiosomal membrane representing the absolute host-symbiont interface. The symbiosomal membrane must be a dynamic and selectively permeable structure to enable bidirectional and differential movement of essential nutrients, metabolites, and biosynthetic intermediates, vital for growth and survival of host and symbiont. However, despite this crucial role, the molecular basis of membrane transport across the symbiosomal membrane remains unresolved in all Bacteriocyte-containing insects. A transport protein was immunolocalized to the symbiosomal membrane separating the pea aphid Acyrthosiphon pisum from its intracellular symbiont Buchnera aphidicola The transporter, A. pisum nonessential amino acid transporter 1, or ApNEAAT1 (gene: ACYPI008971), was characterized functionally following heterologous expression in Xenopus oocytes, and mediates both inward and outward transport of small dipolar amino acids (serine, proline, cysteine, alanine, glycine). Electroneutral ApNEAAT1 transport is driven by amino acid concentration gradients and is not coupled to transmembrane ion gradients. Previous metabolite profiling of hemolymph and Bacteriocyte, alongside metabolic pathway analysis in host and symbiont, enable prediction of a physiological role for ApNEAAT1 in bidirectional host-symbiont amino acid transfer, supplying both host and symbiont with indispensable nutrients and biosynthetic precursors to facilitate metabolic complementarity.

  • mtor complex 1 implicated in aphid buchnera host symbiont integration
    G3: Genes Genomes Genetics, 2018
    Co-Authors: Edward B. James, Honglin Feng, Alex C C Wilson
    Abstract:

    Obligate nutritional endosymbioses are arguably the most intimate of all interspecific associations. While many insect nutritional endosymbioses are well studied, a full picture of how two disparate organisms, a bacterial endosymbiont and a eukaryotic host, are integrated is still lacking. The mTOR pathway is known to integrate nutritional conditions with cell growth and survival in eukaryotes. Characterization and localization of amino acid transporters in aphids suggest the mTOR pathway as a point of integration between an aphid host and its amino acid-provisioning endosymbiont Buchnera aphidicola. The mTOR pathway is unannotated in aphids and unstudied in any nutritional endosymbiosis. We annotated mTOR pathway genes in two aphid species, Acyrthosiphon pisum and Myzus persicae, using both BLASTp searches and Hidden Markov Models. Using previously collected RNAseq data we constructed new reference transcriptomes for Bacteriocyte, gut, and whole insect tissue for three lines of M. persicae. Annotation of the mTOR pathway identified homologs of all known invertebrate mTOR genes in both aphid species with some duplications. Differential expression analysis showed that genes specific to the amino acid-sensitive mTOR Complex 1 were more highly expressed in Bacteriocytes than genes specific to the amino acid-insensitive mTOR Complex 2. Almost all mTOR genes involved in sensing amino acids showed higher expression in Bacteriocytes than in whole insect tissue. When compared to gut, the putative glutamine/arginine sensing transporter ACYPI000333, an ortholog of SLC38A9, showed 6.5 times higher expression in Bacteriocytes. Our results suggest that the mTOR pathway may be functionally important in mediating integration of Buchnera into aphid growth and reproduction.

  • Amino acid transporters implicated in endocytosis of Buchnera during symbiont transmission in the pea aphid.
    EvoDevo, 2016
    Co-Authors: Chun-che Chang, Alex C C Wilson
    Abstract:

    Many insects host their obligate, maternally transmitted symbiotic bacteria in specialized cells called Bacteriocytes. One of the best-studied insect nutritional endosymbioses is that of the aphid and its endosymbiont, Buchnera aphidicola. Aphids and Buchnera are metabolically and developmentally integrated, but the molecular mechanisms underlying Buchnera transmission and coordination with aphid development remain largely unknown. Previous work using electron microscopy to study aphid asexual embryogenesis has revealed that Buchnera transmission involves exocytosis from a maternal Bacteriocyte followed by endocytotic uptake by a blastula. While the importance of exo- and endocytic cellular processes for symbiont transmission is clear, the molecular mechanisms that regulate these processes are not known. Here, we shed light on the molecular mechanisms that regulate Buchnera transmission and developmental integration. We present the developmental atlas of ACYPI000536 and ACYPI008904 mRNAs during asexual embryogenesis in the pea aphid, Acyrthosiphon pisum. Immediately before Buchnera invasion, transcripts of both genes were detected by whole-mount in situ hybridization in the posterior syncytial nuclei of late blastula embryos. Following Buchnera invasion, expression of both genes was identified in the region occupied by Buchnera throughout embryogenesis. Notably during Buchnera migration, expression of both genes was not concomitant with the entirety of the bacterial mass but rather expression colocalized with Buchnera in the anterior region of the bacterial mass. In addition, we found that ACYPI000536 was expressed in nuclei at the leading edge of the bacterial mass, joining the bacterial mass in subsequent developmental stages. Finally, quantitative reverse transcription real-time PCR suggested that early in development both transcripts were maternally provisioned to embryos. We venture that ACYPI000536 and ACYPI008904 function as nutrient sensors at the site of symbiont invasion to facilitate TOR-pathway-mediated endocytosis of Buchnera by the aphid blastula. Our data support earlier reports of Bacteriocyte determination involving a two-step recruitment process but suggest that the second wave of recruitment occurs earlier than previously described. Finally, our work highlights that Bacteriocyte-enriched amino acid transporter paralogs have additionally been retained to play novel developmental roles in both symbiont recruitment and bacteriome development.

  • Amino acid transporters implicated in endocytosis of Buchnera during symbiont transmission in the pea aphid
    BMC, 2016
    Co-Authors: Chun-che Chang, Alex C C Wilson
    Abstract:

    Abstract Background Many insects host their obligate, maternally transmitted symbiotic bacteria in specialized cells called Bacteriocytes. One of the best-studied insect nutritional endosymbioses is that of the aphid and its endosymbiont, Buchnera aphidicola. Aphids and Buchnera are metabolically and developmentally integrated, but the molecular mechanisms underlying Buchnera transmission and coordination with aphid development remain largely unknown. Previous work using electron microscopy to study aphid asexual embryogenesis has revealed that Buchnera transmission involves exocytosis from a maternal Bacteriocyte followed by endocytotic uptake by a blastula. While the importance of exo- and endocytic cellular processes for symbiont transmission is clear, the molecular mechanisms that regulate these processes are not known. Here, we shed light on the molecular mechanisms that regulate Buchnera transmission and developmental integration. Results We present the developmental atlas of ACYPI000536 and ACYPI008904 mRNAs during asexual embryogenesis in the pea aphid, Acyrthosiphon pisum. Immediately before Buchnera invasion, transcripts of both genes were detected by whole-mount in situ hybridization in the posterior syncytial nuclei of late blastula embryos. Following Buchnera invasion, expression of both genes was identified in the region occupied by Buchnera throughout embryogenesis. Notably during Buchnera migration, expression of both genes was not concomitant with the entirety of the bacterial mass but rather expression colocalized with Buchnera in the anterior region of the bacterial mass. In addition, we found that ACYPI000536 was expressed in nuclei at the leading edge of the bacterial mass, joining the bacterial mass in subsequent developmental stages. Finally, quantitative reverse transcription real-time PCR suggested that early in development both transcripts were maternally provisioned to embryos. Conclusions We venture that ACYPI000536 and ACYPI008904 function as nutrient sensors at the site of symbiont invasion to facilitate TOR-pathway-mediated endocytosis of Buchnera by the aphid blastula. Our data support earlier reports of Bacteriocyte determination involving a two-step recruitment process but suggest that the second wave of recruitment occurs earlier than previously described. Finally, our work highlights that Bacteriocyte-enriched amino acid transporter paralogs have additionally been retained to play novel developmental roles in both symbiont recruitment and bacteriome development

  • dynamic recruitment of amino acid transporters to the insect symbiont interface
    Molecular Ecology, 2014
    Co-Authors: Rebecca P Duncan, Filip Husnik, James T Van Leuven, Donald G Gilbert, Liliana M Davalos, John P Mccutcheon, Alex C C Wilson
    Abstract:

    Symbiosis is well known to influence bacterial symbiont genome evolution and has recently been shown to shape eukaryotic host genomes. Intriguing patterns of host genome evolution, including remarkable numbers of gene duplications, have been observed in the pea aphid, a sap-feeding insect that relies on a bacterial endosymbiont for amino acid provisioning. Previously, we proposed that gene duplication has been important for the evolution of symbiosis based on aphid-specific gene duplication in amino acid transporters (AATs), with some paralogs highly expressed in the cells housing symbionts (Bacteriocytes). Here, we use a comparative approach to test the role of gene duplication in enabling recruitment of AATs to Bacteriocytes. Using genomic and transcriptomic data, we annotate AATs from sap-feeding and non sap-feeding insects and find that, like aphids, AAT gene families have undergone independent large-scale gene duplications in three of four additional sap-feeding insects. RNA-seq differential expression data indicate that, like aphids, the sap-feeding citrus mealybug possesses several lineage-specific Bacteriocyte-enriched paralogs. Further, differential expression data combined with quantitative PCR support independent evolution of Bacteriocyte enrichment in sap-feeding insect AATs. Although these data indicate that gene duplication is not necessary to initiate host/symbiont amino acid exchange, they support a role for gene duplication in enabling AATs to mediate novel host/symbiont interactions broadly in the sap-feeding suborder Sternorrhyncha. In combination with recent studies on other symbiotic systems, gene duplication is emerging as a general pattern in host genome evolution.

Shuji Shigenobu - One of the best experts on this subject based on the ideXlab platform.

  • genome expansion and differential expression of amino acid transporters at the aphid buchnera symbiotic interface
    Molecular Biology and Evolution, 2011
    Co-Authors: Daniel R G Price, Shuji Shigenobu, Rebecca P Duncan, Alex C C Wilson
    Abstract:

    In insects, some of the most ecologically important symbioses are nutritional symbioses that provide hosts with novel traits and thereby facilitate exploitation of otherwise inaccessible niches. One such symbiosis is the ancient obligate intracellular symbiosis of aphids with the c-proteobacteria, Buchnera aphidicola. Although the nutritional basis of the aphid/Buchnera symbiosis is well understood, the processes and structures that mediate the intimate interactions of symbiotic partners remain uncharacterized. Here, using a de novo approach, we characterize the complement of 40 amino acid polyamine organocation (APC) superfamily member amino acid transporters (AATs) encoded in the genome of the pea aphid, Acyrthosiphon pisum. We find that the A. pisum APC superfamily is characterized by extensive gene duplications such that A. pisum has more APC superfamily transporters than other fully sequenced insects, including a ten paralog aphid-specific expansion of the APC transporter slimfast. Detailed expression analysis of 17 transporters selected on the basis of their phylogenetic relationship to five AATs identified in an earlier Bacteriocyte expressed sequence tag study distinguished a subset of eight transporters that have been recruited for amino acid transport in Bacteriocyte cells at the symbiotic interface. These eight transporters include transporters that are highly expressed and/or highly enriched in Bacteriocytes and intriguingly, the four AATs that show Bacteriocyte-enriched expression are all members of gene family expansions, whereas three of the four that are highly expressed but not enriched in Bacteriocytes retain one-to-one orthology with transporters in other genomes. Finally, analysis of evolutionary rates within the large A. pisum slimfast expansion demonstrated increased rates of molecular evolution coinciding with two major shifts in expression: 1) a loss of gut expression and possibly a gain of Bacteriocyte expression and 2) loss of expression in all surveyed tissues in asexual females. Taken together, our characterization of nutrient AATs at the aphid/Buchnera symbiotic interface provides the first examination of the processes and structures operating at the interface of an obligate intracellular insect nutritional symbiosis, offering unique insight into the types of genomic change that likely facilitated evolutionary maintenance of the symbiosis.

  • Transcriptome analysis of the aphid Bacteriocyte, the symbiotic host cell that harbors an endocellular mutualistic bacterium, Buchnera
    Proceedings of the National Academy of Sciences of the United States of America, 2005
    Co-Authors: Atsushi Nakabachi, Shuji Shigenobu, Naoko Sakazume, Toshiyuki Shiraki, Yoshihide Hayashizaki, Piero Carninci, Toshiaki Kudo
    Abstract:

    Aphids possess Bacteriocytes, cells specifically differentiated to harbor obligatory mutualistic bacteria of the genus Buchnera, which have lost many genes that are essential for common bacterial functions. To understand the host's role in maintaining the symbiotic relationship, Bacteriocytes were isolated from the pea aphid, Acyrthosiphon pisum, and the host transcriptome was investigated by using EST analysis and real-time quantitative RT-PCR. A number of genes were highly expressed specifically in the Bacteriocyte, including (i) genes for amino acid metabolism, including those for biosynthesis of amino acids that Buchnera cannot produce, and those for utilization of amino acids that Buchnera can synthesize; (ii) genes related to transport, including genes for mitochondrial transporters and a gene encoding Rab, a G protein that regulates vesicular transport; and (iii) genes for putative lysozymes that degrade bacterial cell walls. Significant up-regulation of i clearly indicated that the Bacteriocyte is involved in the exchange of amino acids between the host aphid and Buchnera, the key metabolic process in the symbiotic system. Conspicuously high expression of ii and iii shed light on previously unknown aspects of the host-Buchnera interactions in the symbiotic system.

  • Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS
    Nature, 2000
    Co-Authors: Shuji Shigenobu, Hidemi Watanabe, Masahira Hattori, Yoshiyuki Sakaki
    Abstract:

    Almost all aphid species (Homoptera, Insecta) have 60–80 huge cells called Bacteriocytes, within which are round-shaped bacteria that are designated Buchnera ^ 1 . These bacteria are maternally transmitted to eggs and embryos through host generations, and the mutualism between the host and the bacteria is so obligate that neither can reproduce independently^ 2 . Buchnera is a close relative of Escherichia coli ^ 3 , but it contains more than 100 genomic copies per cell^ 4 , and its genome size is only a seventh of that of E. coli ^ 5 . Here we report the complete genome sequence of Buchnera sp. strain APS, which is composed of one 640,681-base-pair chromosome and two small plasmids. There are genes for the biosyntheses of amino acids essential for the hosts in the genome, but those for non-essential amino acids are missing, indicating complementarity and syntrophy between the host and the symbiont. In addition, Buchnera lacks genes for the biosynthesis of cell-surface components, including lipopolysaccharides and phospholipids, regulator genes and genes involved in defence of the cell. These results indicate that Buchnera is completely symbiotic and viable only in its limited niche, the Bacteriocyte.

Daniel R G Price - One of the best experts on this subject based on the ideXlab platform.

  • trading amino acids at the aphid buchnera symbiotic interface
    Proceedings of the National Academy of Sciences of the United States of America, 2019
    Co-Authors: Honglin Feng, Alex C C Wilson, Daniel R G Price, Charles W Luetje, Rebecca P Duncan, Noel Edwards, Catriona M H Anderson, Mike Althaus, Yu Ching Hsu, David T Thwaites
    Abstract:

    Plant sap-feeding insects are widespread, having evolved to occupy diverse environmental niches despite exclusive feeding on an impoverished diet lacking in essential amino acids and vitamins. Success depends exquisitely on their symbiotic relationships with microbial symbionts housed within specialized eukaryotic Bacteriocyte cells. Each Bacteriocyte is packed with symbionts that are individually surrounded by a host-derived symbiosomal membrane representing the absolute host-symbiont interface. The symbiosomal membrane must be a dynamic and selectively permeable structure to enable bidirectional and differential movement of essential nutrients, metabolites, and biosynthetic intermediates, vital for growth and survival of host and symbiont. However, despite this crucial role, the molecular basis of membrane transport across the symbiosomal membrane remains unresolved in all Bacteriocyte-containing insects. A transport protein was immunolocalized to the symbiosomal membrane separating the pea aphid Acyrthosiphon pisum from its intracellular symbiont Buchnera aphidicola The transporter, A. pisum nonessential amino acid transporter 1, or ApNEAAT1 (gene: ACYPI008971), was characterized functionally following heterologous expression in Xenopus oocytes, and mediates both inward and outward transport of small dipolar amino acids (serine, proline, cysteine, alanine, glycine). Electroneutral ApNEAAT1 transport is driven by amino acid concentration gradients and is not coupled to transmembrane ion gradients. Previous metabolite profiling of hemolymph and Bacteriocyte, alongside metabolic pathway analysis in host and symbiont, enable prediction of a physiological role for ApNEAAT1 in bidirectional host-symbiont amino acid transfer, supplying both host and symbiont with indispensable nutrients and biosynthetic precursors to facilitate metabolic complementarity.

  • Ontogenetic differences in localization of glutamine transporter ApGLNT1 in the pea aphid demonstrate that mechanisms of host/symbiont integration are not similar in the maternal versus embryonic bacteriome
    EvoDevo, 2016
    Co-Authors: Daniel R G Price, Athula Wikramanayake, Chun-che Chang
    Abstract:

    Background Obligate intracellular symbionts of insects are metabolically and developmentally integrated with their hosts. Typically, reproduction fails in many insect nutritional endosymbioses when host insects are cured of their bacterial symbionts, and yet remarkably little is known about the processes that developmentally integrate host and symbiont. Here in the best studied insect obligate intracellular symbiosis, that of the pea aphid, Acyrthosiphon pisum , with the gammaproteobacterium Buchnera aphidicola, we tracked the expression and localization of amino acid transporter ApGLNT1 gene products during asexual embryogenesis. Recently being characterized as a glutamine transporter, ApGLNT1 has been proposed to be a key regulator of amino acid biosynthesis in A. pisum Bacteriocytes. To determine when this important mediator of the symbiosis becomes expressed in aphid embryonic Bacteriocytes, we applied whole-mount in situ hybridization and fluorescent immunostaining with a specific anti-ApGLNT1 antibody to detect the temporal and spatial expression of ApGLNT1 gene products during asexual embryogenesis. Results During embryogenesis, ApGLNT1 mRNA and protein localize to the follicular epithelium that surrounds parthenogenetic viviparous embryos, where we speculate that it functions to supply developing embryos with glutamine from maternal hemolymph. Unexpectedly, in the embryonic bacteriome ApGLNT1 protein does not localize to the membrane of Bacteriocytes, a pattern that leads us to conclude that the regulation of amino acid metabolism in the embryonic bacteriome mechanistically differs from that in the maternal bacteriome. Paralleling our earlier report of punctate cytoplasmic localization of ApGLNT1 in maternal Bacteriocytes, we find ApGLNT1 protein localizing as cytoplasmic puncta throughout development in association with Buchnera . Conclusions Our work that documents ontogenetic shifts in the localization of ApGLNT1 protein in the host bacteriome demonstrates that maternal and embryonic bacteriomes are not equivalent. Significantly, the persistent punctate cytoplasmic localization of ApGLNT1 in association with Buchnera in embryos prior to Bacteriocyte formation and later in both embryonic and maternal bacteriomes suggests that ApGLNT1 plays multiple roles in this symbiosis, roles that include amino acid transport and possibly nutrient sensing.

  • Proton-dependent glutamine uptake by aphid Bacteriocyte amino acid transporter ApGLNT1.
    Biochimica et biophysica acta, 2015
    Co-Authors: Daniel R G Price, Charles W Luetje
    Abstract:

    Aphids house large populations of the gammaproteobacterial symbiont Buchnera aphidicola in specialized Bacteriocyte cells. The combined biosynthetic capability of the holobiont (Acyrthosiphon pisum and Buchnera) is sufficient for biosynthesis of all twenty protein coding amino acids, including amino acids that animals alone cannot synthesize; and that are present at low concentrations in A. pisum's plant phloem sap diet. Collaborative holobiont amino acid biosynthesis depends on glutamine import into Bacteriocytes, which serves as a nitrogen-rich amino donor for biosynthesis of other amino acids. Recently, we characterized A. pisum glutamine transporter 1 (ApGLNT1), a member of the amino acid/auxin permease family, as the dominant Bacteriocyte plasma membrane glutamine transporter. Here we show ApGLNT1 to be structurally and functionally related to mammalian proton-dependent amino acid transporters (PATs 1-4). Using functional expression in Xenopus laevis oocytes, combined with two-electrode voltage clamp electrophysiology we demonstrate that ApGLNT1 is electrogenic and that glutamine induces large inward currents. ApGLNT1 glutamine induced currents are dependent on external glutamine concentration, proton (H+) gradient across the membrane, and membrane potential. Based on these transport properties, ApGLNT1-mediated glutamine uptake into A. pisum Bacteriocytes can be regulated by changes in either proton gradients across the plasma membrane or membrane potential.

  • genome expansion and differential expression of amino acid transporters at the aphid buchnera symbiotic interface
    Molecular Biology and Evolution, 2011
    Co-Authors: Daniel R G Price, Shuji Shigenobu, Rebecca P Duncan, Alex C C Wilson
    Abstract:

    In insects, some of the most ecologically important symbioses are nutritional symbioses that provide hosts with novel traits and thereby facilitate exploitation of otherwise inaccessible niches. One such symbiosis is the ancient obligate intracellular symbiosis of aphids with the c-proteobacteria, Buchnera aphidicola. Although the nutritional basis of the aphid/Buchnera symbiosis is well understood, the processes and structures that mediate the intimate interactions of symbiotic partners remain uncharacterized. Here, using a de novo approach, we characterize the complement of 40 amino acid polyamine organocation (APC) superfamily member amino acid transporters (AATs) encoded in the genome of the pea aphid, Acyrthosiphon pisum. We find that the A. pisum APC superfamily is characterized by extensive gene duplications such that A. pisum has more APC superfamily transporters than other fully sequenced insects, including a ten paralog aphid-specific expansion of the APC transporter slimfast. Detailed expression analysis of 17 transporters selected on the basis of their phylogenetic relationship to five AATs identified in an earlier Bacteriocyte expressed sequence tag study distinguished a subset of eight transporters that have been recruited for amino acid transport in Bacteriocyte cells at the symbiotic interface. These eight transporters include transporters that are highly expressed and/or highly enriched in Bacteriocytes and intriguingly, the four AATs that show Bacteriocyte-enriched expression are all members of gene family expansions, whereas three of the four that are highly expressed but not enriched in Bacteriocytes retain one-to-one orthology with transporters in other genomes. Finally, analysis of evolutionary rates within the large A. pisum slimfast expansion demonstrated increased rates of molecular evolution coinciding with two major shifts in expression: 1) a loss of gut expression and possibly a gain of Bacteriocyte expression and 2) loss of expression in all surveyed tissues in asexual females. Taken together, our characterization of nutrient AATs at the aphid/Buchnera symbiotic interface provides the first examination of the processes and structures operating at the interface of an obligate intracellular insect nutritional symbiosis, offering unique insight into the types of genomic change that likely facilitated evolutionary maintenance of the symbiosis.

Rebecca P Duncan - One of the best experts on this subject based on the ideXlab platform.

  • trading amino acids at the aphid buchnera symbiotic interface
    Proceedings of the National Academy of Sciences of the United States of America, 2019
    Co-Authors: Honglin Feng, Alex C C Wilson, Daniel R G Price, Charles W Luetje, Rebecca P Duncan, Noel Edwards, Catriona M H Anderson, Mike Althaus, Yu Ching Hsu, David T Thwaites
    Abstract:

    Plant sap-feeding insects are widespread, having evolved to occupy diverse environmental niches despite exclusive feeding on an impoverished diet lacking in essential amino acids and vitamins. Success depends exquisitely on their symbiotic relationships with microbial symbionts housed within specialized eukaryotic Bacteriocyte cells. Each Bacteriocyte is packed with symbionts that are individually surrounded by a host-derived symbiosomal membrane representing the absolute host-symbiont interface. The symbiosomal membrane must be a dynamic and selectively permeable structure to enable bidirectional and differential movement of essential nutrients, metabolites, and biosynthetic intermediates, vital for growth and survival of host and symbiont. However, despite this crucial role, the molecular basis of membrane transport across the symbiosomal membrane remains unresolved in all Bacteriocyte-containing insects. A transport protein was immunolocalized to the symbiosomal membrane separating the pea aphid Acyrthosiphon pisum from its intracellular symbiont Buchnera aphidicola The transporter, A. pisum nonessential amino acid transporter 1, or ApNEAAT1 (gene: ACYPI008971), was characterized functionally following heterologous expression in Xenopus oocytes, and mediates both inward and outward transport of small dipolar amino acids (serine, proline, cysteine, alanine, glycine). Electroneutral ApNEAAT1 transport is driven by amino acid concentration gradients and is not coupled to transmembrane ion gradients. Previous metabolite profiling of hemolymph and Bacteriocyte, alongside metabolic pathway analysis in host and symbiont, enable prediction of a physiological role for ApNEAAT1 in bidirectional host-symbiont amino acid transfer, supplying both host and symbiont with indispensable nutrients and biosynthetic precursors to facilitate metabolic complementarity.

  • signatures of host symbiont genome coevolution in insect nutritional endosymbioses
    Proceedings of the National Academy of Sciences of the United States of America, 2015
    Co-Authors: Alexandra Wilson, Rebecca P Duncan
    Abstract:

    The role of symbiosis in bacterial symbiont genome evolution is well understood, yet the ways that symbiosis shapes host genomes or more particularly, host/symbiont genome coevolution in the holobiont is only now being revealed. Here, we identify three coevolutionary signatures that characterize holobiont genomes. The first signature, host/symbiont collaboration, arises when completion of essential pathways requires host/endosymbiont genome complementarity. Metabolic collaboration has evolved numerous times in the pathways of amino acid and vitamin biosynthesis. Here, we highlight collaboration in branched-chain amino acid and pantothenate (vitamin B5) biosynthesis. The second coevolutionary signature is acquisition, referring to the observation that holobiont genomes acquire novel genetic material through various means, including gene duplication, lateral gene transfer from bacteria that are not their current obligate symbionts, and full or partial endosymbiont replacement. The third signature, constraint, introduces the idea that holobiont genome evolution is constrained by the processes governing symbiont genome evolution. In addition, we propose that collaboration is constrained by the expression profile of the cell lineage from which endosymbiont-containing host cells, called Bacteriocytes, are derived. In particular, we propose that such differences in Bacteriocyte cell lineage may explain differences in patterns of host/endosymbiont metabolic collaboration between the sap-feeding suborders Sternorrhyncha and Auchenorrhynca. Finally, we review recent studies at the frontier of symbiosis research that are applying functional genomic approaches to characterization of the developmental and cellular mechanisms of host/endosymbiont integration, work that heralds a new era in symbiosis research.

  • dynamic recruitment of amino acid transporters to the insect symbiont interface
    Molecular Ecology, 2014
    Co-Authors: Rebecca P Duncan, Filip Husnik, James T Van Leuven, Donald G Gilbert, Liliana M Davalos, John P Mccutcheon, Alex C C Wilson
    Abstract:

    Symbiosis is well known to influence bacterial symbiont genome evolution and has recently been shown to shape eukaryotic host genomes. Intriguing patterns of host genome evolution, including remarkable numbers of gene duplications, have been observed in the pea aphid, a sap-feeding insect that relies on a bacterial endosymbiont for amino acid provisioning. Previously, we proposed that gene duplication has been important for the evolution of symbiosis based on aphid-specific gene duplication in amino acid transporters (AATs), with some paralogs highly expressed in the cells housing symbionts (Bacteriocytes). Here, we use a comparative approach to test the role of gene duplication in enabling recruitment of AATs to Bacteriocytes. Using genomic and transcriptomic data, we annotate AATs from sap-feeding and non sap-feeding insects and find that, like aphids, AAT gene families have undergone independent large-scale gene duplications in three of four additional sap-feeding insects. RNA-seq differential expression data indicate that, like aphids, the sap-feeding citrus mealybug possesses several lineage-specific Bacteriocyte-enriched paralogs. Further, differential expression data combined with quantitative PCR support independent evolution of Bacteriocyte enrichment in sap-feeding insect AATs. Although these data indicate that gene duplication is not necessary to initiate host/symbiont amino acid exchange, they support a role for gene duplication in enabling AATs to mediate novel host/symbiont interactions broadly in the sap-feeding suborder Sternorrhyncha. In combination with recent studies on other symbiotic systems, gene duplication is emerging as a general pattern in host genome evolution.

  • genome expansion and differential expression of amino acid transporters at the aphid buchnera symbiotic interface
    Molecular Biology and Evolution, 2011
    Co-Authors: Daniel R G Price, Shuji Shigenobu, Rebecca P Duncan, Alex C C Wilson
    Abstract:

    In insects, some of the most ecologically important symbioses are nutritional symbioses that provide hosts with novel traits and thereby facilitate exploitation of otherwise inaccessible niches. One such symbiosis is the ancient obligate intracellular symbiosis of aphids with the c-proteobacteria, Buchnera aphidicola. Although the nutritional basis of the aphid/Buchnera symbiosis is well understood, the processes and structures that mediate the intimate interactions of symbiotic partners remain uncharacterized. Here, using a de novo approach, we characterize the complement of 40 amino acid polyamine organocation (APC) superfamily member amino acid transporters (AATs) encoded in the genome of the pea aphid, Acyrthosiphon pisum. We find that the A. pisum APC superfamily is characterized by extensive gene duplications such that A. pisum has more APC superfamily transporters than other fully sequenced insects, including a ten paralog aphid-specific expansion of the APC transporter slimfast. Detailed expression analysis of 17 transporters selected on the basis of their phylogenetic relationship to five AATs identified in an earlier Bacteriocyte expressed sequence tag study distinguished a subset of eight transporters that have been recruited for amino acid transport in Bacteriocyte cells at the symbiotic interface. These eight transporters include transporters that are highly expressed and/or highly enriched in Bacteriocytes and intriguingly, the four AATs that show Bacteriocyte-enriched expression are all members of gene family expansions, whereas three of the four that are highly expressed but not enriched in Bacteriocytes retain one-to-one orthology with transporters in other genomes. Finally, analysis of evolutionary rates within the large A. pisum slimfast expansion demonstrated increased rates of molecular evolution coinciding with two major shifts in expression: 1) a loss of gut expression and possibly a gain of Bacteriocyte expression and 2) loss of expression in all surveyed tissues in asexual females. Taken together, our characterization of nutrient AATs at the aphid/Buchnera symbiotic interface provides the first examination of the processes and structures operating at the interface of an obligate intracellular insect nutritional symbiosis, offering unique insight into the types of genomic change that likely facilitated evolutionary maintenance of the symbiosis.

Gérard Febvay - One of the best experts on this subject based on the ideXlab platform.

  • Bacteriocyte Reprogramming to Cope With Nutritional Stress in a Phloem Sap Feeding Hemipteran, the Pea Aphid Acyrthosiphon pisum
    Frontiers in physiology, 2018
    Co-Authors: Stefano Colella, Nicolas Parisot, Yvan Rahbé, Pierre Simonet, Gabrielle Duport, Karen Gaget, Gérard Febvay, Patrice Baa-puyoulet, Hubert Charles, Patrick Callaerts
    Abstract:

    Nutritional symbioses play a central role in the ability of insects to thrive on unbalanced diets and in ensuring their evolutionary success. A genomic model for nutritional symbiosis comprises the hemipteran Acyrthosiphon pisum, and the gamma-3-proteobacterium, Buchnera aphidicola, with genomes encoding highly integrated metabolic pathways. A. pisum feeds exclusively on plant phloem sap, a nutritionally unbalanced diet highly variable in composition, thus raising the question of how this symbiotic system responds to nutritional stress. We addressed this by combining transcriptomic, phenotypic and life history trait analyses to determine the organismal impact of deprivation of tyrosine and phenylalanine. These two aromatic amino acids are essential for aphid development, are synthesized in a metabolic pathway for which the aphid host and the endosymbiont are interdependent, and their concentration can be highly variable in plant phloem sap. We found that this nutritional challenge does not have major phenotypic effects on the pea aphid, except for a limited weight reduction and a 2-day delay in onset of nymph laying. Transcriptomic analyses through aphid development showed a prominent response in Bacteriocytes (the core symbiotic tissue which houses the symbionts), but not in gut, thus highlighting the role of Bacteriocytes as major modulators of this homeostasis. This response does not involve a direct regulation of tyrosine and phenylalanine biosynthetic pathway and transporter genes. Instead, we observed an extensive transcriptional reprogramming of the Bacteriocyte with a rapid down-regulation of genes encoding sugar transporters and genes required for sugar metabolism. Consistently, we observed continued overexpression of the A. pisum homolog of RRAD, a small GTPase implicated in repressing aerobic glycolysis. In addition, we found increased transcription of genes involved in proliferation, cell size control and signaling. We experimentally confirmed the significance of these gene expression changes detecting an increase in Bacteriocyte number and cell size in vivo under tyrosine and phenylalanine depletion. Our results support a central role of Bacteriocytes in the aphid response to amino acid deprivation: their transcriptional and cellular responses fine-tune host physiology providing the host insect with an effective way to cope with the challenges posed by the variability in composition of phloem sap.

  • Bacteriocyte cell death in the pea aphid/ Buchnera symbiotic system
    Proceedings of the National Academy of Sciences of the United States of America, 2018
    Co-Authors: Pierre Simonet, Nicolas Parisot, Gabrielle Duport, Karen Gaget, Mélanie Ribeiro Lopes, Kurt Buhler, Veerle Vulsteke, Gérard Febvay
    Abstract:

    Symbiotic associations play a pivotal role in multicellular life by facilitating acquisition of new traits and expanding the ecological capabilities of organisms. In insects that are obligatorily dependent on intracellular bacterial symbionts, novel host cells (Bacteriocytes) or organs (bacteriomes) have evolved for harboring beneficial microbial partners. The processes regulating the cellular life cycle of these endosymbiont-bearing cells, such as the cell-death mechanisms controlling their fate and elimination in response to host physiology, are fundamental questions in the biology of symbiosis. Here we report the discovery of a cell-death process involved in the degeneration of Bacteriocytes in the hemipteran insect Acyrthosiphon pisum This process is activated progressively throughout aphid adulthood and exhibits morphological features distinct from known cell-death pathways. By combining electron microscopy, immunohistochemistry, and molecular analyses, we demonstrated that the initial event of Bacteriocyte cell death is the cytoplasmic accumulation of nonautophagic vacuoles, followed by a sequence of cellular stress responses including the formation of autophagosomes in intervacuolar spaces, activation of reactive oxygen species, and Buchnera endosymbiont degradation by the lysosomal system. We showed that this multistep cell-death process originates from the endoplasmic reticulum, an organelle exhibiting a unique reticular network organization spread throughout the entire cytoplasm and surrounding Buchnera aphidicola endosymbionts. Our findings provide insights into the cellular and molecular processes that coordinate eukaryotic host and endosymbiont homeostasis and death in a symbiotic system and shed light on previously unknown aspects of Bacteriocyte biological functioning.

  • Table_5_Bacteriocyte Reprogramming to Cope With Nutritional Stress in a Phloem Sap Feeding Hemipteran, the Pea Aphid Acyrthosiphon pisum.XLSX
    2018
    Co-Authors: Stefano Colella, Nicolas Parisot, Yvan Rahbé, Pierre Simonet, Gabrielle Duport, Karen Gaget, Gérard Febvay, Patrice Baa-puyoulet, Hubert Charles, Patrick Callaerts
    Abstract:

    Nutritional symbioses play a central role in the ability of insects to thrive on unbalanced diets and in ensuring their evolutionary success. A genomic model for nutritional symbiosis comprises the hemipteran Acyrthosiphon pisum, and the gamma-3-proteobacterium, Buchnera aphidicola, with genomes encoding highly integrated metabolic pathways. A. pisum feeds exclusively on plant phloem sap, a nutritionally unbalanced diet highly variable in composition, thus raising the question of how this symbiotic system responds to nutritional stress. We addressed this by combining transcriptomic, phenotypic and life history trait analyses to determine the organismal impact of deprivation of tyrosine and phenylalanine. These two aromatic amino acids are essential for aphid development, are synthesized in a metabolic pathway for which the aphid host and the endosymbiont are interdependent, and their concentration can be highly variable in plant phloem sap. We found that this nutritional challenge does not have major phenotypic effects on the pea aphid, except for a limited weight reduction and a 2-day delay in onset of nymph laying. Transcriptomic analyses through aphid development showed a prominent response in Bacteriocytes (the core symbiotic tissue which houses the symbionts), but not in gut, thus highlighting the role of Bacteriocytes as major modulators of this homeostasis. This response does not involve a direct regulation of tyrosine and phenylalanine biosynthetic pathway and transporter genes. Instead, we observed an extensive transcriptional reprogramming of the Bacteriocyte with a rapid down-regulation of genes encoding sugar transporters and genes required for sugar metabolism. Consistently, we observed continued overexpression of the A. pisum homolog of RRAD, a small GTPase implicated in repressing aerobic glycolysis. In addition, we found increased transcription of genes involved in proliferation, cell size control and signaling. We experimentally confirmed the significance of these gene expression changes detecting an increase in Bacteriocyte number and cell size in vivo under tyrosine and phenylalanine depletion. Our results support a central role of Bacteriocytes in the aphid response to amino acid deprivation: their transcriptional and cellular responses fine-tune host physiology providing the host insect with an effective way to cope with the challenges posed by the variability in composition of phloem sap.

  • Data_Sheet_1_Bacteriocyte Reprogramming to Cope With Nutritional Stress in a Phloem Sap Feeding Hemipteran, the Pea Aphid Acyrthosiphon pisum.docx
    2018
    Co-Authors: Stefano Colella, Nicolas Parisot, Yvan Rahbé, Pierre Simonet, Gabrielle Duport, Karen Gaget, Gérard Febvay, Patrice Baa-puyoulet, Hubert Charles, Patrick Callaerts
    Abstract:

    Nutritional symbioses play a central role in the ability of insects to thrive on unbalanced diets and in ensuring their evolutionary success. A genomic model for nutritional symbiosis comprises the hemipteran Acyrthosiphon pisum, and the gamma-3-proteobacterium, Buchnera aphidicola, with genomes encoding highly integrated metabolic pathways. A. pisum feeds exclusively on plant phloem sap, a nutritionally unbalanced diet highly variable in composition, thus raising the question of how this symbiotic system responds to nutritional stress. We addressed this by combining transcriptomic, phenotypic and life history trait analyses to determine the organismal impact of deprivation of tyrosine and phenylalanine. These two aromatic amino acids are essential for aphid development, are synthesized in a metabolic pathway for which the aphid host and the endosymbiont are interdependent, and their concentration can be highly variable in plant phloem sap. We found that this nutritional challenge does not have major phenotypic effects on the pea aphid, except for a limited weight reduction and a 2-day delay in onset of nymph laying. Transcriptomic analyses through aphid development showed a prominent response in Bacteriocytes (the core symbiotic tissue which houses the symbionts), but not in gut, thus highlighting the role of Bacteriocytes as major modulators of this homeostasis. This response does not involve a direct regulation of tyrosine and phenylalanine biosynthetic pathway and transporter genes. Instead, we observed an extensive transcriptional reprogramming of the Bacteriocyte with a rapid down-regulation of genes encoding sugar transporters and genes required for sugar metabolism. Consistently, we observed continued overexpression of the A. pisum homolog of RRAD, a small GTPase implicated in repressing aerobic glycolysis. In addition, we found increased transcription of genes involved in proliferation, cell size control and signaling. We experimentally confirmed the significance of these gene expression changes detecting an increase in Bacteriocyte number and cell size in vivo under tyrosine and phenylalanine depletion. Our results support a central role of Bacteriocytes in the aphid response to amino acid deprivation: their transcriptional and cellular responses fine-tune host physiology providing the host insect with an effective way to cope with the challenges posed by the variability in composition of phloem sap.

  • Direct flow cytometry measurements reveal a fine-tuning of symbiotic cell dynamics according to the host developmental needs in aphid symbiosis
    Scientific reports, 2016
    Co-Authors: Pierre Simonet, Gabrielle Duport, Karen Gaget, Gérard Febvay, Stefano Colella, Hubert Charles, Michèle Weiss-gayet, José Viñuelas, Federica Calevro
    Abstract:

    Endosymbiotic associations constitute a driving force in the ecological and evolutionary diversification of metazoan organisms. Little is known about whether and how symbiotic cells are coordinated according to host physiology. Here, we use the nutritional symbiosis between the insect pest, Acyrthosiphon pisum, and its obligate symbiont, Buchnera aphidicola, as a model system. We have developed a novel approach for unculturable bacteria, based on flow cytometry, and used this method to estimate the absolute numbers of symbionts at key stages of aphid life. The endosymbiont population increases exponentially throughout nymphal development, showing a growing rate which has never been characterized by indirect molecular techniques. Using histology and imaging techniques, we have shown that the endosymbiont-bearing cells (Bacteriocytes) increase significantly in number and size during the nymphal development, and clustering in the insect abdomen. Once adulthood is reached and the laying period has begun, the dynamics of symbiont and host cells is reversed: the number of endosymbionts decreases progressively and the Bacteriocyte structure degenerates during insect aging. In summary, these results show a coordination of the cellular dynamics between Bacteriocytes and primary symbionts and reveal a fine-tuning of aphid symbiotic cells to the nutritional demand imposed by the host physiology throughout development.