Bacteroidetes

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 28176 Experts worldwide ranked by ideXlab platform

Rudolf Amann - One of the best experts on this subject based on the ideXlab platform.

  • ancestry and adaptive radiation of Bacteroidetes as assessed by comparative genomics
    Systematic and Applied Microbiology, 2020
    Co-Authors: Rudolf Amann, Raul Munoz, Hanno Teeling, Ramon Rossellomora
    Abstract:

    Abstract To date, the phylum Bacteroidetes comprises more than 1500 described species with diverse ecological roles. However, there is little understanding of archetypal Bacteroidetes traits at a genomic level. In this study, a representative set of 89 Bacteroidetes genomes was compiled, and pairwise reciprocal best-match gene comparisons and gene syntenies were used to identify common traits that allowed Bacteroidetes evolution and adaptive radiation to be traced. The type IX secretion system (T9SS) was highly conserved among all studied Bacteroidetes. Class-level comparisons furthermore suggested that the ACIII-caa3COX super-complex evolved in the ancestral aerobic bacteroidetal lineage, and was secondarily lost in extant anaerobic Bacteroidetes. Another Bacteroidetes-specific respiratory chain adaptation was the sodium-pumping Nqr complex I that replaced the ancestral proton-pumping complex I in marine species. T9SS plays a role in gliding motility and the acquisition of complex macro-molecular organic compounds, and the ACIII-caa3COX super-complex allows effective control of electron flux during respiration. This combination likely provided ancestral Bacteroidetes with a decisive competitive advantage to effectively scavenge, uptake and degrade complex organic molecules, and therefore has played a pivotal role in the successful adaptive radiation of the phylum.

  • revised phylogeny of Bacteroidetes and proposal of sixteen new taxa and two new combinations including rhodothermaeota phyl nov
    Systematic and Applied Microbiology, 2016
    Co-Authors: Ramon Rossellomora, Raul Munoz, Rudolf Amann
    Abstract:

    Members of the phylum Bacteroidetes, which was originally defined as a monophyletic branch encompassing the genera Cytophaga, Flavobacterium and Bacteroides (CFB), are widely studied due to their importance in environmental and gut microbiology. As a consequence, the number of species names with standing in nomenclature has doubled in the past five years. In this study, a revision of an earlier phylogeny of Bacteroidetes has been performed using the 16S rRNA gene as a backbone in combination with the 23S rRNA gene, as well as multilocus sequence analysis (MLSA) of 29 orthologous protein sequences, and indels in the sequences of the beta subunit of the F-type ATPase and the alanyl-tRNA synthetase. In addition, taxonomic data for Bacteroidetes has been updated by considering the orphan species list, signature nucleotides in the 16S rRNA sequence, the list of outlier species, and discrepancies with the current taxonomy at the genus rank level. As a result, seven new taxa are proposed within Bacteroidetes (Chitinophagia classis nov., Chitinophagales ord. nov., Crocinitomicaceae fam. nov., Odoribacteraceae fam. nov., Hymenobacteraceae fam. nov., Thermonemataceae fam. nov. and Persicobacteraceae fam. nov.), as well as one new phylum Rhodothermaeota phyl. nov. that contains two classes, two orders, four families and a new genus with two new combinations.

  • functional characterization of polysaccharide utilization loci in the marine Bacteroidetes gramella forsetii kt0803
    The ISME Journal, 2014
    Co-Authors: Antje Kabisch, Rudolf Amann, Hanno Teeling, Margarete Schüler, Andreas Otto, Sten Konig, Dorte Becher, Dirk Albrecht, Thomas Schweder
    Abstract:

    Members of the phylum Bacteroidetes are abundant in many marine ecosystems and are known to have a pivotal role in the mineralization of complex organic substrates such as polysaccharides and proteins. We studied the decomposition of the algal glycans laminarin and alginate by ‘Gramella forsetii' KT0803, a bacteroidetal isolate from North Sea surface waters. A combined application of isotope labeling, subcellular protein fractionation and quantitative proteomics revealed two large polysaccharide utilization loci (PULs) that were specifically induced, one by alginate and the other by laminarin. These regulons comprised genes of surface-exposed proteins such as oligomer transporters, substrate-binding proteins, carbohydrate-active enzymes and hypothetical proteins. Besides, several glycan-specific TonB-dependent receptors and SusD-like substrate-binding proteins were expressed also in the absence of polysaccharide substrates, suggesting an anticipatory sensing function. Genes for the utilization of the beta-1,3-glucan laminarin were found to be co-regulated with genes for glucose and alpha-1,4-glucan utilization, which was not the case for the non-glucan alginate. Strong syntenies of the PULs of ‘G. forsetii' with similar loci in other Bacteroidetes indicate that the specific response mechanisms of ‘G. forsetii' to changes in polysaccharide availability likely apply to other Bacteroidetes. Our results can thus contribute to an improved understanding of the ecological niches of marine Bacteroidetes and their roles in the polysaccharide decomposition part of carbon cycling in marine ecosystems.

  • mapping glycoconjugate mediated interactions of marine Bacteroidetes with diatoms
    Systematic and Applied Microbiology, 2013
    Co-Authors: Christin M Bennke, Bernhard M Fuchs, Thomas R Neu, Rudolf Amann
    Abstract:

    The degradation of diatoms is mainly catalyzed by Bacteroidetes and this process is of global relevance for the carbon cycle. In this study, a combination of catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH) and fluorescent lectin binding analysis (FLBA) was used to identify and map glycoconjugates involved in the specific interactions of Bacteroidetes and diatoms, as well as detritus, at the coastal marine site Helgoland Roads (German Bight, North Sea). The study probed both the presence of lectin-specific extracellular polymeric substances (EPS) of Bacteroidetes for cell attachment and that of glycoconjugates on diatoms with respect to binding sites for Bacteroidetes. Members of the clades Polaribacter and Ulvibacter were shown to form microcolonies within aggregates for which FLBA indicated the presence of galactose containing slime. Polaribacter spp. was shown to bind specifically to the setae of the abundant diatom Chaetoceros spp., and the setae were stained with fucose-specific lectins. In contrast, Ulvibacter spp. attached to diatoms of the genus Asterionella which bound, among others, the mannose-specific lectin PSA. The newly developed CARD-FISH/FLBA protocol was limited to the glycoconjugates that persisted after the initial CARD-FISH procedure. The differential attachment of bacteroidetal clades to diatoms and their discrete staining by FLBA provided evidence for the essential role that formation and recognition of glycoconjugates play in the interaction of bacteria with phytoplankton.

  • high local and global diversity of flavobacteria in marine plankton
    Environmental Microbiology, 2007
    Co-Authors: Rudolf Amann, Cecilia Alonso, Falk Warnecke, Jakob Pernthaler
    Abstract:

    Summary Members of the phylum Bacteroidetes are among the most abundant microbes in coastal marine waters, but it is unclear to which extent the diversity within this phylum is covered by currently available 16S rRNA gene sequence information. We, thus, obtained a comprehensive collection of sequence types affiliated with Bacteroidetes in coastal North Sea surface waters and we compared this local diversity with the available sequences of marine planktonic and other aquatic Bacteroidetes. Approximately 15% of > 600 clones from two libraries (August 2000, June 2001) were related to Bacteroidetes, specifically to the Flavobacteria. Local diversity appeared to be almost exhaustively sampled. However, the diversity of the two libraries virtually did not overlap, indicating a pronounced temporal variability of the planktonic Flavobacteria assemblage. The majority of sequence types represented novel phylogenetic lineages, adding 6‐7% to the currently known genera and species of Bacteroidetes in marine waters. Different diversity estimators suggested that so far only approximately half of the global diversity of planktonic marine Bacteroidetes has been described. The data set moreover indicated that cultivationindependent techniques and isolation approaches have recovered almost equally sized and virtually non-overlapping fractions of the currently known diversity within this phylum. Interestingly, only 15% of genera of Bacteroidetes from various aquatic environments appear to occur in more than one habitat type.

Hanno Teeling - One of the best experts on this subject based on the ideXlab platform.

  • ancestry and adaptive radiation of Bacteroidetes as assessed by comparative genomics
    Systematic and Applied Microbiology, 2020
    Co-Authors: Rudolf Amann, Raul Munoz, Hanno Teeling, Ramon Rossellomora
    Abstract:

    Abstract To date, the phylum Bacteroidetes comprises more than 1500 described species with diverse ecological roles. However, there is little understanding of archetypal Bacteroidetes traits at a genomic level. In this study, a representative set of 89 Bacteroidetes genomes was compiled, and pairwise reciprocal best-match gene comparisons and gene syntenies were used to identify common traits that allowed Bacteroidetes evolution and adaptive radiation to be traced. The type IX secretion system (T9SS) was highly conserved among all studied Bacteroidetes. Class-level comparisons furthermore suggested that the ACIII-caa3COX super-complex evolved in the ancestral aerobic bacteroidetal lineage, and was secondarily lost in extant anaerobic Bacteroidetes. Another Bacteroidetes-specific respiratory chain adaptation was the sodium-pumping Nqr complex I that replaced the ancestral proton-pumping complex I in marine species. T9SS plays a role in gliding motility and the acquisition of complex macro-molecular organic compounds, and the ACIII-caa3COX super-complex allows effective control of electron flux during respiration. This combination likely provided ancestral Bacteroidetes with a decisive competitive advantage to effectively scavenge, uptake and degrade complex organic molecules, and therefore has played a pivotal role in the successful adaptive radiation of the phylum.

  • polysaccharide utilisation loci of Bacteroidetes from two contrasting open ocean sites in the north atlantic
    Environmental Microbiology, 2016
    Co-Authors: Christin M Bennke, Lennart Kappelmann, Margarete Schüler, Karen Kruger, Sixing Huang, Angelique Gobet, Valerie Barbe, Bernhard M Fuchs, Gurvan Michel, Hanno Teeling
    Abstract:

    Marine Bacteroidetes have pronounced capabilities of degrading high molecular weight organic matter such as proteins and polysaccharides. Previously we reported on 76 Bacteroidetes-affiliated fosmids from the North Atlantic Ocean's boreal polar and oligotrophic subtropical provinces. Here, we report on the analysis of further 174 fosmids from the same libraries. The combined, re-assembled dataset (226 contigs; 8.8 Mbp) suggests that planktonic Bacteroidetes at the oligotrophic southern station use more peptides and bacterial and animal polysaccharides, whereas Bacteroidetes at the polar station (East-Greenland Current) use more algal and plant polysaccharides. The latter agrees with higher abundances of algae and terrigenous organic matter, including plant material, at the polar station. Results were corroborated by in-depth bioinformatic analysis of 14 polysaccharide utilisation loci from both stations, suggesting laminarin-specificity for four and specificity for sulfated xylans for two loci. In addition, one locus from the polar station supported use of non-sulfated xylans and mannans, possibly of plant origin. While peptides likely represent a prime source of carbon for Bacteroidetes in open oceans, our data suggest that as yet unstudied clades of these Bacteroidetes have a surprisingly broad capacity for polysaccharide degradation. In particular, laminarin-specific PULs seem widespread and thus must be regarded as globally important.

  • functional characterization of polysaccharide utilization loci in the marine Bacteroidetes gramella forsetii kt0803
    The ISME Journal, 2014
    Co-Authors: Antje Kabisch, Rudolf Amann, Hanno Teeling, Margarete Schüler, Andreas Otto, Sten Konig, Dorte Becher, Dirk Albrecht, Thomas Schweder
    Abstract:

    Members of the phylum Bacteroidetes are abundant in many marine ecosystems and are known to have a pivotal role in the mineralization of complex organic substrates such as polysaccharides and proteins. We studied the decomposition of the algal glycans laminarin and alginate by ‘Gramella forsetii' KT0803, a bacteroidetal isolate from North Sea surface waters. A combined application of isotope labeling, subcellular protein fractionation and quantitative proteomics revealed two large polysaccharide utilization loci (PULs) that were specifically induced, one by alginate and the other by laminarin. These regulons comprised genes of surface-exposed proteins such as oligomer transporters, substrate-binding proteins, carbohydrate-active enzymes and hypothetical proteins. Besides, several glycan-specific TonB-dependent receptors and SusD-like substrate-binding proteins were expressed also in the absence of polysaccharide substrates, suggesting an anticipatory sensing function. Genes for the utilization of the beta-1,3-glucan laminarin were found to be co-regulated with genes for glucose and alpha-1,4-glucan utilization, which was not the case for the non-glucan alginate. Strong syntenies of the PULs of ‘G. forsetii' with similar loci in other Bacteroidetes indicate that the specific response mechanisms of ‘G. forsetii' to changes in polysaccharide availability likely apply to other Bacteroidetes. Our results can thus contribute to an improved understanding of the ecological niches of marine Bacteroidetes and their roles in the polysaccharide decomposition part of carbon cycling in marine ecosystems.

  • genomic content of uncultured Bacteroidetes from contrasting oceanic provinces in the north atlantic ocean
    Environmental Microbiology, 2012
    Co-Authors: Paola R Gomezpereira, Hanno Teeling, Michael Richter, Margarete Schüler, Christin M Bennke, Valerie Barbe, Bernhard M Fuchs, Jost Waldmann, Elodie Bataille, Frank Oliver Glockner
    Abstract:

    Summary Bacteroidetes are widespread in marine systems where they play a crucial role in organic matter degradation. Whole genome analysis of several strains has revealed a broad glycolytic and proteolytic potential. In this study, we used a targeted metagenomic approach to investigate the degradation capabilities of distinct Bacteroidetes clades from two contrasting regions of the North Atlantic Ocean, the Polar Biome (BPLR) and the North Atlantic Subtropical (NAST). We present here the analysis of 76 Bacteroidetes fosmids, of which 28 encode the 16S rRNA gene as phylogenetic marker, and their comparison to complete Bacteroidetes genomes. Almost all of the 16S rRNA harbouring fosmids belonged to clades that we previously identified in BPLR and NAST. The majority of sequenced fosmids could be assigned to Bacteroidetes affiliated with the class Flavobacteria. We also present novel genomic information on the classes Cytophagia and Sphingobacteria, suggesting a capability of the latter for attachment to algal surfaces. In our fosmid set we identified a larger potential for polysaccharide degradation and cell surface attachment in the phytoplankton-rich BPLR. Particularly, two flavobacterial fosmids, one affiliated with the genus Polaribacter, showed a whole armoury of enzymes that likely function in degradation of sulfated polysaccharides known to be major constituents of phytoplankton cell walls. Genes involved in protein and peptidoglycan degradation, although present in both fosmid sets, seemed to have a slight preponderance in NAST. This study provides support for the hypothesis of a distinct specialization among marine Bacteroidetes for the degradation of certain types of polymers.

  • whole genome analysis of the marine Bacteroidetes gramella forsetii reveals adaptations to degradation of polymeric organic matter
    Environmental Microbiology, 2006
    Co-Authors: Margarete Bauer, Hanno Teeling, Michael Richter, Michael Kube, Thierry Lombardot, Elke Allers, Chris Wurdemann, Christian Quast, Heiner Kuhl, Florian Knaust
    Abstract:

    Summary Members of the Bacteroidetes, formerly known as the Cytophaga-Flavobacteria-Bacteroides (CFB) phylum, are among the major taxa of marine heterotrophic bacterioplankton frequently found on macroscopic organic matter particles (marine snow). In addition, they have been shown to also represent a significant part of free-living microbial assemblages in nutrient-rich microenvironments. Their abundance and distribution pattern in combination with enzymatic activity studies has led to the notion that organisms of this group are specialists for degradation of high molecular weight compounds in both the dissolved and particulate fraction of the marine organic matter pool, implying a major role of Bacteroidetes in the marine carbon cycle. Despite their ecological importance, comprehensive molecular data on organisms of this group have been scarce so far. Here we report on the first whole genome analysis of a marine Bacteroidetes representative, ‘Gramella forsetii’ KT0803. Functional analysis of the predicted proteome disclosed several traits which in joint consideration suggest a clear adaptation of this marine Bacteroidetes representative to the degradation of high molecular weight organic matter, such as a substantial suite of genes encoding hydrolytic enzymes, a predicted preference for polymeric carbon sources and a distinct capability for surface adhesion.

Raul Munoz - One of the best experts on this subject based on the ideXlab platform.

  • ancestry and adaptive radiation of Bacteroidetes as assessed by comparative genomics
    Systematic and Applied Microbiology, 2020
    Co-Authors: Rudolf Amann, Raul Munoz, Hanno Teeling, Ramon Rossellomora
    Abstract:

    Abstract To date, the phylum Bacteroidetes comprises more than 1500 described species with diverse ecological roles. However, there is little understanding of archetypal Bacteroidetes traits at a genomic level. In this study, a representative set of 89 Bacteroidetes genomes was compiled, and pairwise reciprocal best-match gene comparisons and gene syntenies were used to identify common traits that allowed Bacteroidetes evolution and adaptive radiation to be traced. The type IX secretion system (T9SS) was highly conserved among all studied Bacteroidetes. Class-level comparisons furthermore suggested that the ACIII-caa3COX super-complex evolved in the ancestral aerobic bacteroidetal lineage, and was secondarily lost in extant anaerobic Bacteroidetes. Another Bacteroidetes-specific respiratory chain adaptation was the sodium-pumping Nqr complex I that replaced the ancestral proton-pumping complex I in marine species. T9SS plays a role in gliding motility and the acquisition of complex macro-molecular organic compounds, and the ACIII-caa3COX super-complex allows effective control of electron flux during respiration. This combination likely provided ancestral Bacteroidetes with a decisive competitive advantage to effectively scavenge, uptake and degrade complex organic molecules, and therefore has played a pivotal role in the successful adaptive radiation of the phylum.

  • revised phylogeny of Bacteroidetes and proposal of sixteen new taxa and two new combinations including rhodothermaeota phyl nov
    Systematic and Applied Microbiology, 2016
    Co-Authors: Ramon Rossellomora, Raul Munoz, Rudolf Amann
    Abstract:

    Members of the phylum Bacteroidetes, which was originally defined as a monophyletic branch encompassing the genera Cytophaga, Flavobacterium and Bacteroides (CFB), are widely studied due to their importance in environmental and gut microbiology. As a consequence, the number of species names with standing in nomenclature has doubled in the past five years. In this study, a revision of an earlier phylogeny of Bacteroidetes has been performed using the 16S rRNA gene as a backbone in combination with the 23S rRNA gene, as well as multilocus sequence analysis (MLSA) of 29 orthologous protein sequences, and indels in the sequences of the beta subunit of the F-type ATPase and the alanyl-tRNA synthetase. In addition, taxonomic data for Bacteroidetes has been updated by considering the orphan species list, signature nucleotides in the 16S rRNA sequence, the list of outlier species, and discrepancies with the current taxonomy at the genus rank level. As a result, seven new taxa are proposed within Bacteroidetes (Chitinophagia classis nov., Chitinophagales ord. nov., Crocinitomicaceae fam. nov., Odoribacteraceae fam. nov., Hymenobacteraceae fam. nov., Thermonemataceae fam. nov. and Persicobacteraceae fam. nov.), as well as one new phylum Rhodothermaeota phyl. nov. that contains two classes, two orders, four families and a new genus with two new combinations.

Fabrice Armougom - One of the best experts on this subject based on the ideXlab platform.

  • use of pyrosequencing and dna barcodes to monitor variations in firmicutes and Bacteroidetes communities in the gut microbiota of obese humans
    BMC Genomics, 2008
    Co-Authors: Fabrice Armougom
    Abstract:

    Background Recent studies of 16S rRNA genes in the mammalian gut microbiota distinguished a higher Firmicutes/Bacteroidetes ratio in obese individuals compared to lean individuals. This ratio was estimated using a clonal Sanger sequencing approach which is time-consuming and requires laborious data analysis. In contrast, new high-throughput pyrosequencing technology offers an inexpensive alternative to clonal Sanger sequencing and would significantly advance our understanding of obesity via the development of a clinical diagnostic method. Here we present a cost-effective method that combines 16S rRNA pyrosequencing and DNA barcodes of the Firmicutes and Bacteroidetes 16S rRNA genes to determine the Firmicutes/Bacteroidetes ratio in the gut microbiota of obese humans.

  • use of pyrosequencing and dna barcodes to monitor variations in firmicutes and Bacteroidetes communities in the gut microbiota of obese humans
    BMC Genomics, 2008
    Co-Authors: Fabrice Armougom, Didier Raoult
    Abstract:

    Recent studies of 16S rRNA genes in the mammalian gut microbiota distinguished a higher Firmicutes/Bacteroidetes ratio in obese individuals compared to lean individuals. This ratio was estimated using a clonal Sanger sequencing approach which is time-consuming and requires laborious data analysis. In contrast, new high-throughput pyrosequencing technology offers an inexpensive alternative to clonal Sanger sequencing and would significantly advance our understanding of obesity via the development of a clinical diagnostic method. Here we present a cost-effective method that combines 16S rRNA pyrosequencing and DNA barcodes of the Firmicutes and Bacteroidetes 16S rRNA genes to determine the Firmicutes/Bacteroidetes ratio in the gut microbiota of obese humans. The main result was the identification of DNA barcodes targeting the Firmicutes and Bacteroidetes phyla. These barcodes were validated using previously published 16S rRNA gut microbiota clone libraries. In addition, an accurate F/B ratio was found when the DNA barcodes were applied to short pyrosequencing reads of published gut metagenomes. Finally, the barcodes were utilized to define the F/B ratio of 16S rRNA pyrosequencing data generated from brain abscess pus and cystic fibrosis sputum. Using DNA barcodes of Bacteroidetes and Firmicutes 16S rRNA genes combined with pyrosequencing is a cost-effective method for monitoring relevant changes in the relative abundance of Firmicutes and Bacteroidetes bacterial communities in microbial ecosystems.

  • Monitoring bacterial community of human gut microbiota reveals an increase in Lactobacillus in obese patients and Methanogens in anorexic patients.
    Public Library of Science (PLoS), 2024
    Co-Authors: Fabrice Armougom, Mireille Henry, Bernard Vialettes, Denis Raccah, Didier Raoult
    Abstract:

    BACKGROUND: Studies of the bacterial communities of the gut microbiota have revealed a shift in the ratio of Firmicutes and Bacteroidetes in obese patients. Determining the variations of microbial communities in feces may be beneficial for the identification of specific profiles in patients with abnormal weights. The roles of the archaeon Methanobrevibacter smithii and Lactobacillus species have not been described in these studies. METHODS AND FINDINGS: We developed an efficient and robust real-time PCR tool that includes a plasmid-based internal control and allows for quantification of the bacterial divisions Bacteroidetes, Firmicutes, and Lactobacillus as well as the methanogen M. smithii. We applied this technique to the feces of 20 obese subjects, 9 patients with anorexia nervosa, and 20 normal-weight healthy controls. Our results confirmed a reduction in the Bacteroidetes community in obese patients (p

Bernard Henrissat - One of the best experts on this subject based on the ideXlab platform.

  • Bacteroidetes use thousands of enzyme combinations to break down glycans
    Nature Communications, 2019
    Co-Authors: Pascal Lapebie, Bernard Henrissat, Nicolas Terrapon, Vincent Lombard, Elodie Drula
    Abstract:

    Unlike proteins, glycan chains are not directly encoded by DNA, but by the specificity of the enzymes that assemble them. Theoretical calculations have proposed an astronomical number of possible isomers (> 1012 hexasaccharides) but the actual diversity of glycan structures in nature is not known. Bacteria of the Bacteroidetes phylum are considered primary degraders of polysaccharides and they are found in all ecosystems investigated. In Bacteroidetes genomes, carbohydrate-degrading enzymes (CAZymes) are arranged in gene clusters termed polysaccharide utilization loci (PULs). The depolymerization of a given complex glycan by Bacteroidetes PULs requires bespoke enzymes; conversely, the enzyme composition in PULs can provide information on the structure of the targeted glycans. Here we group the 13,537 PULs encoded by 964 Bacteroidetes genomes according to their CAZyme composition. We find that collectively Bacteroidetes have elaborated a few thousand enzyme combinations for glycan breakdown, suggesting a global estimate of diversity of glycan structures much smaller than the theoretical one. Bacteroidetes genomes contain polysaccharide utilization loci (PULs), each of which encodes enzymes for the breakdown of one particular glycan. By analyzing the enzyme composition of 13,537 PULs, the authors suggest that the natural glycan diversity is orders of magnitude lower than previously proposed.

  • automatic prediction of polysaccharide utilization loci in Bacteroidetes species
    Bioinformatics, 2015
    Co-Authors: Nicolas Terrapon, Vincent Lombard, H J Gilbert, Bernard Henrissat
    Abstract:

    MOTIVATION A bacterial polysaccharide utilization locus (PUL) is a set of physically linked genes that orchestrate the breakdown of a specific glycan. PULs are prevalent in the Bacteroidetes phylum and are key to the digestion of complex carbohydrates, notably by the human gut microbiota. A given Bacteroidetes genome can encode dozens of different PULs whose boundaries and precise gene content are difficult to predict. RESULTS Here, we present a fully automated approach for PUL prediction using genomic context and domain annotation alone. By combining the detection of a pair of marker genes with operon prediction using intergenic distances, and queries to the carbohydrate-active enzymes database (www.cazy.org), our predictor achieved above 86% accuracy in two Bacteroides species with extensive experimental PUL characterization. AVAILABILITY AND IMPLEMENTATION PUL predictions in 67 Bacteroidetes genomes from the human gut microbiota and two additional species, from the canine oral sphere and from the environment, are presented in our database accessible at www.cazy.org/PULDB/index.php.

  • novel features of the polysaccharide digesting gliding bacterium flavobacterium johnsoniae as revealed by genome sequence analysis
    Applied and Environmental Microbiology, 2009
    Co-Authors: Mark J Mcbride, Eric C Martens, Bernard Henrissat, Gary Xie, Alla Lapidus, Ryan G Rhodes, Eugene Goltsman, Wei Wang
    Abstract:

    The 6.10-Mb genome sequence of the aerobic chitin-digesting gliding bacterium Flavobacterium johnsoniae (phylum Bacteroidetes) is presented. F. johnsoniae is a model organism for studies of bacteroidete gliding motility, gene regulation, and biochemistry. The mechanism of F. johnsoniae gliding is novel, and genome analysis confirms that it does not involve well-studied motility organelles, such as flagella or type IV pili. The motility machinery is composed of Gld proteins in the cell envelope that are thought to comprise the "motor" and SprB, which is thought to function as a cell surface adhesin that is propelled by the motor. Analysis of the genome identified genes related to sprB that may encode alternative adhesins used for movement over different surfaces. Comparative genome analysis revealed that some of the gld and spr genes are found in nongliding Bacteroidetes and may encode components of a novel protein secretion system. F. johnsoniae digests proteins, and 125 predicted peptidases were identified. F. johnsoniae also digests numerous polysaccharides, and 138 glycoside hydrolases, 9 polysaccharide lyases, and 17 carbohydrate esterases were predicted. The unexpected ability of F. johnsoniae to digest hemicelluloses, such as xylans, mannans, and xyloglucans, was predicted based on the genome analysis and confirmed experimentally. Numerous predicted cell surface proteins related to Bacteroides thetaiotaomicron SusC and SusD, which are likely involved in binding of oligosaccharides and transport across the outer membrane, were also identified. Genes required for synthesis of the novel outer membrane flexirubin pigments were identified by a combination of genome analysis and genetic experiments. Genes predicted to encode components of a multienzyme nonribosomal peptide synthetase were identified, as were novel aspects of gene regulation. The availability of techniques for genetic manipulation allows rapid exploration of the features identified for the polysaccharide-digesting gliding bacteroidete F. johnsoniae.

  • evolution of symbiotic bacteria in the distal human intestine
    PLOS Biology, 2007
    Co-Authors: Michael A Mahowald, Ruth E Ley, Catherine A Lozupone, Micah Hamady, Eric C Martens, Bernard Henrissat, Pedro M Coutinho, Patrick Minx
    Abstract:

    The adult human intestine contains trillions of bacteria, representing hundreds of species and thousands of subspecies. Little is known about the selective pressures that have shaped and are shaping this community's component species, which are dominated by members of the Bacteroidetes and Firmicutes divisions. To examine how the intestinal environment affects microbial genome evolution, we have sequenced the genomes of two members of the normal distal human gut microbiota, Bacteroides vulgatus and Bacteroides distasonis, and by comparison with the few other sequenced gut and non-gut Bacteroidetes, analyzed their niche and habitat adaptations. The results show that lateral gene transfer, mobile elements, and gene amplification have played important roles in affecting the ability of gut-dwelling Bacteroidetes to vary their cell surface, sense their environment, and harvest nutrient resources present in the distal intestine. Our findings show that these processes have been a driving force in the adaptation of Bacteroidetes to the distal gut environment, and emphasize the importance of considering the evolution of humans from an additional perspective, namely the evolution of our microbiomes.