Burkholderia thailandensis

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 1329 Experts worldwide ranked by ideXlab platform

Mohammad R. Seyedsayamdost - One of the best experts on this subject based on the ideXlab platform.

  • Reporter‐Guided Transposon Mutant Selection for Activation of Silent Gene Clusters in Burkholderia thailandensis
    Chembiochem : a European journal of chemical biology, 2020
    Co-Authors: Dainan Mao, Aya Yoshimura, Rurun Wang, Mohammad R. Seyedsayamdost
    Abstract:

    Most natural product biosynthetic gene clusters that can be observed bioinformatically are silent. This insight has prompted the development of several methodologies for inducing their expression. One of the more recent methods, termed reporter-guided mutant selection (RGMS), entails creation of a library of mutants that is then screened for the desired phenotype via reporter gene expression. Herein, we apply a similar approach to Burkholderia thailandensis and, using transposon mutagenesis, mutagenize three strains, each carrying a fluorescent reporter in the malleilactone (mal), capistruin (cap), or an unidentified ribosomal peptide (tomm) gene cluster. We show that even a small library of

  • Multi-Omic Analyses Provide Links between Low-Dose Antibiotic Treatment and Induction of Secondary Metabolism in Burkholderia thailandensis
    mBio, 2020
    Co-Authors: Dainan Mao, Aya Yoshimura, Paul Rosen, W. Lance Martin, Étienne Gallant, Martin Wühr, Mohammad R. Seyedsayamdost
    Abstract:

    Low doses of antibiotics can trigger secondary metabolite biosynthesis in bacteria, but the underlying mechanisms are generally unknown. We sought to better understand this phenomenon by studying how the antibiotic trimethoprim activates the synthesis of the virulence factor malleilactone in Burkholderia thailandensis Using transcriptomics, quantitative multiplexed proteomics, and primary metabolomics, we systematically mapped the changes induced by trimethoprim. Surprisingly, even subinhibitory doses of the antibiotic resulted in broad transcriptional and translational alterations, with ∼8.5% of the transcriptome and ∼5% of the proteome up- or downregulated >4-fold. Follow-up studies with genetic-biochemical experiments showed that the induction of malleilactone synthesis can be sufficiently explained by the accumulation of methionine biosynthetic precursors, notably homoserine, as a result of inhibition of the folate pathway. Homoserine activated the malleilactone gene cluster via the transcriptional regulator MalR and gave rise to a secondary metabolome which was very similar to that generated by trimethoprim. Our work highlights the expansive changes that low-dose trimethoprim induces on bacterial physiology and provides insights into its stimulatory effect on secondary metabolism.IMPORTANCE The discovery of antibiotics ranks among the most significant accomplishments of the last century. Although the targets of nearly all clinical antibiotics are known, our understanding regarding their natural functions and the effects of subinhibitory concentrations is in its infancy. Stimulatory rather than inhibitory functions have been attributed to low-dose antibiotics. Among these, we previously found that antibiotics activate silent biosynthetic genes and thereby enhance the metabolic output of bacteria. The regulatory circuits underlying this phenomenon are unknown. We take a first step toward elucidating these circuits and show that low doses of trimethoprim (Tmp) have cell-wide effects on the saprophyte Burkholderia thailandensis Most importantly, inhibition of one-carbon metabolic processes by Tmp leads to an accumulation of homoserine, which induces the production of an otherwise silent cytotoxin via a LuxR-type transcriptional regulator. These results provide a starting point for uncovering the molecular basis of the hormetic effects of antibiotics.

  • reporter guided transposon mutant selection for activation of silent gene clusters in Burkholderia thailandensis
    ChemBioChem, 2020
    Co-Authors: Dainan Mao, Aya Yoshimura, Rurun Wang, Mohammad R. Seyedsayamdost
    Abstract:

    Most natural product biosynthetic gene clusters that can be observed bioinformatically are silent. This insight has prompted the development of several methodologies for inducing their expression. One of the more recent methods, termed reporter-guided mutant selection (RGMS), entails creation of a library of mutants that is then screened for the desired phenotype via reporter gene expression. Herein, we apply a similar approach to Burkholderia thailandensis and, using transposon mutagenesis, mutagenize three strains, each carrying a fluorescent reporter in the malleilactone (mal), capistruin (cap), or an unidentified ribosomal peptide (tomm) gene cluster. We show that even a small library of <500 mutants can be used to induce expression of each cluster. We also explore the mechanism of activation and find that inhibition of pyrimidine biosynthesis is linked to the induction of the mal cluster. Both a transposon insertion into pyrF as well as small-molecule-mediated inhibition of PyrF trigger malleilactone biosynthesis. Our results pave the way toward the broad application of RGMS and related approaches to Burkholderia spp.

  • Mapping the Trimethoprim-Induced Secondary Metabolome of Burkholderia thailandensis
    ACS chemical biology, 2016
    Co-Authors: Bethany K. Okada, Dainan Mao, Leah B. Bushin, Mohammad R. Seyedsayamdost
    Abstract:

    While bacterial genomes typically contain numerous secondary metabolite biosynthetic gene clusters, only a small fraction of these are expressed at any given time. The remaining majority is inactive or silent, and methods that awaken them would greatly expand our repertoire of bioactive molecules. We recently devised a new approach for identifying inducers of silent gene clusters and proposed that the clinical antibiotic trimethoprim acted as a global activator of secondary metabolism in Burkholderia thailandensis. Herein, we report that trimethoprim triggers the production of over 100 compounds that are not observed under standard growth conditions, thus drastically modulating the secondary metabolic output of B. thailandensis. Using MS/MS networking and NMR, we assign structures to ∼40 compounds, including a group of new molecules, which we call acybolins. With methods at hand for activation of silent gene clusters and rapid identification of small molecules, the hidden secondary metabolomes of bacteria can be interrogated.

  • mapping the trimethoprim induced secondary metabolome of Burkholderia thailandensis
    ACS Chemical Biology, 2016
    Co-Authors: Bethany K. Okada, Dainan Mao, Leah B. Bushin, Mohammad R. Seyedsayamdost
    Abstract:

    While bacterial genomes typically contain numerous secondary metabolite biosynthetic gene clusters, only a small fraction of these are expressed at any given time. The remaining majority is inactive or silent, and methods that awaken them would greatly expand our repertoire of bioactive molecules. We recently devised a new approach for identifying inducers of silent gene clusters and proposed that the clinical antibiotic trimethoprim acted as a global activator of secondary metabolism in Burkholderia thailandensis. Herein, we report that trimethoprim triggers the production of over 100 compounds that are not observed under standard growth conditions, thus drastically modulating the secondary metabolic output of B. thailandensis. Using MS/MS networking and NMR, we assign structures to ∼40 compounds, including a group of new molecules, which we call acybolins. With methods at hand for activation of silent gene clusters and rapid identification of small molecules, the hidden secondary metabolomes of bacteria...

E. P. Greenberg - One of the best experts on this subject based on the ideXlab platform.

  • Quorum Sensing Influences Burkholderia thailandensis Biofilm Development and Matrix Production
    Journal of bacteriology, 2016
    Co-Authors: Boo Shan Tseng, Charlotte D Majerczyk, E. P. Greenberg, Daniel Passos Da Silva, Josephine R. Chandler, Matthew R Parsek
    Abstract:

    ABSTRACT Members of the genus Burkholderia are known to be adept at biofilm formation, which presumably assists in the survival of these organisms in the environment and the host. Biofilm formation has been linked to quorum sensing (QS) in several bacterial species. In this study, we characterized Burkholderia thailandensis biofilm development under flow conditions and sought to determine whether QS contributes to this process. B. thailandensis biofilm formation exhibited an unusual pattern: the cells formed small aggregates and then proceeded to produce mature biofilms characterized by “dome” structures filled with biofilm matrix material. We showed that this process was dependent on QS. B. thailandensis has three acyl-homoserine lactone (AHL) QS systems (QS-1, QS-2, and QS-3). An AHL-negative strain produced biofilms consisting of cell aggregates but lacking the matrix-filled dome structures. This phenotype was rescued via exogenous addition of the three AHL signals. Of the three B. thailandensis QS systems, we show that QS-1 is required for proper biofilm development, since a btaR1 mutant, which is defective in QS-1 regulation, forms biofilms without these dome structures. Furthermore, our data show that the wild-type biofilm biomass, as well as the material inside the domes, stains with a fucose-binding lectin. The btaR1 mutant biofilms, however, are negative for fucose staining. This suggests that the QS-1 system regulates the production of a fucose-containing exopolysaccharide in wild-type biofilms. Finally, we present data showing that QS ability during biofilm development produces a biofilm that is resistant to dispersion under stress conditions. IMPORTANCE The saprophyte Burkholderia thailandensis is a close relative of the pathogenic bacterium Burkholderia pseudomallei, the causative agent of melioidosis, which is contracted from its environmental reservoir. Since most bacteria in the environment reside in biofilms, B. thailandensis is an ideal model organism for investigating questions in Burkholderia physiology. In this study, we characterized B. thailandensis biofilm development and sought to determine if quorum sensing (QS) contributes to this process. Our work shows that B. thailandensis produces biofilms with unusual dome structures under flow conditions. Our findings suggest that these dome structures are filled with a QS-regulated, fucose-containing exopolysaccharide that may be involved in the resilience of B. thailandensis biofilms against changes in the nutritional environment.

  • Quorum Sensing Influences Burkholderia thailandensis Biofilm Development and Matrix Production
    Journal of bacteriology, 2016
    Co-Authors: Boo Shan Tseng, Charlotte D Majerczyk, E. P. Greenberg, Daniel Passos Da Silva, Josephine R. Chandler, Matthew R Parsek
    Abstract:

    Members of the genus Burkholderia are known to be adept at biofilm formation, which presumably assists in the survival of these organisms in the environment and the host. Biofilm formation has been linked to quorum sensing (QS) in several bacterial species. In this study, we characterized Burkholderia thailandensis biofilm development under flow conditions and sought to determine whether QS contributes to this process. B. thailandensis biofilm formation exhibited an unusual pattern: the cells formed small aggregates and then proceeded to produce mature biofilms characterized by "dome" structures filled with biofilm matrix material. We showed that this process was dependent on QS. B. thailandensis has three acyl-homoserine lactone (AHL) QS systems (QS-1, QS-2, and QS-3). An AHL-negative strain produced biofilms consisting of cell aggregates but lacking the matrix-filled dome structures. This phenotype was rescued via exogenous addition of the three AHL signals. Of the three B. thailandensis QS systems, we show that QS-1 is required for proper biofilm development, since a btaR1 mutant, which is defective in QS-1 regulation, forms biofilms without these dome structures. Furthermore, our data show that the wild-type biofilm biomass, as well as the material inside the domes, stains with a fucose-binding lectin. The btaR1 mutant biofilms, however, are negative for fucose staining. This suggests that the QS-1 system regulates the production of a fucose-containing exopolysaccharide in wild-type biofilms. Finally, we present data showing that QS ability during biofilm development produces a biofilm that is resistant to dispersion under stress conditions. The saprophyte Burkholderia thailandensis is a close relative of the pathogenic bacterium Burkholderia pseudomallei, the causative agent of melioidosis, which is contracted from its environmental reservoir. Since most bacteria in the environment reside in biofilms, B. thailandensis is an ideal model organism for investigating questions in Burkholderia physiology. In this study, we characterized B. thailandensis biofilm development and sought to determine if quorum sensing (QS) contributes to this process. Our work shows that B. thailandensis produces biofilms with unusual dome structures under flow conditions. Our findings suggest that these dome structures are filled with a QS-regulated, fucose-containing exopolysaccharide that may be involved in the resilience of B. thailandensis biofilms against changes in the nutritional environment. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  • cross species comparison of the Burkholderia pseudomallei Burkholderia thailandensis and Burkholderia mallei quorum sensing regulons
    Journal of Bacteriology, 2014
    Co-Authors: Charlotte D Majerczyk, Richard C Bunt, C D Armour, R Bydalek, Michael A Jacobs, Mitch Brittnacher, Hillary S Hayden, Matthew C Radey, E. P. Greenberg
    Abstract:

    ABSTRACT Burkholderia pseudomallei, Burkholderia thailandensis, and Burkholderia mallei (the Bptm group) are close relatives with very different lifestyles: B. pseudomallei is an opportunistic pathogen, B. thailandensis is a nonpathogenic saprophyte, and B. mallei is a host-restricted pathogen. The acyl-homoserine lactone quorum-sensing (QS) systems of these three species show a high level of conservation. We used transcriptome sequencing (RNA-seq) to define the quorum-sensing regulon in each species, and we performed a cross-species analysis of the QS-controlled orthologs. Our analysis revealed a core set of QS-regulated genes in all three species, as well as QS-controlled factors shared by only two species or unique to a given species. This global survey of the QS regulons of B. pseudomallei, B. thailandensis, and B. mallei serves as a platform for predicting which QS-controlled processes might be important in different bacterial niches and contribute to the pathogenesis of B. pseudomallei and B. mallei.

  • Quorum-Sensing-Regulated Bactobolin Production by Burkholderia thailandensis E264
    Organic letters, 2010
    Co-Authors: Mohammad R. Seyedsayamdost, E. P. Greenberg, Josephine R. Chandler, Joshua A. V. Blodgett, Patricia Silva Lima, Breck A. Duerkop, Ken Ichi Oinuma, Jon Clardy
    Abstract:

    Bacterial acyl-homoserine lactones upregulated an uncharacterized gene cluster (bta) in Burkholderia thailandensis E264 to produce an uncharacterized polar antibiotic. The antibiotic is identified as a mixture of four bactobolins. Annotation of the bta cluster allows us to propose a biosynthetic scheme for bactobolin and reveals unusual enzymatic reactions for further study.

  • Mutational Analysis of Burkholderia thailandensis Quorum Sensing and Self-Aggregation
    Journal of bacteriology, 2009
    Co-Authors: Josephine R. Chandler, Breck A. Duerkop, T Eoin West, Shawn J Skerrett, Jake P. Herman, Mair E. A. Churchill, Aaron Hinz, E. P. Greenberg
    Abstract:

    Acyl-homoserine lactone (acyl-HSL) quorum-sensing signaling is common to many Proteobacteria. Acyl-HSLs are synthesized by the LuxI family of synthases, and the signal response is mediated by members of the LuxR family of transcriptional regulators. Burkholderia thailandensis is a member of a closely related cluster of three species, including the animal pathogens Burkholderia mallei and Burkholderia pseudomallei. Members of this group have similar luxI and luxR homologs, and these genes contribute to B. pseudomallei and B. mallei virulence. B. thailandensis possesses three pairs of luxI-luxR homologs. One of these pairs, BtaI2-BtaR2, has been shown to produce and respond to 3OHC10-HSL and to control the synthesis of an antibiotic. By using a markerless-exhange method, we constructed an assortment of B. thailandensis quorum-sensing mutants, and we used these mutants to show that BtaI1 is responsible for C8-HSL production and BtaI3 is responsible for 3OHC8-HSL production. We also show that a strain incapable of acyl-HSL production is capable of growth on the same assortment of carbon and nitrogen sources as the wild type. Furthermore, this mutant shows no loss of virulence compared to the wild type in mice. However, the wild type self-aggregates in minimal medium, whereas the quorum-sensing mutant does not. The wild-type aggregation phenotype is recovered by addition of the BtaI1-R1 HSL signal C8-HSL. We propose that the key function of the BtaR1-BtaI1 quorum-sensing system is to cause cells to gather into aggregates once a sufficient population has been established.

Josephine R. Chandler - One of the best experts on this subject based on the ideXlab platform.

  • Quorum Sensing Influences Burkholderia thailandensis Biofilm Development and Matrix Production
    Journal of bacteriology, 2016
    Co-Authors: Boo Shan Tseng, Charlotte D Majerczyk, E. P. Greenberg, Daniel Passos Da Silva, Josephine R. Chandler, Matthew R Parsek
    Abstract:

    ABSTRACT Members of the genus Burkholderia are known to be adept at biofilm formation, which presumably assists in the survival of these organisms in the environment and the host. Biofilm formation has been linked to quorum sensing (QS) in several bacterial species. In this study, we characterized Burkholderia thailandensis biofilm development under flow conditions and sought to determine whether QS contributes to this process. B. thailandensis biofilm formation exhibited an unusual pattern: the cells formed small aggregates and then proceeded to produce mature biofilms characterized by “dome” structures filled with biofilm matrix material. We showed that this process was dependent on QS. B. thailandensis has three acyl-homoserine lactone (AHL) QS systems (QS-1, QS-2, and QS-3). An AHL-negative strain produced biofilms consisting of cell aggregates but lacking the matrix-filled dome structures. This phenotype was rescued via exogenous addition of the three AHL signals. Of the three B. thailandensis QS systems, we show that QS-1 is required for proper biofilm development, since a btaR1 mutant, which is defective in QS-1 regulation, forms biofilms without these dome structures. Furthermore, our data show that the wild-type biofilm biomass, as well as the material inside the domes, stains with a fucose-binding lectin. The btaR1 mutant biofilms, however, are negative for fucose staining. This suggests that the QS-1 system regulates the production of a fucose-containing exopolysaccharide in wild-type biofilms. Finally, we present data showing that QS ability during biofilm development produces a biofilm that is resistant to dispersion under stress conditions. IMPORTANCE The saprophyte Burkholderia thailandensis is a close relative of the pathogenic bacterium Burkholderia pseudomallei, the causative agent of melioidosis, which is contracted from its environmental reservoir. Since most bacteria in the environment reside in biofilms, B. thailandensis is an ideal model organism for investigating questions in Burkholderia physiology. In this study, we characterized B. thailandensis biofilm development and sought to determine if quorum sensing (QS) contributes to this process. Our work shows that B. thailandensis produces biofilms with unusual dome structures under flow conditions. Our findings suggest that these dome structures are filled with a QS-regulated, fucose-containing exopolysaccharide that may be involved in the resilience of B. thailandensis biofilms against changes in the nutritional environment.

  • Quorum Sensing Influences Burkholderia thailandensis Biofilm Development and Matrix Production
    Journal of bacteriology, 2016
    Co-Authors: Boo Shan Tseng, Charlotte D Majerczyk, E. P. Greenberg, Daniel Passos Da Silva, Josephine R. Chandler, Matthew R Parsek
    Abstract:

    Members of the genus Burkholderia are known to be adept at biofilm formation, which presumably assists in the survival of these organisms in the environment and the host. Biofilm formation has been linked to quorum sensing (QS) in several bacterial species. In this study, we characterized Burkholderia thailandensis biofilm development under flow conditions and sought to determine whether QS contributes to this process. B. thailandensis biofilm formation exhibited an unusual pattern: the cells formed small aggregates and then proceeded to produce mature biofilms characterized by "dome" structures filled with biofilm matrix material. We showed that this process was dependent on QS. B. thailandensis has three acyl-homoserine lactone (AHL) QS systems (QS-1, QS-2, and QS-3). An AHL-negative strain produced biofilms consisting of cell aggregates but lacking the matrix-filled dome structures. This phenotype was rescued via exogenous addition of the three AHL signals. Of the three B. thailandensis QS systems, we show that QS-1 is required for proper biofilm development, since a btaR1 mutant, which is defective in QS-1 regulation, forms biofilms without these dome structures. Furthermore, our data show that the wild-type biofilm biomass, as well as the material inside the domes, stains with a fucose-binding lectin. The btaR1 mutant biofilms, however, are negative for fucose staining. This suggests that the QS-1 system regulates the production of a fucose-containing exopolysaccharide in wild-type biofilms. Finally, we present data showing that QS ability during biofilm development produces a biofilm that is resistant to dispersion under stress conditions. The saprophyte Burkholderia thailandensis is a close relative of the pathogenic bacterium Burkholderia pseudomallei, the causative agent of melioidosis, which is contracted from its environmental reservoir. Since most bacteria in the environment reside in biofilms, B. thailandensis is an ideal model organism for investigating questions in Burkholderia physiology. In this study, we characterized B. thailandensis biofilm development and sought to determine if quorum sensing (QS) contributes to this process. Our work shows that B. thailandensis produces biofilms with unusual dome structures under flow conditions. Our findings suggest that these dome structures are filled with a QS-regulated, fucose-containing exopolysaccharide that may be involved in the resilience of B. thailandensis biofilms against changes in the nutritional environment. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  • Quorum-Sensing-Regulated Bactobolin Production by Burkholderia thailandensis E264
    Organic letters, 2010
    Co-Authors: Mohammad R. Seyedsayamdost, E. P. Greenberg, Josephine R. Chandler, Joshua A. V. Blodgett, Patricia Silva Lima, Breck A. Duerkop, Ken Ichi Oinuma, Jon Clardy
    Abstract:

    Bacterial acyl-homoserine lactones upregulated an uncharacterized gene cluster (bta) in Burkholderia thailandensis E264 to produce an uncharacterized polar antibiotic. The antibiotic is identified as a mixture of four bactobolins. Annotation of the bta cluster allows us to propose a biosynthetic scheme for bactobolin and reveals unusual enzymatic reactions for further study.

  • Mutational Analysis of Burkholderia thailandensis Quorum Sensing and Self-Aggregation
    Journal of bacteriology, 2009
    Co-Authors: Josephine R. Chandler, Breck A. Duerkop, T Eoin West, Shawn J Skerrett, Jake P. Herman, Mair E. A. Churchill, Aaron Hinz, E. P. Greenberg
    Abstract:

    Acyl-homoserine lactone (acyl-HSL) quorum-sensing signaling is common to many Proteobacteria. Acyl-HSLs are synthesized by the LuxI family of synthases, and the signal response is mediated by members of the LuxR family of transcriptional regulators. Burkholderia thailandensis is a member of a closely related cluster of three species, including the animal pathogens Burkholderia mallei and Burkholderia pseudomallei. Members of this group have similar luxI and luxR homologs, and these genes contribute to B. pseudomallei and B. mallei virulence. B. thailandensis possesses three pairs of luxI-luxR homologs. One of these pairs, BtaI2-BtaR2, has been shown to produce and respond to 3OHC10-HSL and to control the synthesis of an antibiotic. By using a markerless-exhange method, we constructed an assortment of B. thailandensis quorum-sensing mutants, and we used these mutants to show that BtaI1 is responsible for C8-HSL production and BtaI3 is responsible for 3OHC8-HSL production. We also show that a strain incapable of acyl-HSL production is capable of growth on the same assortment of carbon and nitrogen sources as the wild type. Furthermore, this mutant shows no loss of virulence compared to the wild type in mice. However, the wild type self-aggregates in minimal medium, whereas the quorum-sensing mutant does not. The wild-type aggregation phenotype is recovered by addition of the BtaI1-R1 HSL signal C8-HSL. We propose that the key function of the BtaR1-BtaI1 quorum-sensing system is to cause cells to gather into aggregates once a sufficient population has been established.

  • Quorum-sensing control of antibiotic synthesis in Burkholderia thailandensis
    Journal of bacteriology, 2009
    Co-Authors: Breck A. Duerkop, Matthew R Parsek, Josephine R. Chandler, John J. Varga, Snow Brook Peterson, Jake P. Herman, Mair E. A. Churchill, William C. Nierman, E. P. Greenberg
    Abstract:

    The genome of Burkholderia thailandensis codes for several LuxR-LuxI quorum-sensing systems. We used B. thailandensis quorum-sensing deletion mutants and recombinant Escherichia coli to determine the nature of the signals produced by one of the systems, BtaR2-BtaI2, and to show that this system controls genes required for the synthesis of an antibiotic. BtaI2 is an acyl-homoserine lactone (acyl-HSL) synthase that produces two hydroxylated acyl-HSLs, N-3-hydroxy-decanoyl-HSL (3OHC10-HSL) and N-3-hydroxy-octanoyl-HSL (3OHC8-HSL). The btaI2 gene is positively regulated by BtaR2 in response to either 3OHC10-HSL or 3OHC8-HSL. The btaR2-btaI2 genes are located within clusters of genes with annotations that suggest they are involved in the synthesis of polyketide or peptide antibiotics. Stationary-phase cultures of wild-type B. thailandensis, but not a btaR2 mutant or a strain deficient in acyl-HSL synthesis, produced an antibiotic effective against gram-positive bacteria. Two of the putative antibiotic synthesis gene clusters require BtaR2 and either 3OHC10-HSL or 3OHC8-HSL for activation. This represents another example where antibiotic synthesis is controlled by quorum sensing, and it has implications for the evolutionary divergence of B. thailandensis and its close relatives Burkholderia pseudomallei and Burkholderia mallei.

Dainan Mao - One of the best experts on this subject based on the ideXlab platform.

  • Reporter‐Guided Transposon Mutant Selection for Activation of Silent Gene Clusters in Burkholderia thailandensis
    Chembiochem : a European journal of chemical biology, 2020
    Co-Authors: Dainan Mao, Aya Yoshimura, Rurun Wang, Mohammad R. Seyedsayamdost
    Abstract:

    Most natural product biosynthetic gene clusters that can be observed bioinformatically are silent. This insight has prompted the development of several methodologies for inducing their expression. One of the more recent methods, termed reporter-guided mutant selection (RGMS), entails creation of a library of mutants that is then screened for the desired phenotype via reporter gene expression. Herein, we apply a similar approach to Burkholderia thailandensis and, using transposon mutagenesis, mutagenize three strains, each carrying a fluorescent reporter in the malleilactone (mal), capistruin (cap), or an unidentified ribosomal peptide (tomm) gene cluster. We show that even a small library of

  • Multi-Omic Analyses Provide Links between Low-Dose Antibiotic Treatment and Induction of Secondary Metabolism in Burkholderia thailandensis
    mBio, 2020
    Co-Authors: Dainan Mao, Aya Yoshimura, Paul Rosen, W. Lance Martin, Étienne Gallant, Martin Wühr, Mohammad R. Seyedsayamdost
    Abstract:

    Low doses of antibiotics can trigger secondary metabolite biosynthesis in bacteria, but the underlying mechanisms are generally unknown. We sought to better understand this phenomenon by studying how the antibiotic trimethoprim activates the synthesis of the virulence factor malleilactone in Burkholderia thailandensis Using transcriptomics, quantitative multiplexed proteomics, and primary metabolomics, we systematically mapped the changes induced by trimethoprim. Surprisingly, even subinhibitory doses of the antibiotic resulted in broad transcriptional and translational alterations, with ∼8.5% of the transcriptome and ∼5% of the proteome up- or downregulated >4-fold. Follow-up studies with genetic-biochemical experiments showed that the induction of malleilactone synthesis can be sufficiently explained by the accumulation of methionine biosynthetic precursors, notably homoserine, as a result of inhibition of the folate pathway. Homoserine activated the malleilactone gene cluster via the transcriptional regulator MalR and gave rise to a secondary metabolome which was very similar to that generated by trimethoprim. Our work highlights the expansive changes that low-dose trimethoprim induces on bacterial physiology and provides insights into its stimulatory effect on secondary metabolism.IMPORTANCE The discovery of antibiotics ranks among the most significant accomplishments of the last century. Although the targets of nearly all clinical antibiotics are known, our understanding regarding their natural functions and the effects of subinhibitory concentrations is in its infancy. Stimulatory rather than inhibitory functions have been attributed to low-dose antibiotics. Among these, we previously found that antibiotics activate silent biosynthetic genes and thereby enhance the metabolic output of bacteria. The regulatory circuits underlying this phenomenon are unknown. We take a first step toward elucidating these circuits and show that low doses of trimethoprim (Tmp) have cell-wide effects on the saprophyte Burkholderia thailandensis Most importantly, inhibition of one-carbon metabolic processes by Tmp leads to an accumulation of homoserine, which induces the production of an otherwise silent cytotoxin via a LuxR-type transcriptional regulator. These results provide a starting point for uncovering the molecular basis of the hormetic effects of antibiotics.

  • reporter guided transposon mutant selection for activation of silent gene clusters in Burkholderia thailandensis
    ChemBioChem, 2020
    Co-Authors: Dainan Mao, Aya Yoshimura, Rurun Wang, Mohammad R. Seyedsayamdost
    Abstract:

    Most natural product biosynthetic gene clusters that can be observed bioinformatically are silent. This insight has prompted the development of several methodologies for inducing their expression. One of the more recent methods, termed reporter-guided mutant selection (RGMS), entails creation of a library of mutants that is then screened for the desired phenotype via reporter gene expression. Herein, we apply a similar approach to Burkholderia thailandensis and, using transposon mutagenesis, mutagenize three strains, each carrying a fluorescent reporter in the malleilactone (mal), capistruin (cap), or an unidentified ribosomal peptide (tomm) gene cluster. We show that even a small library of <500 mutants can be used to induce expression of each cluster. We also explore the mechanism of activation and find that inhibition of pyrimidine biosynthesis is linked to the induction of the mal cluster. Both a transposon insertion into pyrF as well as small-molecule-mediated inhibition of PyrF trigger malleilactone biosynthesis. Our results pave the way toward the broad application of RGMS and related approaches to Burkholderia spp.

  • Thailandenes, Cryptic Polyene Natural Products Isolated from Burkholderia thailandensis Using Phenotype-Guided Transposon Mutagenesis.
    ACS chemical biology, 2020
    Co-Authors: Jong-duk Park, Kyuho Moon, Cheryl Miller, Jessica Rose, Christopher C. Ebmeier, Jeremy Jacobsen, Dainan Mao, William M. Old, David Deshazer
    Abstract:

    Burkholderia thailandensis has emerged as a model organism for investigating the production and regulation of diverse secondary metabolites. Most of the biosynthetic gene clusters encoded in B. tha...

  • Mapping the Trimethoprim-Induced Secondary Metabolome of Burkholderia thailandensis
    ACS chemical biology, 2016
    Co-Authors: Bethany K. Okada, Dainan Mao, Leah B. Bushin, Mohammad R. Seyedsayamdost
    Abstract:

    While bacterial genomes typically contain numerous secondary metabolite biosynthetic gene clusters, only a small fraction of these are expressed at any given time. The remaining majority is inactive or silent, and methods that awaken them would greatly expand our repertoire of bioactive molecules. We recently devised a new approach for identifying inducers of silent gene clusters and proposed that the clinical antibiotic trimethoprim acted as a global activator of secondary metabolism in Burkholderia thailandensis. Herein, we report that trimethoprim triggers the production of over 100 compounds that are not observed under standard growth conditions, thus drastically modulating the secondary metabolic output of B. thailandensis. Using MS/MS networking and NMR, we assign structures to ∼40 compounds, including a group of new molecules, which we call acybolins. With methods at hand for activation of silent gene clusters and rapid identification of small molecules, the hidden secondary metabolomes of bacteria can be interrogated.

Matthew R Parsek - One of the best experts on this subject based on the ideXlab platform.

  • Quorum Sensing Influences Burkholderia thailandensis Biofilm Development and Matrix Production
    Journal of bacteriology, 2016
    Co-Authors: Boo Shan Tseng, Charlotte D Majerczyk, E. P. Greenberg, Daniel Passos Da Silva, Josephine R. Chandler, Matthew R Parsek
    Abstract:

    ABSTRACT Members of the genus Burkholderia are known to be adept at biofilm formation, which presumably assists in the survival of these organisms in the environment and the host. Biofilm formation has been linked to quorum sensing (QS) in several bacterial species. In this study, we characterized Burkholderia thailandensis biofilm development under flow conditions and sought to determine whether QS contributes to this process. B. thailandensis biofilm formation exhibited an unusual pattern: the cells formed small aggregates and then proceeded to produce mature biofilms characterized by “dome” structures filled with biofilm matrix material. We showed that this process was dependent on QS. B. thailandensis has three acyl-homoserine lactone (AHL) QS systems (QS-1, QS-2, and QS-3). An AHL-negative strain produced biofilms consisting of cell aggregates but lacking the matrix-filled dome structures. This phenotype was rescued via exogenous addition of the three AHL signals. Of the three B. thailandensis QS systems, we show that QS-1 is required for proper biofilm development, since a btaR1 mutant, which is defective in QS-1 regulation, forms biofilms without these dome structures. Furthermore, our data show that the wild-type biofilm biomass, as well as the material inside the domes, stains with a fucose-binding lectin. The btaR1 mutant biofilms, however, are negative for fucose staining. This suggests that the QS-1 system regulates the production of a fucose-containing exopolysaccharide in wild-type biofilms. Finally, we present data showing that QS ability during biofilm development produces a biofilm that is resistant to dispersion under stress conditions. IMPORTANCE The saprophyte Burkholderia thailandensis is a close relative of the pathogenic bacterium Burkholderia pseudomallei, the causative agent of melioidosis, which is contracted from its environmental reservoir. Since most bacteria in the environment reside in biofilms, B. thailandensis is an ideal model organism for investigating questions in Burkholderia physiology. In this study, we characterized B. thailandensis biofilm development and sought to determine if quorum sensing (QS) contributes to this process. Our work shows that B. thailandensis produces biofilms with unusual dome structures under flow conditions. Our findings suggest that these dome structures are filled with a QS-regulated, fucose-containing exopolysaccharide that may be involved in the resilience of B. thailandensis biofilms against changes in the nutritional environment.

  • Quorum Sensing Influences Burkholderia thailandensis Biofilm Development and Matrix Production
    Journal of bacteriology, 2016
    Co-Authors: Boo Shan Tseng, Charlotte D Majerczyk, E. P. Greenberg, Daniel Passos Da Silva, Josephine R. Chandler, Matthew R Parsek
    Abstract:

    Members of the genus Burkholderia are known to be adept at biofilm formation, which presumably assists in the survival of these organisms in the environment and the host. Biofilm formation has been linked to quorum sensing (QS) in several bacterial species. In this study, we characterized Burkholderia thailandensis biofilm development under flow conditions and sought to determine whether QS contributes to this process. B. thailandensis biofilm formation exhibited an unusual pattern: the cells formed small aggregates and then proceeded to produce mature biofilms characterized by "dome" structures filled with biofilm matrix material. We showed that this process was dependent on QS. B. thailandensis has three acyl-homoserine lactone (AHL) QS systems (QS-1, QS-2, and QS-3). An AHL-negative strain produced biofilms consisting of cell aggregates but lacking the matrix-filled dome structures. This phenotype was rescued via exogenous addition of the three AHL signals. Of the three B. thailandensis QS systems, we show that QS-1 is required for proper biofilm development, since a btaR1 mutant, which is defective in QS-1 regulation, forms biofilms without these dome structures. Furthermore, our data show that the wild-type biofilm biomass, as well as the material inside the domes, stains with a fucose-binding lectin. The btaR1 mutant biofilms, however, are negative for fucose staining. This suggests that the QS-1 system regulates the production of a fucose-containing exopolysaccharide in wild-type biofilms. Finally, we present data showing that QS ability during biofilm development produces a biofilm that is resistant to dispersion under stress conditions. The saprophyte Burkholderia thailandensis is a close relative of the pathogenic bacterium Burkholderia pseudomallei, the causative agent of melioidosis, which is contracted from its environmental reservoir. Since most bacteria in the environment reside in biofilms, B. thailandensis is an ideal model organism for investigating questions in Burkholderia physiology. In this study, we characterized B. thailandensis biofilm development and sought to determine if quorum sensing (QS) contributes to this process. Our work shows that B. thailandensis produces biofilms with unusual dome structures under flow conditions. Our findings suggest that these dome structures are filled with a QS-regulated, fucose-containing exopolysaccharide that may be involved in the resilience of B. thailandensis biofilms against changes in the nutritional environment. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  • Quorum-sensing control of antibiotic synthesis in Burkholderia thailandensis
    Journal of bacteriology, 2009
    Co-Authors: Breck A. Duerkop, Matthew R Parsek, Josephine R. Chandler, John J. Varga, Snow Brook Peterson, Jake P. Herman, Mair E. A. Churchill, William C. Nierman, E. P. Greenberg
    Abstract:

    The genome of Burkholderia thailandensis codes for several LuxR-LuxI quorum-sensing systems. We used B. thailandensis quorum-sensing deletion mutants and recombinant Escherichia coli to determine the nature of the signals produced by one of the systems, BtaR2-BtaI2, and to show that this system controls genes required for the synthesis of an antibiotic. BtaI2 is an acyl-homoserine lactone (acyl-HSL) synthase that produces two hydroxylated acyl-HSLs, N-3-hydroxy-decanoyl-HSL (3OHC10-HSL) and N-3-hydroxy-octanoyl-HSL (3OHC8-HSL). The btaI2 gene is positively regulated by BtaR2 in response to either 3OHC10-HSL or 3OHC8-HSL. The btaR2-btaI2 genes are located within clusters of genes with annotations that suggest they are involved in the synthesis of polyketide or peptide antibiotics. Stationary-phase cultures of wild-type B. thailandensis, but not a btaR2 mutant or a strain deficient in acyl-HSL synthesis, produced an antibiotic effective against gram-positive bacteria. Two of the putative antibiotic synthesis gene clusters require BtaR2 and either 3OHC10-HSL or 3OHC8-HSL for activation. This represents another example where antibiotic synthesis is controlled by quorum sensing, and it has implications for the evolutionary divergence of B. thailandensis and its close relatives Burkholderia pseudomallei and Burkholderia mallei.