Butylone

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 360 Experts worldwide ranked by ideXlab platform

Hans H Maurer - One of the best experts on this subject based on the ideXlab platform.

  • beta keto amphetamines studies on the metabolism of the designer drug mephedrone and toxicological detection of mephedrone Butylone and methylone in urine using gas chromatography mass spectrometry
    Analytical and Bioanalytical Chemistry, 2010
    Co-Authors: Markus R Meyer, Jens Wilhelm, Frank T Peters, Hans H Maurer
    Abstract:

    In recent years, a new class of designer drugs has appeared on the drugs of abuse market in many countries, namely, the so-called beta-keto (bk) designer drugs such as mephedrone (bk-4-methylmethamphetamine), Butylone (bk-MBDB), and methylone (bk-MDMA). The aim of the present study was to identify the metabolites of mephedrone in rat and human urine using GC-MS techniques and to include mephedrone, Butylone, and methylone within the authors’ systematic toxicological analysis (STA) procedure. Six phase I metabolites of mephedrone were detected in rat urine and seven in human urine suggesting the following metabolic steps: N-demethylation to the primary amine, reduction of the keto moiety to the respective alcohol, and oxidation of the tolyl moiety to the corresponding alcohols and carboxylic acid. The STA procedure allowed the detection of mephedrone, Butylone, methylone, and their metabolites in urine of rats treated with doses corresponding to those reported for abuse of amphetamines. Besides macro-based data evaluation, an automated evaluation using the automated mass spectral deconvolution and identification system was performed. Mephedrone and Butylone could be detected also in human urine samples submitted for drug testing. Assuming similar kinetics in humans, the described STA procedure should be suitable for proof of an intake of the bk-designer drugs in human urine.

Jens Wilhelm - One of the best experts on this subject based on the ideXlab platform.

  • beta keto amphetamines studies on the metabolism of the designer drug mephedrone and toxicological detection of mephedrone Butylone and methylone in urine using gas chromatography mass spectrometry
    Analytical and Bioanalytical Chemistry, 2010
    Co-Authors: Markus R Meyer, Jens Wilhelm, Frank T Peters, Hans H Maurer
    Abstract:

    In recent years, a new class of designer drugs has appeared on the drugs of abuse market in many countries, namely, the so-called beta-keto (bk) designer drugs such as mephedrone (bk-4-methylmethamphetamine), Butylone (bk-MBDB), and methylone (bk-MDMA). The aim of the present study was to identify the metabolites of mephedrone in rat and human urine using GC-MS techniques and to include mephedrone, Butylone, and methylone within the authors’ systematic toxicological analysis (STA) procedure. Six phase I metabolites of mephedrone were detected in rat urine and seven in human urine suggesting the following metabolic steps: N-demethylation to the primary amine, reduction of the keto moiety to the respective alcohol, and oxidation of the tolyl moiety to the corresponding alcohols and carboxylic acid. The STA procedure allowed the detection of mephedrone, Butylone, methylone, and their metabolites in urine of rats treated with doses corresponding to those reported for abuse of amphetamines. Besides macro-based data evaluation, an automated evaluation using the automated mass spectral deconvolution and identification system was performed. Mephedrone and Butylone could be detected also in human urine samples submitted for drug testing. Assuming similar kinetics in humans, the described STA procedure should be suitable for proof of an intake of the bk-designer drugs in human urine.

Markus R Meyer - One of the best experts on this subject based on the ideXlab platform.

  • beta keto amphetamines studies on the metabolism of the designer drug mephedrone and toxicological detection of mephedrone Butylone and methylone in urine using gas chromatography mass spectrometry
    Analytical and Bioanalytical Chemistry, 2010
    Co-Authors: Markus R Meyer, Jens Wilhelm, Frank T Peters, Hans H Maurer
    Abstract:

    In recent years, a new class of designer drugs has appeared on the drugs of abuse market in many countries, namely, the so-called beta-keto (bk) designer drugs such as mephedrone (bk-4-methylmethamphetamine), Butylone (bk-MBDB), and methylone (bk-MDMA). The aim of the present study was to identify the metabolites of mephedrone in rat and human urine using GC-MS techniques and to include mephedrone, Butylone, and methylone within the authors’ systematic toxicological analysis (STA) procedure. Six phase I metabolites of mephedrone were detected in rat urine and seven in human urine suggesting the following metabolic steps: N-demethylation to the primary amine, reduction of the keto moiety to the respective alcohol, and oxidation of the tolyl moiety to the corresponding alcohols and carboxylic acid. The STA procedure allowed the detection of mephedrone, Butylone, methylone, and their metabolites in urine of rats treated with doses corresponding to those reported for abuse of amphetamines. Besides macro-based data evaluation, an automated evaluation using the automated mass spectral deconvolution and identification system was performed. Mephedrone and Butylone could be detected also in human urine samples submitted for drug testing. Assuming similar kinetics in humans, the described STA procedure should be suitable for proof of an intake of the bk-designer drugs in human urine.

Jorge Camarasa - One of the best experts on this subject based on the ideXlab platform.

Michael B. Gatch - One of the best experts on this subject based on the ideXlab platform.

  • “Ecstasy” to addiction: Mechanisms and reinforcing effects of three synthetic cathinone analogs of MDMA
    Neuropharmacology, 2018
    Co-Authors: Sean B. Dolan, Zhenglan Chen, Ren-qi Huang, Michael B. Gatch
    Abstract:

    Abstract This study aimed to address the mechanisms and reinforcing effects of three synthetic cathinone analogs of MDMA commonly reported in “Ecstasy” formulations: methylone, Butylone, and pentylone. Whole-cell patch clamp techniques were used to assess the mechanism of each compound at the dopamine and serotonin transporters. Separate groups of rats were trained to discriminate methamphetamine, DOM, or MDMA from vehicle. Substitution studies were performed in each group and antagonism studies with SCH23390 were performed against each compound that produced substitution. Self-administration of each compound was evaluated under a progressive ratio schedule of reinforcement. Each compound produced an inward current at the serotonin transporter, but little or no current at the dopamine transporter. Each of the test compounds substituted fully for the discriminative stimulus effects of methamphetamine, methylone and Butylone substituted partially for DOM and fully for MDMA, whereas pentylone failed to substitute for DOM and substituted only partially for MDMA. SCH23390 fully and dose-dependently attenuated methamphetamine-appropriate responding produced by each test compound, but was least potent against pentylone. MDMA-appropriate responding was minimally affected by SCH23390. Each test compound was robustly self-administered with pentylone producing the greatest self-administration at the doses tested. Given the prevalence of synthetic cathinones in “Ecstasy” formulations, these data indicate that adulterated “Ecstasy” formulations may drive more compulsive drug use than those containing only MDMA.