Coxsackievirus B3

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 360 Experts worldwide ranked by ideXlab platform

Honglin Luo - One of the best experts on this subject based on the ideXlab platform.

  • Coxsackievirus B3 targets tfeb to disrupt lysosomal function
    Autophagy, 2021
    Co-Authors: Yasir Mohamud, Hui Tang, Yuanchao Xue, Huitao Liu, Amirhossein Bahreyni, Honglin Luo
    Abstract:

    Coxsackievirus B3 (CVB3) is a prevalent etiological agent for viral myocarditis and neurological disorders, particularly in infants and young children. Virus-encoded proteinases have emerged as cyt...

  • calcoco2 ndp52 and sqstm1 p62 differentially regulate Coxsackievirus B3 propagation
    Cell Death & Differentiation, 2019
    Co-Authors: Yasir Mohamud, Yuanchao Xue, Huitao Liu, Haoyu Deng, Honglin Luo
    Abstract:

    Cell autonomous immunity is the ability of individual cells to initiate a first line of host defense against invading microbes, such as viruses. Autophagy receptors, a diverse family of multivalent proteins, play a key role in this host response by detecting, sequestering, and eliminating virus in a process termed virophagy. To counteract this, positive-stranded RNA viruses, such as enteroviruses, have evolved strategies to circumvent the host autophagic machinery in an effort to promote viral propagation; however, the underlying mechanisms remain largely unclear. Here we studied the interaction between Coxsackievirus B3 (CVB3) and the autophagy receptor SQSTM1 (sequestosome 1)/p62 and CALCOCO2/NDP52 (calcium binding and coiled-coil domain-containing protein 2/nuclear dot 10 protein 52). We demonstrated that SQSTM1 and CALCOCO2 differentially regulate CVB3 infection. We showed that knockdown of SQSTM1 causes increased viral protein production and elevated viral titers, whereas depletion of CALCOCO2 results in a significant inhibition of viral growth. Both receptors appear to have a role in virophagy through direct interaction with the viral capsid protein VP1 that undergoes ubiquitination during infection. Further investigation of the proviral mechanism of CALCOCO2 revealed that CALCOCO2, but not SQSTM1, suppresses the antiviral type I interferon signaling by promoting autophagy-mediated degradation of the mitochondrial antiviral signaling (MAVS) protein. Moreover, we demonstrated that viral proteinase 2A-mediated cleavage of SQSTM1 at glycine 241 impairs its capacity to associate with viral capsid, whereas cleavage of CALCOCO2 by viral proteinase 3C at glutamine 139, generates a stable C-terminal fragment that retains the proviral function of full-length CALCOCO2. Altogether, our study reveals a mechanism by which CVB3 targets selective autophagy receptors to evade host virophagy.

  • Coxsackievirus B3 replication and pathogenesis
    Future Microbiology, 2015
    Co-Authors: Farshid S Garmaroudi, Decheng Yang, Honglin Luo, D R Marchant, Reid G Hendry, Junyan Shi, Bruce M Mcmanus
    Abstract:

    Viruses such as Coxsackievirus B3 (CVB3) are entirely host cell-dependent parasites. Indeed, they must cleverly exploit various compartments of host cells to complete their life cycle, and consequently launch disease. Evolution has equipped this pico-rna-virus, CVB3, to use different strategies, including CVB3-induced direct damage to host cells followed by a host inflammatory response to CVB3 infection, and cell death to super-additively promote target organ tissue injury, and dysfunction. In this update, the patho-stratagems of CVB3 are explored from molecular, and systems-level approaches. In summarizing recent developments in this field, we focus particularly on mechanisms by which CVB3 can harness different host cell processes including kinases, host cell-killing and cell-eating machineries, matrix metalloproteinases and miRNAs to promote disease.

  • an erk p38 subnetwork coordinates host cell apoptosis and necrosis during Coxsackievirus B3 infection
    Cell Host & Microbe, 2013
    Co-Authors: Karin Jensen, Decheng Yang, Honglin Luo, Farshid S Garmaroudi, Jingchun Zhang, Jun Lin, Seti Boroomand, Mary Zhang, Zongshu Luo, Bruce M Mcmanus
    Abstract:

    Summary The host response to a virus is determined by intracellular signaling pathways that are modified during infection. These pathways converge as networks and produce interdependent phenotypes, making it difficult to link virus-induced signals and responses at a systems level. Coxsackievirus B3 (CVB3) infection induces death of cardiomyocytes, causing tissue damage and virus dissemination, through incompletely characterized host cell signaling networks. We built a statistical model that quantitatively predicts cardiomyocyte responses from time-dependent measurements of phosphorylation events modified by CVB3. Model analysis revealed that CVB3-stimulated cytotoxicity involves tight coupling between the host ERK and p38 MAPK pathways, which are generally thought to control distinct cellular responses. The kinase ERK5 requires p38 kinase activity and inhibits apoptosis caused by CVB3 infection. By contrast, p38 indirectly promotes apoptosis via ERK1/2 inhibition but directly causes CVB3-induced necrosis. Thus, the cellular events governing pathogenesis are revealed when virus-host programs are monitored systematically and deconvolved mathematically.

  • Pairwise network mechanisms in the host signaling response to Coxsackievirus B3 infection
    Proceedings of the National Academy of Sciences of the United States of America, 2010
    Co-Authors: Farshid S Garmaroudi, David R. Marchant, Abbas Khalili, Ali Bashashati, Brian W. Wong, Aline Tabet, Kevin Murphy, Honglin Luo
    Abstract:

    Signal transduction networks can be perturbed biochemically, genetically, and pharmacologically to unravel their functions. But at the systems level, it is not clear how such perturbations are best implemented to extract molecular mechanisms that underlie network function. Here, we combined pairwise perturbations with multiparameter phosphorylation measurements to reveal causal mechanisms within the signaling network response of cardiomyocytes to Coxsackievirus B3 (CVB3) infection. Using all possible pairs of six kinase inhibitors, we assembled a dynamic nine-protein phosphorylation signature of perturbed CVB3 infectivity. Cluster analysis of the resulting dataset showed repeatedly that paired inhibitor data were required for accurate data-driven predictions of kinase substrate links in the host network. With pairwise data, we also derived a high-confidence network based on partial correlations, which identified phospho-IκBα as a central “hub” in the measured phosphorylation signature. The reconstructed network helped to connect phospho-IκBα with an autocrine feedback circuit in host cells involving the proinflammatory cytokines, TNF and IL-1. Autocrine blockade substantially inhibited CVB3 progeny release and improved host cell viability, implicating TNF and IL-1 as cell autonomous components of CVB3-induced myocardial damage. We conclude that pairwise perturbations, when combined with network-level intracellular measurements, enrich for mechanisms that would be overlooked by single perturbants.

Bruce M Mcmanus - One of the best experts on this subject based on the ideXlab platform.

  • Coxsackievirus B3 replication and pathogenesis
    Future Microbiology, 2015
    Co-Authors: Farshid S Garmaroudi, Decheng Yang, Honglin Luo, D R Marchant, Reid G Hendry, Junyan Shi, Bruce M Mcmanus
    Abstract:

    Viruses such as Coxsackievirus B3 (CVB3) are entirely host cell-dependent parasites. Indeed, they must cleverly exploit various compartments of host cells to complete their life cycle, and consequently launch disease. Evolution has equipped this pico-rna-virus, CVB3, to use different strategies, including CVB3-induced direct damage to host cells followed by a host inflammatory response to CVB3 infection, and cell death to super-additively promote target organ tissue injury, and dysfunction. In this update, the patho-stratagems of CVB3 are explored from molecular, and systems-level approaches. In summarizing recent developments in this field, we focus particularly on mechanisms by which CVB3 can harness different host cell processes including kinases, host cell-killing and cell-eating machineries, matrix metalloproteinases and miRNAs to promote disease.

  • an erk p38 subnetwork coordinates host cell apoptosis and necrosis during Coxsackievirus B3 infection
    Cell Host & Microbe, 2013
    Co-Authors: Karin Jensen, Decheng Yang, Honglin Luo, Farshid S Garmaroudi, Jingchun Zhang, Jun Lin, Seti Boroomand, Mary Zhang, Zongshu Luo, Bruce M Mcmanus
    Abstract:

    Summary The host response to a virus is determined by intracellular signaling pathways that are modified during infection. These pathways converge as networks and produce interdependent phenotypes, making it difficult to link virus-induced signals and responses at a systems level. Coxsackievirus B3 (CVB3) infection induces death of cardiomyocytes, causing tissue damage and virus dissemination, through incompletely characterized host cell signaling networks. We built a statistical model that quantitatively predicts cardiomyocyte responses from time-dependent measurements of phosphorylation events modified by CVB3. Model analysis revealed that CVB3-stimulated cytotoxicity involves tight coupling between the host ERK and p38 MAPK pathways, which are generally thought to control distinct cellular responses. The kinase ERK5 requires p38 kinase activity and inhibits apoptosis caused by CVB3 infection. By contrast, p38 indirectly promotes apoptosis via ERK1/2 inhibition but directly causes CVB3-induced necrosis. Thus, the cellular events governing pathogenesis are revealed when virus-host programs are monitored systematically and deconvolved mathematically.

  • MicroRNA-203 enhances Coxsackievirus B3 replication through targeting zinc finger protein-148
    Cellular and Molecular Life Sciences, 2013
    Co-Authors: Maged Gomaa Hemida, Huifang M. Zhang, Paul J Hanson, Bruce M Mcmanus, Xin Ye, Decheng Yang
    Abstract:

    Coxsackievirus B3 (CVB3) is the primary causal agent of viral myocarditis. During infection, it hijacks host genes to favour its own replication. However, the underlying mechanism is still unclear. Although the viral receptor is an important factor for viral infectivity, other factors such as microRNAs (miRNA) may also play an essential role in its replication after host cell entry. miRNAs are post-transcriptional gene regulators involved in various fundamental biological processes as well as in diseases. To identify miRNAs involved in CVB3 pathogenesis, we performed microarray analysis of miRNAs using CVB3-infected murine hearts and identified miR-203 as one of the most upregulated candidates. We found that miR-203 upregulation is through the activation of protein kinase C/transcription factor AP-1 pathway. We further identified zinc finger protein-148 (ZFP-148), a transcription factor, as a novel target of miR-203. Ectopic expression of miR-203 downregulated ZFP-148 translation, increased cell viability and subsequently enhanced CVB3 replication. Silencing of ZFP-148 by siRNA showed similar effects on CVB3 replication. Finally, analyses of the signalling cascade downstream of ZFP-148 revealed that miR-203-induced suppression of ZFP-148 differentially regulated the expression of prosurvival and proapoptotic genes of the Bcl-2 family proteins as well as the cell cycle regulators. This altered gene expression promoted cell survival and growth, which provided a favourable environment for CVB3 replication, contributing to the further damage of the infected cells. Taken together, this study identified a novel target of miR-203 and revealed, for the first time, the molecular link between miR-203/ZFP-148 and the pathogenesis of CVB3.

  • autophagosome supports Coxsackievirus B3 replication in host cells
    Journal of Virology, 2008
    Co-Authors: Jerry Wong, Bruce M Mcmanus, Jingchun Zhang, Guang Gao, Ivy Mao, Honglin Luo
    Abstract:

    Recent studies suggest a possible takeover of host antimicrobial autophagy machinery by positive-stranded RNA viruses to facilitate their own replication. In the present study, we investigated the role of autophagy in Coxsackievirus replication. Coxsackievirus B3 (CVB3), a picornavirus associated with viral myocarditis, causes pronounced intracellular membrane reorganization after infection. We demonstrate that CVB3 infection induces an increased number of double-membrane vesicles, accompanied by an increase of the LC3-II/LC3-I ratio and an accumulation of punctate GFP-LC3-expressing cells, two hallmarks of cellular autophagosome formation. However, protein expression analysis of p62, a marker for autophagy-mediated protein degradation, showed no apparent changes after CVB3 infection. These results suggest that CVB3 infection triggers autophagosome formation without promoting protein degradation by the lysosome. We further examined the role of the autophagosome in CVB3 replication. We demonstrated that inhibition of autophagosome formation by 3-methyladenine or small interfering RNAs targeting the genes critical for autophagosome formation (ATG7, Beclin-1, and VPS34 genes) significantly reduced viral replication. Conversely, induction of autophagy by rapamycin or nutrient deprivation resulted in increased viral replication. Finally, we examined the role of autophagosome-lysosome fusion in viral replication. We showed that blockage of the fusion by gene silencing of the lysosomal protein LAMP2 significantly promoted viral replication. Taken together, our results suggest that the host9s autophagy machinery is activated during CVB3 infection to enhance the efficiency of viral replication.

  • stress activated protein kinases are involved in Coxsackievirus B3 viral progeny release
    Journal of Virology, 2005
    Co-Authors: Honglin Luo, Jerry Wong, Jingchun Zhang, Guang Gao, Andrew Morgan, Ji Yuan, Mitra Esfandiarei, Caroline Cheung, Bruce M Mcmanus
    Abstract:

    Stress-activated protein kinases (SAPKs), consisting of c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38 MAPK), are activated upon various environmental stimuli, including viral infections. Cellular survival and death signaling events following Coxsackievirus B3 (CVB3) infection have been studied in relationship to viral replication, but the role of SAPKs has not been scrutinized. In this study, we found that the phosphorylation of JNK1/2 and p38 MAPK was increased during active replication of CVB3 and that their phosphorylation was independent of CVB3-induced caspase activation or production of reactive oxygen species. The roles of these kinases in CVB3 infection were further evaluated using specific inhibitors: SP600125 for JNK1/2 and SB203580 for p38 MAPK. JNK1/2 inhibitors reduced CVB3-induced phosphorylation of activating transcription factor 2, and the p38 MAPK inhibitor reduced CVB3-induced phosphorylation of heat shock protein 27. Although inhibition of these kinases by specific inhibitors did not affect CVB3 viral protein synthesis, inhibition of p38 MAPK but not of JNK1/2 resulted in significant reduction of viral progeny release, suppression of CVB3-induced cell death, and blockage of CVB3-induced caspase-3 activation in infected cells. We conclude that SAPK pathways play critical roles in the life cycle of CVB3, particularly in viral progeny release.

Carsten Tschope - One of the best experts on this subject based on the ideXlab platform.

  • mesenchymal stromal cells inhibit nlrp3 inflammasome activation in a model of Coxsackievirus B3 induced inflammatory cardiomyopathy
    Scientific Reports, 2018
    Co-Authors: Kapka Miteva, Irene Muller, Kathleen Pappritz, Konstantinos Savvatis, Carsten Tschope, Jochen Ringe, Fengquan Dong, Muhammad Elshafeey, Marzena Sosnowski, S Van Linthout
    Abstract:

    Inflammation in myocarditis induces cardiac injury and triggers disease progression to heart failure. NLRP3 inflammasome activation is a newly identified amplifying step in the pathogenesis of myocarditis. We previously have demonstrated that mesenchymal stromal cells (MSC) are cardioprotective in Coxsackievirus B3 (CVB3)-induced myocarditis. In this study, MSC markedly inhibited left ventricular (LV) NOD2, NLRP3, ASC, caspase-1, IL-1β, and IL-18 mRNA expression in CVB3-infected mice. ASC protein expression, essential for NLRP3 inflammasome assembly, increased upon CVB3 infection and was abrogated in MSC-treated mice. Concomitantly, CVB3 infection in vitro induced NOD2 expression, NLRP3 inflammasome activation and IL-1β secretion in HL-1 cells, which was abolished after MSC supplementation. The inhibitory effect of MSC on NLRP3 inflammasome activity in HL-1 cells was partly mediated via secretion of the anti-oxidative protein stanniocalcin-1. Furthermore, MSC application in CVB3-infected mice reduced the percentage of NOD2-, ASC-, p10- and/or IL-1β-positive splenic macrophages, natural killer cells, and dendritic cells. The suppressive effect of MSC on inflammasome activation was associated with normalized expression of prominent regulators of myocardial contractility and fibrosis to levels comparable to control mice. In conclusion, MSC treatment in myocarditis could be a promising strategy limiting the adverse consequences of cardiac and systemic NLRP3 inflammasome activation.

  • mesenchymal stromal cells modulate monocytes trafficking in Coxsackievirus B3 induced myocarditis
    Stem Cells Translational Medicine, 2017
    Co-Authors: Kapka Miteva, Kathleen Pappritz, Carsten Tschope, Jochen Ringe, Fengquan Dong, Muhammad Elshafeey, S Van Linthout
    Abstract:

    Mesenchymal stromal cell (MSC) application in Coxsackievirus B3 (CVB3)-induced myocarditis reduces myocardial inflammation and fibrosis, exerts prominent extra-cardiac immunomodulation, and improves heart function. Although the abovementioned findings demonstrate the benefit of MSC application, the mechanism of the MSC immunomodulatory effects leading to a final cardioprotective outcome in viral myocarditis remains poorly understood. Monocytes are known to be a trigger of myocardial tissue inflammation. The present study aims at investigating the direct effect of MSC on the mobilization and trafficking of monocytes to the heart in CVB3-induced myocarditis. One day post CVB3 infection, C57BL/6 mice were intravenously injected with 1 x 106 MSC and sacrificed 6 days later for molecular biology and flow cytometry analysis. MSC application reduced the severity of myocarditis, and heart and blood pro-inflammatory Ly6Chigh and Ly6Cmiddle monocytes, while those were retained in the spleen. Anti-inflammatory Ly6Clow monocytes increased in the blood, heart, and spleen of MSC-treated CVB3 mice. CVB3 infection induced splenic myelopoiesis, while MSC application slightly diminished the spleen myelopoietic activity in CVB3 mice. Left ventricular (LV) mRNA expression of the chemokines monocyte chemotactic protein-1 (MCP)-1, MCP-3, CCL5, the adhesion molecules intercellular adhesion molecule-1, vascular cell adhesion molecule-1, the pro-inflammatory cytokines interleukin-6, interleukin-12, tumor necrosis factor-α, the pro-fibrotic transforming growth factorβ1, and circulating MCP-1 and MCP-3 levels decreased in CVB3 MSC mice, while LV stromal cell-derived factor-1α RNA expression and systemic levels of fractalkine were increased in CVB3 MSC mice. MSC application in CVB3-induced myocarditis modulates monocytes trafficking to the heart and could be a promising strategy for the resolution of cardiac inflammation and prevention of the disease progression. Stem Cells Translational Medicine 2017;6:1249-1261.

  • cardiac fibroblasts aggravate viral myocarditis cell specific Coxsackievirus B3 replication
    Mediators of Inflammation, 2014
    Co-Authors: Diana Lindner, Karin Klingel, Konstantinos Savvatis, Carsten Tschope, Stefan Blankenberg, Dirk Westermann
    Abstract:

    Myocarditis is an inflammatory disease caused by viral infection. Different subpopulations of leukocytes enter the cardiac tissue and lead to severe cardiac inflammation associated with myocyte loss and remodeling. Here, we study possible cell sources for viral replication using three compartments of the heart: fibroblasts, cardiomyocytes, and macrophages. We infected C57BL/6j mice with Coxsackievirus B3 (CVB3) and detected increased gene expression of anti-inflammatory and antiviral cytokines in the heart. Subsequently, we infected cardiac fibroblasts, cardiomyocytes, and macrophages with CVB3. Due to viral infection, the expression of TNF-α, IL-6, MCP-1, and IFN-β was significantly increased in cardiac fibroblasts compared to cardiomyocytes or macrophages. We found that in addition to cardiomyocytes cardiac fibroblasts were infected by CVB3 and displayed a higher virus replication (132-fold increase) compared to cardiomyocytes (14-fold increase) between 6 and 24 hours after infection. At higher virus concentrations, macrophages are able to reduce the viral copy number. At low virus concentration a persistent virus infection was determined. Therefore, we suggest that cardiac fibroblasts play an important role in the pathology of CVB3-induced myocarditis and are another important contributor of virus replication aggravating myocarditis.

  • protease activated receptor 2 regulates the innate immune response to viral infection in a Coxsackievirus B3 induced myocarditis
    Journal of the American College of Cardiology, 2013
    Co-Authors: Alice Weithauser, Karin Klingel, Konstantinos Savvatis, Peter Bobbert, Silvio Antoniak, Andreas Bohm, Bernhard H Rauch, Heyo K Kroemer, Carsten Tschope, Andrea Stroux
    Abstract:

    Objectives: This study sought to evaluate the role of protease-activated receptor-2 (PAR2) in Coxsackievirus B3 (CVB3)–induced myocarditis.Background: An infection with CVB3 leads to myocarditis. P...

  • mesenchymal stem cells improve murine acute Coxsackievirus B3 induced myocarditis
    European Heart Journal, 2011
    Co-Authors: S Van Linthout, Kapka Miteva, K Savvatis, Jun Peng, Jochen Ringe, Katrin Warstat, Caroline Schmidtlucke, Michael Sittinger, H P Schultheiss, Carsten Tschope
    Abstract:

    Aims Coxsackievirus B3 (CVB3)-induced myocarditis, initially considered a sole immune-mediated disease, also results from a direct CVB3-mediated injury of the cardiomyocytes. Mesenchymal stem cells (MSCs) have, besides immunomodulatory, also anti-apoptotic features. In view of clinical translation, we first analysed whether MSCs can be infected by CVB3. Next, we explored whether and how MSCs could reduce the direct CVB3-mediated cardiomyocyte injury and viral progeny release, in vitro, in the absence of immune cells. Finally, we investigated whether MSC application could improve murine acute CVB3-induced myocarditis. Methods and results Phase contrast pictures and MTS viability assay demonstrated that MSCs did not suffer from CVB3 infection 4-12-24-48 h after CVB3 infection. Coxsackievirus B3 RNA copy number decreased in this time frame, suggesting that no CVB3 replication took place. Co-culture of MSCs with CVB3-infected HL-1 cardiomyocytes resulted in a reduction of CVB3-induced HL-1 apoptosis, oxidative stress, intracellular viral particle production, and viral progeny release in a nitric oxide (NO)-dependent manner. Moreover, MSCs required priming via interferon-γ (IFN-γ) to exert their protective effects. In vivo, MSC application improved the contractility and relaxation parameters in CVB3-induced myocarditis, which was paralleled with a reduction in cardiac apoptosis, cardiomyocyte damage, left ventricular tumour necrosis factor-α mRNA expression, and cardiac mononuclear cell activation. Mesenchymal stem cells reduced the CVB3-induced CD4- and CD8- T cell activation in an NO-dependent way and required IFN-γ priming. Conclusion We conclude that MSCs improve murine acute CVB3-induced myocarditis via their anti-apoptotic and immunomodulatory properties, which occur in an NO-dependent manner and require priming via IFN-γ.

Jingchun Zhang - One of the best experts on this subject based on the ideXlab platform.

  • an erk p38 subnetwork coordinates host cell apoptosis and necrosis during Coxsackievirus B3 infection
    Cell Host & Microbe, 2013
    Co-Authors: Karin Jensen, Decheng Yang, Honglin Luo, Farshid S Garmaroudi, Jingchun Zhang, Jun Lin, Seti Boroomand, Mary Zhang, Zongshu Luo, Bruce M Mcmanus
    Abstract:

    Summary The host response to a virus is determined by intracellular signaling pathways that are modified during infection. These pathways converge as networks and produce interdependent phenotypes, making it difficult to link virus-induced signals and responses at a systems level. Coxsackievirus B3 (CVB3) infection induces death of cardiomyocytes, causing tissue damage and virus dissemination, through incompletely characterized host cell signaling networks. We built a statistical model that quantitatively predicts cardiomyocyte responses from time-dependent measurements of phosphorylation events modified by CVB3. Model analysis revealed that CVB3-stimulated cytotoxicity involves tight coupling between the host ERK and p38 MAPK pathways, which are generally thought to control distinct cellular responses. The kinase ERK5 requires p38 kinase activity and inhibits apoptosis caused by CVB3 infection. By contrast, p38 indirectly promotes apoptosis via ERK1/2 inhibition but directly causes CVB3-induced necrosis. Thus, the cellular events governing pathogenesis are revealed when virus-host programs are monitored systematically and deconvolved mathematically.

  • autophagosome supports Coxsackievirus B3 replication in host cells
    Journal of Virology, 2008
    Co-Authors: Jerry Wong, Bruce M Mcmanus, Jingchun Zhang, Guang Gao, Ivy Mao, Honglin Luo
    Abstract:

    Recent studies suggest a possible takeover of host antimicrobial autophagy machinery by positive-stranded RNA viruses to facilitate their own replication. In the present study, we investigated the role of autophagy in Coxsackievirus replication. Coxsackievirus B3 (CVB3), a picornavirus associated with viral myocarditis, causes pronounced intracellular membrane reorganization after infection. We demonstrate that CVB3 infection induces an increased number of double-membrane vesicles, accompanied by an increase of the LC3-II/LC3-I ratio and an accumulation of punctate GFP-LC3-expressing cells, two hallmarks of cellular autophagosome formation. However, protein expression analysis of p62, a marker for autophagy-mediated protein degradation, showed no apparent changes after CVB3 infection. These results suggest that CVB3 infection triggers autophagosome formation without promoting protein degradation by the lysosome. We further examined the role of the autophagosome in CVB3 replication. We demonstrated that inhibition of autophagosome formation by 3-methyladenine or small interfering RNAs targeting the genes critical for autophagosome formation (ATG7, Beclin-1, and VPS34 genes) significantly reduced viral replication. Conversely, induction of autophagy by rapamycin or nutrient deprivation resulted in increased viral replication. Finally, we examined the role of autophagosome-lysosome fusion in viral replication. We showed that blockage of the fusion by gene silencing of the lysosomal protein LAMP2 significantly promoted viral replication. Taken together, our results suggest that the host9s autophagy machinery is activated during CVB3 infection to enhance the efficiency of viral replication.

  • ubiquitination is required for effective replication of Coxsackievirus B3
    PLOS ONE, 2008
    Co-Authors: Guang Gao, Jingchun Zhang, Jerry Wong, Yahong Wang, Honglin Luo
    Abstract:

    Background Protein ubiquitination and/or degradation by the ubiquitin/proteasome system (UPS) have been recognized as critical mechanisms in the regulation of numerous essential cellular functions. The importance of the UPS in viral pathogenesis has become increasingly apparent. Using murine cardiomyocytes, we have previously demonstrated that the UPS plays a key role in the replication of Coxsackievirus B3 (CVB3), an important human pathogen associated with various diseases. To further elucidate the underlying mechanisms, we examined the interplay between the UPS and CVB3, focusing on the role of ubiquitination in viral lifecycle. Methodology/Principal Findings As assessed by in situ hybridization, Western blot, and plaque assay, we showed that proteasome inhibition decreased CVB3 RNA replication, protein synthesis, and viral titers in HeLa cells. There were no apparent changes in 20S proteasome activities following CVB3 infection. However, we found viral infection led to an accumulation of protein-ubiquitin conjugates, accompanied by a decreased protein expression of free ubiquitin, implicating an important role of ubiquitination in the UPS-mediated viral replication. Using small-interfering RNA, we demonstrated that gene-silencing of ubiquitin significantly reduced viral titers, possibly through downregulation of protein ubiquitination and subsequent alteration of protein function and/or degradation. Inhibition of deubiquitinating enzymes apparently enhances the inhibitory effects of proteasome inhibitors on CVB3 replication. Finally, by immunoprecipitation, we showed that coxsackieviral polymerase 3D was post-translationally modified by ubiquitination and such modification might be a prerequisite for its function in transcriptional regulation of viral genome. Conclusion Coxsackievirus infection promotes protein ubiquitination, contributing to effective viral replication, probably through ubiquitin modification of viral polymerase.

  • stress activated protein kinases are involved in Coxsackievirus B3 viral progeny release
    Journal of Virology, 2005
    Co-Authors: Honglin Luo, Jerry Wong, Jingchun Zhang, Guang Gao, Andrew Morgan, Ji Yuan, Mitra Esfandiarei, Caroline Cheung, Bruce M Mcmanus
    Abstract:

    Stress-activated protein kinases (SAPKs), consisting of c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38 MAPK), are activated upon various environmental stimuli, including viral infections. Cellular survival and death signaling events following Coxsackievirus B3 (CVB3) infection have been studied in relationship to viral replication, but the role of SAPKs has not been scrutinized. In this study, we found that the phosphorylation of JNK1/2 and p38 MAPK was increased during active replication of CVB3 and that their phosphorylation was independent of CVB3-induced caspase activation or production of reactive oxygen species. The roles of these kinases in CVB3 infection were further evaluated using specific inhibitors: SP600125 for JNK1/2 and SB203580 for p38 MAPK. JNK1/2 inhibitors reduced CVB3-induced phosphorylation of activating transcription factor 2, and the p38 MAPK inhibitor reduced CVB3-induced phosphorylation of heat shock protein 27. Although inhibition of these kinases by specific inhibitors did not affect CVB3 viral protein synthesis, inhibition of p38 MAPK but not of JNK1/2 resulted in significant reduction of viral progeny release, suppression of CVB3-induced cell death, and blockage of CVB3-induced caspase-3 activation in infected cells. We conclude that SAPK pathways play critical roles in the life cycle of CVB3, particularly in viral progeny release.

  • pyrrolidine dithiocarbamate reduces Coxsackievirus B3 replication through inhibition of the ubiquitin proteasome pathway
    Journal of Virology, 2005
    Co-Authors: Bruce M Mcmanus, Jingchun Zhang, Andrew Morgan, Ji Yuan, Mitra Esfandiarei, Caroline Cheung, Agripina Suarez, Honglin Luo
    Abstract:

    Coxsackievirus B3 (CVB3) is one of the most common pathogens for viral myocarditis. The lack of effective therapeutics for CVB3-caused viral diseases underscores the importance of searching for antiviral compounds. Pyrrolidine dithiocarbamate (PDTC) is an antioxidant and is recently reported to inhibit ubiquitin-proteasome-mediated proteolysis. Previous studies have shown that PDTC inhibits replication of rhinovirus, influenza virus, and poliovirus. In the present study, we report that PDTC is a potent inhibitor of CVB3. Coxsackievirus-infected HeLa cells treated with PDTC showed a significant reduction of CVB3 viral RNA synthesis, viral protein VP1 expression, and viral progeny release. Similar to previous observation that divalent ions mediate the function of PDTC, we further report that serum-containing copper and zinc are required for its antiviral activity. CVB3 infection resulted in massive generation of reactive oxygen species (ROS). Although PDTC alleviated ROS generation, the antiviral activity was unlikely dependent on its antioxidant effect because the potent antioxidant, N-acetyl-l-cysteine, failed to inhibit CVB3 replication. Consistent with previous reports that PDTC inhibits ubiquitin-proteasome-mediated protein degradation, we found that PDTC treatment led to the accumulation of several short-lived proteins in infected cells. We further provide evidence that the inhibitory effect of PDTC on protein degradation was not due to inhibition of proteasome activity but likely modulation of ubiquitination. Together with our previous findings that proteasome inhibition reduces CVB3 replication (H. Luo, J. Zhang, C. Cheung, A. Suarez, B. M. McManus, and D. Yang, Am. J. Pathol. 163:381-385, 2003), results in this study suggest a strong antiviral effect of PDTC on Coxsackievirus, likely through inhibition of the ubiquitin-proteasome pathway.

Decheng Yang - One of the best experts on this subject based on the ideXlab platform.

  • expression profile and function analysis of long non coding rnas in the infection of Coxsackievirus B3
    Virologica Sinica, 2019
    Co-Authors: Lei Tong, Yan Wang, Lexun Lin, Wenran Zhao, Ye Qiu, Hui Wang, Yuanbo Zhao, Guangze Zhao, Mary H Zhang, Decheng Yang
    Abstract:

    The roles of lncRNAs in the infection of enteroviruses have been barely demonstrated. In this study, we used Coxsackievirus B3 (CVB3), a typical enterovirus, as a model to investigate the expression profiles and functional roles of lncRNAs in enterovirus infection. We profiled lncRNAs and mRNA expression in CVB3-infected HeLa cells by lncRNA-mRNA integrated microarrays. As a result, 700 differentially expressed lncRNAs (431 up-regulated and 269 down-regulated) and 665 differentially expressed mRNAs (299 up-regulated and 366 down-regulated) were identified in CVB3 infection. Then we performed lncRNA-mRNA integrated pathway analysis to identify potential functional impacts of the differentially expressed mRNAs, in which lncRNA-mRNA correlation network was built. According to lncRNA-mRNA correlation, we found that XLOC-001188, an lncRNA down-regulated in CVB3 infection, was negatively correlated with NFAT5 mRNA, an anti-CVB3 gene reported previously. This interaction was supported by qPCR detection following siRNA-mediated knockdown of XLOC-001188, which showed an increase of NFAT5 mRNA and a reduction of CVB3 genomic RNA. In addition, we observed that four most significantly altered lncRNAs, SNHG11, RP11-145F16.2, RP11-1023L17.1 and RP11-1021N1.2 share several common correlated genes critical for CVB3 infection, such as BRE and IRF2BP1. In all, our studies reveal the alteration of lncRNA expression in CVB3 infection and its potential influence on CVB3 replication, providing useful information for future studies of enterovirus infection.

  • Coxsackievirus B3 replication and pathogenesis
    Future Microbiology, 2015
    Co-Authors: Farshid S Garmaroudi, Decheng Yang, Honglin Luo, D R Marchant, Reid G Hendry, Junyan Shi, Bruce M Mcmanus
    Abstract:

    Viruses such as Coxsackievirus B3 (CVB3) are entirely host cell-dependent parasites. Indeed, they must cleverly exploit various compartments of host cells to complete their life cycle, and consequently launch disease. Evolution has equipped this pico-rna-virus, CVB3, to use different strategies, including CVB3-induced direct damage to host cells followed by a host inflammatory response to CVB3 infection, and cell death to super-additively promote target organ tissue injury, and dysfunction. In this update, the patho-stratagems of CVB3 are explored from molecular, and systems-level approaches. In summarizing recent developments in this field, we focus particularly on mechanisms by which CVB3 can harness different host cell processes including kinases, host cell-killing and cell-eating machineries, matrix metalloproteinases and miRNAs to promote disease.

  • an erk p38 subnetwork coordinates host cell apoptosis and necrosis during Coxsackievirus B3 infection
    Cell Host & Microbe, 2013
    Co-Authors: Karin Jensen, Decheng Yang, Honglin Luo, Farshid S Garmaroudi, Jingchun Zhang, Jun Lin, Seti Boroomand, Mary Zhang, Zongshu Luo, Bruce M Mcmanus
    Abstract:

    Summary The host response to a virus is determined by intracellular signaling pathways that are modified during infection. These pathways converge as networks and produce interdependent phenotypes, making it difficult to link virus-induced signals and responses at a systems level. Coxsackievirus B3 (CVB3) infection induces death of cardiomyocytes, causing tissue damage and virus dissemination, through incompletely characterized host cell signaling networks. We built a statistical model that quantitatively predicts cardiomyocyte responses from time-dependent measurements of phosphorylation events modified by CVB3. Model analysis revealed that CVB3-stimulated cytotoxicity involves tight coupling between the host ERK and p38 MAPK pathways, which are generally thought to control distinct cellular responses. The kinase ERK5 requires p38 kinase activity and inhibits apoptosis caused by CVB3 infection. By contrast, p38 indirectly promotes apoptosis via ERK1/2 inhibition but directly causes CVB3-induced necrosis. Thus, the cellular events governing pathogenesis are revealed when virus-host programs are monitored systematically and deconvolved mathematically.

  • MicroRNA-203 enhances Coxsackievirus B3 replication through targeting zinc finger protein-148
    Cellular and Molecular Life Sciences, 2013
    Co-Authors: Maged Gomaa Hemida, Huifang M. Zhang, Paul J Hanson, Bruce M Mcmanus, Xin Ye, Decheng Yang
    Abstract:

    Coxsackievirus B3 (CVB3) is the primary causal agent of viral myocarditis. During infection, it hijacks host genes to favour its own replication. However, the underlying mechanism is still unclear. Although the viral receptor is an important factor for viral infectivity, other factors such as microRNAs (miRNA) may also play an essential role in its replication after host cell entry. miRNAs are post-transcriptional gene regulators involved in various fundamental biological processes as well as in diseases. To identify miRNAs involved in CVB3 pathogenesis, we performed microarray analysis of miRNAs using CVB3-infected murine hearts and identified miR-203 as one of the most upregulated candidates. We found that miR-203 upregulation is through the activation of protein kinase C/transcription factor AP-1 pathway. We further identified zinc finger protein-148 (ZFP-148), a transcription factor, as a novel target of miR-203. Ectopic expression of miR-203 downregulated ZFP-148 translation, increased cell viability and subsequently enhanced CVB3 replication. Silencing of ZFP-148 by siRNA showed similar effects on CVB3 replication. Finally, analyses of the signalling cascade downstream of ZFP-148 revealed that miR-203-induced suppression of ZFP-148 differentially regulated the expression of prosurvival and proapoptotic genes of the Bcl-2 family proteins as well as the cell cycle regulators. This altered gene expression promoted cell survival and growth, which provided a favourable environment for CVB3 replication, contributing to the further damage of the infected cells. Taken together, this study identified a novel target of miR-203 and revealed, for the first time, the molecular link between miR-203/ZFP-148 and the pathogenesis of CVB3.

  • bcl 2 and bcl xl overexpression inhibits cytochrome c release activation of multiple caspases and virus release following Coxsackievirus B3 infection
    Virology, 2003
    Co-Authors: Christopher M Carthy, Decheng Yang, Honglin Luo, Mitra Esfandiarei, Caroline Cheung, David J Granville, Bobby Yanagawa, Paul Cheung, Charles M Rudin, Craig B Thompson
    Abstract:

    Coxsackievirus B3, a cytopathic virus in the family Picornaviridae, induces degenerative changes in host cell morphology. Here we demonstrate cytochrome c release and caspases-2, -3, -6, -7, -8, and -9 processing. Enforced Bcl-2 and Bcl-xL expression markedly reduced release of cytochrome c, presentation of the mitochondrial epitope 7A6, and depressed caspase activation following infection. In comparison, cell death using TRAIL ligand caused caspase-8 processing prior to cytochrome c release and executioner caspases and cell death was only partially rescued by Bcl-2 and Bcl-xL overexpression. Disruption of the mitochondrial inner membrane potential following CVB3 infection was not inhibited by zVAD.fmk treatment. Bcl-2 or Bcl-xL overexpression or zVAD.fmk treatment delayed the loss of host cell viability and decreased progeny virus release following infection. Our data suggest that mitochondrial release of cytochrome c may be an important early event in caspase activation in CVB3 infection, and, as such, may contribute to the loss of host-cell viability and progeny virus release.