CP 47

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 593655 Experts worldwide ranked by ideXlab platform

Terry M Bricker - One of the best experts on this subject based on the ideXlab platform.

  • random mutagenesis in the large extrinsic loop e and transmembrane alpha helix vi of the CP 47 protein of photosystem ii
    Plant Molecular Biology, 1999
    Co-Authors: Najy Masri, Wan Lee, Laurie K Frankel, Terry M Bricker
    Abstract:

    The intrinsic chlorophyll-protein CP 47 is a component of Photosystem II which functions in both light-harvesting and oxygen evolution. Using the Escherichia coli mutator strain XL-1 Red, we introduced mutations at 14 sites in the large extrinsic loop E of CP 47 and its adjacent transmembrane α-helix VI. Four mutant cell lines were recovered in which the histidyl residues 455H, 466H and 469H were altered. The cell lines H455T, H455Y, H469Y, and the double mutant F432L,H466R exhibited phenotypes that supported the identification of the histidyl residues 455H, 466H and 469H as chlorophyll ligands. Four additional mutant cell lines were recovered which contained mutations at positions 448R in the large extrinsic loop of CP 47. These mutants, R448K, R448Q, R448S, and R448W, exhibited variable phenotypes ranging from moderate alteration of photoautotrophic growth and oxygen evolution rates to a complete inhibition of these parameters. Those mutants exhibiting photoautotrophic growth and oxygen evolution capability under standard conditions were unable to grow photoautotrophically or evolve oxygen when grown at low chloride concentrations. Finally, a mutant cell line exhibiting a substitution at position 342G was recovered. The mutant G342D exhibited moderate alterations of photoautotrophic growth and oxygen evolution. In addition to these alterations, mutants were recovered in which deletions and insertions (leading to frame shifts) and stop codons were introduced. These mutants uniformly lacked the ability to either grow photoautotrophically or evolve oxygen.

  • isolation of a highly active photosystem ii preparation from synechocystis 6803 using a histidine tagged mutant of CP 47
    Biochimica et Biophysica Acta, 1998
    Co-Authors: Terry M Bricker, Najy Masri, Jason Morvant, Holly Sutton, Laurie K Frankel
    Abstract:

    Site-directed mutagenesis was used to produce a Synechocystis mutant containing a histidine tag at the C terminus of the CP 47 protein of Photosystem II. This mutant cell line, designated HT-3, exhibited slightly above normal rates of oxygen evolution and appeared to accumulate somewhat more Photosystem II reaction centers than a control strain. A rapidly isolatable (<7 h) oxygen-evolving Photosystem II preparation was prepared from HT-3 using dodecyl-β-d-maltoside solubilization and Co2+ metal affinity chromatography. This histidine-tagged Photosystem II preparation stably evolved oxygen at a high rate (2440 μmol O2 (mg chl)−1 h−1), exhibited an α-band absorption maximum at 674 nm, and was highly enriched in a number of Photosystem II components including cytochrome c550. Fluorescence yield analysis using water or hydroxylamine as an electron donor to the Photosystem II preparation indicated that virtually all of the Photosystem II reaction centers were capable of evolving oxygen. Proteins associated with Photosystem II were highly enriched in this preparation. 3,3′,5,5′-Tetramethylbenzidine staining indicated that the histidine-tagged preparation was enriched in cytochromes c550 and b559 and depleted of cytochrome f. This result was confirmed by optical difference spectroscopy. This histidine-tagged Photosystem II preparation may be very useful for the isolation of Photosystem II preparations from mutants containing lesions in other Photosystem II proteins.

  • site directed mutagenesis of the basic residues 321k to321 g in the CP 47 protein of photosystem ii alters the chloride requirement for growth and oxygen evolving activity in synechocystis 6803
    Plant Molecular Biology, 1997
    Co-Authors: Cindy Putnamevans, Terry M Bricker
    Abstract:

    CP 47, a component of photosystem II (PSII) in higher plants, algae and cyanobacteria, is encoded by the psbB gene. Site-specific mutagenesis has been used to alter a portion of the psbB gene encoding the large extrinsic loop E of CP 47 in the cyanobacterium Synechocystis 6803. Alteration of a lysine residue occurring at position 321 to glycine produced a strain with altered PSII activity. This strain grew at wild-type rates in complete BG-11 media (480 µM chloride). However, oxygen evolution rates for this mutant in complete media were only 60% of the observed wild-type rates. Quantum yield measurements at low light intensities indicated that the mutant had 66% of the fully functional PSII centers contained in the control strain. The mutant proved to be extremely sensitive to photoinactivation at high light intensities, exhibiting a 3-fold increase in the rate of photoinactivation. When this mutant was grown in media depleted of chloride (30 µM chloride), it lost the ability to grow photoautotrophically while the control strain exhibited a normal rate of growth. The effect of chloride depletion on the growth rate of the mutant was reversed by the addition of 480 µM bromide to the chloride-depleted BG-11 media. In the presence of glucose, the mutant and control strains grew at comparable rates in either chloride-containing or chloride-depleted media. Oxygen evolution rates for the mutant were further depressed (28% of control rates) under chloride-limiting conditions. Addition of bromide restored these rates to those observed under chloride-sufficient conditions. Measurements of the variable fluorescence yield indicated that the mutant assembled fewer functional centers in the absence of chloride. These results indicate that the mutation K321G in CP 47 affects PSII stability and/or assembly under conditions where chloride is limiting.

  • site directed mutagenesis of the basic residues 321k to 321g in the CP 47 protein of photosystem ii alters the chloride requirement for growth and oxygen evolving activity in synechocystis 6803
    Plant Molecular Biology, 1997
    Co-Authors: Cindy Putnamevans, Terry M Bricker
    Abstract:

    CP 47, a component of photosystem II (PSII) in higher plants, algae and cyanobacteria, is encoded by the psbB gene. Site-specific mutagenesis has been used to alter a portion of the psbB gene encoding the large extrinsic loop E of CP 47 in the cyanobacterium Synechocystis 6803. Alteration of a lysine residue occurring at position 321 to glycine produced a strain with altered PSII activity. This strain grew at wild-type rates in complete BG-11 media (480 µM chloride). However, oxygen evolution rates for this mutant in complete media were only 60% of the observed wild-type rates. Quantum yield measurements at low light intensities indicated that the mutant had 66% of the fully functional PSII centers contained in the control strain. The mutant proved to be extremely sensitive to photoinactivation at high light intensities, exhibiting a 3-fold increase in the rate of photoinactivation. When this mutant was grown in media depleted of chloride (30 µM chloride), it lost the ability to grow photoautotrophically while the control strain exhibited a normal rate of growth. The effect of chloride depletion on the growth rate of the mutant was reversed by the addition of 480 µM bromide to the chloride-depleted BG-11 media. In the presence of glucose, the mutant and control strains grew at comparable rates in either chloride-containing or chloride-depleted media. Oxygen evolution rates for the mutant were further depressed (28% of control rates) under chloride-limiting conditions. Addition of bromide restored these rates to those observed under chloride-sufficient conditions. Measurements of the variable fluorescence yield indicated that the mutant assembled fewer functional centers in the absence of chloride. These results indicate that the mutation K321G in CP 47 affects PSII stability and/or assembly under conditions where chloride is limiting.

  • site directed mutagenesis of the CP 47 protein of photosystem ii alteration of conserved charged residues which lie within lethal deletions of the large extrinsic loop e
    Plant Molecular Biology, 1996
    Co-Authors: Cindy Putnamevans, Terry M Bricker
    Abstract:

    The intrinsic chlorophyll-protein CP 47 is a component of photosystem II which functions in both light-harvesting and oxygen evolution. The large extrinsic loop E of this protein has been shown to interact with the oxygen-evolving site. Previously, Vermaas and coworkers have produced a number of deletions within loop E which yielded mutants which were unable to grow photoautotrophically and which could not evolve oxygen at normal rates. During the course of our site-directed mutagenesis program in Synechocystis 6803, we have altered all of the conserved charged residues which were present within six of these deletions. All ten of these mutants were photoautotrophic and evolved oxygen at normal rates. We speculate that the severe phenotypes of the deletion mutants observed by Vermaas and coworkers in due to large structural perturbations in the extrinsic loop E of CP 47.

Cindy Putnamevans - One of the best experts on this subject based on the ideXlab platform.

  • site directed mutagenesis of the basic residues 321k to321 g in the CP 47 protein of photosystem ii alters the chloride requirement for growth and oxygen evolving activity in synechocystis 6803
    Plant Molecular Biology, 1997
    Co-Authors: Cindy Putnamevans, Terry M Bricker
    Abstract:

    CP 47, a component of photosystem II (PSII) in higher plants, algae and cyanobacteria, is encoded by the psbB gene. Site-specific mutagenesis has been used to alter a portion of the psbB gene encoding the large extrinsic loop E of CP 47 in the cyanobacterium Synechocystis 6803. Alteration of a lysine residue occurring at position 321 to glycine produced a strain with altered PSII activity. This strain grew at wild-type rates in complete BG-11 media (480 µM chloride). However, oxygen evolution rates for this mutant in complete media were only 60% of the observed wild-type rates. Quantum yield measurements at low light intensities indicated that the mutant had 66% of the fully functional PSII centers contained in the control strain. The mutant proved to be extremely sensitive to photoinactivation at high light intensities, exhibiting a 3-fold increase in the rate of photoinactivation. When this mutant was grown in media depleted of chloride (30 µM chloride), it lost the ability to grow photoautotrophically while the control strain exhibited a normal rate of growth. The effect of chloride depletion on the growth rate of the mutant was reversed by the addition of 480 µM bromide to the chloride-depleted BG-11 media. In the presence of glucose, the mutant and control strains grew at comparable rates in either chloride-containing or chloride-depleted media. Oxygen evolution rates for the mutant were further depressed (28% of control rates) under chloride-limiting conditions. Addition of bromide restored these rates to those observed under chloride-sufficient conditions. Measurements of the variable fluorescence yield indicated that the mutant assembled fewer functional centers in the absence of chloride. These results indicate that the mutation K321G in CP 47 affects PSII stability and/or assembly under conditions where chloride is limiting.

  • site directed mutagenesis of the basic residues 321k to 321g in the CP 47 protein of photosystem ii alters the chloride requirement for growth and oxygen evolving activity in synechocystis 6803
    Plant Molecular Biology, 1997
    Co-Authors: Cindy Putnamevans, Terry M Bricker
    Abstract:

    CP 47, a component of photosystem II (PSII) in higher plants, algae and cyanobacteria, is encoded by the psbB gene. Site-specific mutagenesis has been used to alter a portion of the psbB gene encoding the large extrinsic loop E of CP 47 in the cyanobacterium Synechocystis 6803. Alteration of a lysine residue occurring at position 321 to glycine produced a strain with altered PSII activity. This strain grew at wild-type rates in complete BG-11 media (480 µM chloride). However, oxygen evolution rates for this mutant in complete media were only 60% of the observed wild-type rates. Quantum yield measurements at low light intensities indicated that the mutant had 66% of the fully functional PSII centers contained in the control strain. The mutant proved to be extremely sensitive to photoinactivation at high light intensities, exhibiting a 3-fold increase in the rate of photoinactivation. When this mutant was grown in media depleted of chloride (30 µM chloride), it lost the ability to grow photoautotrophically while the control strain exhibited a normal rate of growth. The effect of chloride depletion on the growth rate of the mutant was reversed by the addition of 480 µM bromide to the chloride-depleted BG-11 media. In the presence of glucose, the mutant and control strains grew at comparable rates in either chloride-containing or chloride-depleted media. Oxygen evolution rates for the mutant were further depressed (28% of control rates) under chloride-limiting conditions. Addition of bromide restored these rates to those observed under chloride-sufficient conditions. Measurements of the variable fluorescence yield indicated that the mutant assembled fewer functional centers in the absence of chloride. These results indicate that the mutation K321G in CP 47 affects PSII stability and/or assembly under conditions where chloride is limiting.

  • site directed mutagenesis of the CP 47 protein of photosystem ii alteration of conserved charged residues which lie within lethal deletions of the large extrinsic loop e
    Plant Molecular Biology, 1996
    Co-Authors: Cindy Putnamevans, Terry M Bricker
    Abstract:

    The intrinsic chlorophyll-protein CP 47 is a component of photosystem II which functions in both light-harvesting and oxygen evolution. The large extrinsic loop E of this protein has been shown to interact with the oxygen-evolving site. Previously, Vermaas and coworkers have produced a number of deletions within loop E which yielded mutants which were unable to grow photoautotrophically and which could not evolve oxygen at normal rates. During the course of our site-directed mutagenesis program in Synechocystis 6803, we have altered all of the conserved charged residues which were present within six of these deletions. All ten of these mutants were photoautotrophic and evolved oxygen at normal rates. We speculate that the severe phenotypes of the deletion mutants observed by Vermaas and coworkers in due to large structural perturbations in the extrinsic loop E of CP 47.

  • site directed mutagenesis of the CP 47 protein of photosystem ii 167w in the lumenally exposed loop c is required for photosystem ii assembly and stability
    Plant Molecular Biology, 1996
    Co-Authors: Cindy Putnamevans, Terry M Bricker
    Abstract:

    The intrinsic chlorophyll-protein CP 47 is a component of photosystem II which functions in both light-harvesting and oxygen evolution. Using site-directed mutagenesis we have produced the mutant W167S which lies in loop C of CP 47. This strain exhibited a 75% loss in oxygen evolution activity and grew extremely slowly in the absence of glucose. Examination of normalized oxygen evolution traces indicated that the mutant was susceptible to photoinactivation. Analysis of the variable fluorescence yield indicated that the mutant accumulated very few functional PS II reaction centers. This was confirmed by immunoblotting experiments. Interestingly, when W167S was grown in the presence of 20 μM DCMU, the mutant continued to exhibit these defects. These results indicate that tryptophan 167 in loop C of CP 47 is important for the assembly and stability of the PS II reaction center.

  • site directed mutagenesis of the CP 47 protein of photosystem ii alteration of conserved charged residues in the domain 364e 444r
    Biochemistry, 1996
    Co-Authors: Cindy Putnamevans, Robert L Burnap, John Whitmarsh, Terry M Bricker
    Abstract:

    The intrinsic chlorophyll-protein CP 47 is a component of photosystem II in higher plants, green algae and cyanobacteria. We had shown previously by biochemical methods that the domain 364E-440D of CP 47 interacts with the 33 kDa extrinsic protein of photosystem II [Odom, W. R., & Bricker, T. M. (1992) Biochemistry 31, 5616-5620]. In this study, using oligonucleotide-directed mutagenesis in the cyanobacterium Synechocystis 6803, mutations at 17 conserved charged residues were introduced into the domain 364E-444R of the CP 47 protein. Only mutations introduced at positions 384R and 385R led to a modified PS II phenotype. We previously described a mutation at (RR384385GG) which resulted in a mutant with a defective oxygen-evolving complex [Putnam-Evans, C., & Bricker, T. M. (1992) Biochemistry 31, 11482-11488]. An additional set of mutations, 384R to 384G, 385R to 385G, and 384,385RR to 384,385EE has now been introduced at this site yielding the mutants R384G, R385G, and RR384385EE, respectively. Steady state oxygen evolution measurements and quantum yield measurements demonstrated that these mutants exhibited significant alterations in their ability to evolve oxygen. Total fluorescence yield measurements indicated that all of these mutants contained about 85%-90% of the PS II reaction centers found in the control strain. This decrease was insufficient to explain the oxygen evolution results. Analysis of oxygen flash yield parameters indicated that there was little change in the S-state parameters alpha, beta, gamma, or delta. Measurement of the S2 lifetime, however, demonstrated that the S2 lifetime of the mutants was 2-3 times longer than that of the control. Additionally, examination of the risetime of the oxygen signal indicated that there was a significant retardation (6-7-fold) in the rate of oxygen release, suggesting a retarded S3-[S4]-S0 transition. These data reinforce our hypothesis that the positive charge density at positions 384R and 385R in the large extrinsic loop of CP 47 is necessary for its function in water oxidation. We speculate that this positive charge density may be an important factor in establishing the proper interaction between CP 47 and the 33kDa extrinsic protein.

Laurie K Frankel - One of the best experts on this subject based on the ideXlab platform.

  • random mutagenesis in the large extrinsic loop e and transmembrane alpha helix vi of the CP 47 protein of photosystem ii
    Plant Molecular Biology, 1999
    Co-Authors: Najy Masri, Wan Lee, Laurie K Frankel, Terry M Bricker
    Abstract:

    The intrinsic chlorophyll-protein CP 47 is a component of Photosystem II which functions in both light-harvesting and oxygen evolution. Using the Escherichia coli mutator strain XL-1 Red, we introduced mutations at 14 sites in the large extrinsic loop E of CP 47 and its adjacent transmembrane α-helix VI. Four mutant cell lines were recovered in which the histidyl residues 455H, 466H and 469H were altered. The cell lines H455T, H455Y, H469Y, and the double mutant F432L,H466R exhibited phenotypes that supported the identification of the histidyl residues 455H, 466H and 469H as chlorophyll ligands. Four additional mutant cell lines were recovered which contained mutations at positions 448R in the large extrinsic loop of CP 47. These mutants, R448K, R448Q, R448S, and R448W, exhibited variable phenotypes ranging from moderate alteration of photoautotrophic growth and oxygen evolution rates to a complete inhibition of these parameters. Those mutants exhibiting photoautotrophic growth and oxygen evolution capability under standard conditions were unable to grow photoautotrophically or evolve oxygen when grown at low chloride concentrations. Finally, a mutant cell line exhibiting a substitution at position 342G was recovered. The mutant G342D exhibited moderate alterations of photoautotrophic growth and oxygen evolution. In addition to these alterations, mutants were recovered in which deletions and insertions (leading to frame shifts) and stop codons were introduced. These mutants uniformly lacked the ability to either grow photoautotrophically or evolve oxygen.

  • isolation of a highly active photosystem ii preparation from synechocystis 6803 using a histidine tagged mutant of CP 47
    Biochimica et Biophysica Acta, 1998
    Co-Authors: Terry M Bricker, Najy Masri, Jason Morvant, Holly Sutton, Laurie K Frankel
    Abstract:

    Site-directed mutagenesis was used to produce a Synechocystis mutant containing a histidine tag at the C terminus of the CP 47 protein of Photosystem II. This mutant cell line, designated HT-3, exhibited slightly above normal rates of oxygen evolution and appeared to accumulate somewhat more Photosystem II reaction centers than a control strain. A rapidly isolatable (<7 h) oxygen-evolving Photosystem II preparation was prepared from HT-3 using dodecyl-β-d-maltoside solubilization and Co2+ metal affinity chromatography. This histidine-tagged Photosystem II preparation stably evolved oxygen at a high rate (2440 μmol O2 (mg chl)−1 h−1), exhibited an α-band absorption maximum at 674 nm, and was highly enriched in a number of Photosystem II components including cytochrome c550. Fluorescence yield analysis using water or hydroxylamine as an electron donor to the Photosystem II preparation indicated that virtually all of the Photosystem II reaction centers were capable of evolving oxygen. Proteins associated with Photosystem II were highly enriched in this preparation. 3,3′,5,5′-Tetramethylbenzidine staining indicated that the histidine-tagged preparation was enriched in cytochromes c550 and b559 and depleted of cytochrome f. This result was confirmed by optical difference spectroscopy. This histidine-tagged Photosystem II preparation may be very useful for the isolation of Photosystem II preparations from mutants containing lesions in other Photosystem II proteins.

Norio Murata - One of the best experts on this subject based on the ideXlab platform.

  • The role of CP 47 in the evolution of oxygen and the binding of the extrinsic 33-kDa protein to the core complex of Photosystem II as determined by limited proteolysis
    Photosynthesis Research, 1993
    Co-Authors: Hidenori Hayashi, Yoko Fujimura, Prasanna S. Mohanty, Norio Murata
    Abstract:

    In order to identify the domain within Photosystem II complexes that functions in the evolution of oxygen, we performed limited proteolysis with lysylendopeptidase of the core complex of Photosystem II which had been depleted of the extrinsic 33-kDa protein (Mn-stabilizing protein). The cleavage sites were estimated from the amino-terminal sequences of the degradation fragments, their apparent molecular masses and amino-acid compositions. Under certain conditions, the D2 protein was cleaved at Lys13; and a chlorophyll a -binding protein, CP 47, was cleaved at Lys227 and Lys389. Another chlorophyll a -binding protein, CP 43, was degraded more rapidly than CP 47. The oxygen-evolving activity and the capacity for rebinding of the 33-kDa protein to the core complex of Photosystem II decreased in parallel, with kinetics very similar to those of the cleavage of CP 47 at Lys389. These observations strongly suggest that the hydrophilic domain around Lys389 of CP 47, which are located on the lumenal side, is important in the binding of the 33-kDa protein and in maintaining the oxygen-evolving activity of the Photosystem II complex.

Najy Masri - One of the best experts on this subject based on the ideXlab platform.

  • random mutagenesis in the large extrinsic loop e and transmembrane alpha helix vi of the CP 47 protein of photosystem ii
    Plant Molecular Biology, 1999
    Co-Authors: Najy Masri, Wan Lee, Laurie K Frankel, Terry M Bricker
    Abstract:

    The intrinsic chlorophyll-protein CP 47 is a component of Photosystem II which functions in both light-harvesting and oxygen evolution. Using the Escherichia coli mutator strain XL-1 Red, we introduced mutations at 14 sites in the large extrinsic loop E of CP 47 and its adjacent transmembrane α-helix VI. Four mutant cell lines were recovered in which the histidyl residues 455H, 466H and 469H were altered. The cell lines H455T, H455Y, H469Y, and the double mutant F432L,H466R exhibited phenotypes that supported the identification of the histidyl residues 455H, 466H and 469H as chlorophyll ligands. Four additional mutant cell lines were recovered which contained mutations at positions 448R in the large extrinsic loop of CP 47. These mutants, R448K, R448Q, R448S, and R448W, exhibited variable phenotypes ranging from moderate alteration of photoautotrophic growth and oxygen evolution rates to a complete inhibition of these parameters. Those mutants exhibiting photoautotrophic growth and oxygen evolution capability under standard conditions were unable to grow photoautotrophically or evolve oxygen when grown at low chloride concentrations. Finally, a mutant cell line exhibiting a substitution at position 342G was recovered. The mutant G342D exhibited moderate alterations of photoautotrophic growth and oxygen evolution. In addition to these alterations, mutants were recovered in which deletions and insertions (leading to frame shifts) and stop codons were introduced. These mutants uniformly lacked the ability to either grow photoautotrophically or evolve oxygen.

  • isolation of a highly active photosystem ii preparation from synechocystis 6803 using a histidine tagged mutant of CP 47
    Biochimica et Biophysica Acta, 1998
    Co-Authors: Terry M Bricker, Najy Masri, Jason Morvant, Holly Sutton, Laurie K Frankel
    Abstract:

    Site-directed mutagenesis was used to produce a Synechocystis mutant containing a histidine tag at the C terminus of the CP 47 protein of Photosystem II. This mutant cell line, designated HT-3, exhibited slightly above normal rates of oxygen evolution and appeared to accumulate somewhat more Photosystem II reaction centers than a control strain. A rapidly isolatable (<7 h) oxygen-evolving Photosystem II preparation was prepared from HT-3 using dodecyl-β-d-maltoside solubilization and Co2+ metal affinity chromatography. This histidine-tagged Photosystem II preparation stably evolved oxygen at a high rate (2440 μmol O2 (mg chl)−1 h−1), exhibited an α-band absorption maximum at 674 nm, and was highly enriched in a number of Photosystem II components including cytochrome c550. Fluorescence yield analysis using water or hydroxylamine as an electron donor to the Photosystem II preparation indicated that virtually all of the Photosystem II reaction centers were capable of evolving oxygen. Proteins associated with Photosystem II were highly enriched in this preparation. 3,3′,5,5′-Tetramethylbenzidine staining indicated that the histidine-tagged preparation was enriched in cytochromes c550 and b559 and depleted of cytochrome f. This result was confirmed by optical difference spectroscopy. This histidine-tagged Photosystem II preparation may be very useful for the isolation of Photosystem II preparations from mutants containing lesions in other Photosystem II proteins.